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ABSTRACT 

We report  the ident i ficat ion of a range of C
25
 highly branched isoprenoid (HBI ) 

alkenes and cer tain sterols in fi l tered phytoplankton samples obtained from 

western Svalbard (Arct ic) and near South Georgia (South At lant ic, sub-Antarct ic) in 

2016 and 2014, respect ively. The C
25

 HBIs contained 3–5 double bonds and had 

structures ident i fied previously from analysis of laboratory diatom cultures. The 

same HBIs were also ident i fied in individual diatom taxa isolated from the mixed 

assemblages and with reasonably simi lar  distr ibut ions. Thus, C
25

 HBIs were 

ident i fied in Rhizosolenia set igera isolated from western Svalbard near-sur face 

waters, whi le the same HBIs were also found in R. polydactyla f. polydactyla and R. 

hebetata f. semispina picked from seawater  col lected from a si te in the South 

At lant ic. The main sterol  composit ion was sl ight ly di fferent  between the two 

locat ions, with cholesta-5,24-dien-3-ol  (desmosterol) ident i fied as one of the major  

components in the sample from West Svalbard, consistent  with the diatom 

assemblage being dominated by R. set igera. In contrast , the major  sterol  in the 

South At lant ic sample was cholesta-5,22-dien-3-ol  (22-dehydrocholesterol), l ikely 

reflect ing the relat ively high proport ion of the genus Pseudo-ni tzschia. For  both 

locat ions, the sui te of HBIs included a t r i -unsaturated isomer (HBI  I I I ; 6Z-

2,6,10,14-tetramethyl -9-(3'-methylpent -4-enyl idene)-pentadec-6-ene), proposed in 

previous studies as a potent ial  proxy measure of pelagic sea ice-edge condit ions, and 

thus, a counterpar t  to the mono- and di-unsaturated HBIs IP
25

 and IPSO
25

, which 

have been used as seasonal sea ice proxies in the Arct ic and Antarct ic, respect ively. 
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HBI  I I I  has been reported previously in sediments from West Svalbard and we 

report  here i ts occurrence in a smal l  number of sur face sediments from the South 

At lant ic. For  both regions, HBI  I I I  was present as one of the major  HBIs in 

sediments, which contrasts the HBI  distr ibut ions in the fi l tered phytoplankton 

samples, where HBIs with four  and five double bonds were the major  components. 

Differences in HBI  distr ibut ions between phytoplankton and sediment samples may 

potent ial ly be due to the presence of other  (unanalysed) diatoms in the fi l tered 

water  samples, seasonal/annual var iabi l i ty in the product ion of HBIs by a range of 

diatoms, di fferent ial  degradat ion of HBIs between sources and sediments, or  a 

combinat ion of these. Interest ingly, we did not  detect  any C
30

 HBIs in the water  

samples, picked cells or  sediments from ei ther  locat ion, despite ear lier  reports of 

these l ipids in laboratory cul tures of R. set igera. This study represents the fi rst  

source ident i ficat ion of cer tain C
25
 HBI  l ipids under in si tu pelagic condit ions.       

 

 

Keywords: highly branched isoprenoid; alkene; diatom; biomarker ; Rhizosolenia  



  

 4 

1. I nt r oduct ion 

C
25

 and C
30

 highly branched isoprenoid (HBI ) alkenes are common 

components of mar ine and lacustr ine sediments (Rowland and Robson, 1990; Belt  et  

al ., 2000; Sinninghe Damsté et  al ., 2004; Belt  and Müller , 2013) and are general ly 

bel ieved to be biosynthesised by a l imited number of diatom genera. To date, C
25

 

HBIs (e.g. Fig. 1) have been reported in laboratory cul tures of individual species of 

Haslea (Volkman et  al ., 1994; Belt  et  al ., 1996; Wraige et  al ., 1997; Al lard et  al., 

2001; Poulin et  al ., 2004), Navicula (Belt  et  al ., 2001c), Rhizosolenia (Volkman et  al ., 

1994; Sinninghe Damsté et  al ., 1999; Belt  et  al ., 2001a, 2002; Rowland et  al ., 2001), 

Pleurosigma (Belt  et  al ., 2000; 2001b; Grossi  et  al ., 2004) and Berkeleya (Brown et  

al ., 2014a). Fur ther , under in si tu environmental  condit ions, a smal l  number of C
25
 

HBIs have also been ident i fied in Pseudosolenia calcar-avis isolated from Balt ic Sea 

sur face waters (Kaiser  et  al ., 2016). On the other  hand, apart  from a l imited 

number of reports in sediments (e.g., Prahl et  al ., 1980; Barr ick and Hedges, 1981) 

and par t iculate organic matter  (e.g., Wakeham et al ., 2002; Xu and Jaffé, 2007), C
30

 

HBIs have only been ident i fied in laboratory cul tures of R. set igera (Volkman et  al ., 

1994; Belt  et  al ., 2001a, 2002; Rowland et  al., 2001). For  both C
25

 and C
30

 HBIs, 

structural  determinat ions have been achieved largely through laboratory cul tur ing 

and analysis of pur i fied apolar  l ipid extracts using NMR spectroscopy (e.g., Belt  et  

al ., 1996, 2000, 2001a,b,c; Sinninghe Damsté et  al ., 1999; Grossi  et  al ., 2004; Brown 

et  al ., 2014a). 
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In recent years, the source or  environmental  speci fici ty of cer tain C
25

 HBI  

alkenes has led to their  use as organic geochemical proxies for  seasonal Arct ic and 

Antarct ic sea ice reconstruct ion (e.g., Belt  et  al ., 2007, 2016; Massé et  al ., 2011; Belt  

and Mül ler , 2013). Thus, a mono-unsaturated C
25

 HBI  termed IP
25

 (structure I ; Fig. 

1) has been used as a palaeo proxy for  Arct ic sea ice (e.g., Belt  et  al ., 2007; Fahl and 

Stein., 2012; Belt  and Mül ler , 2013; Knies et  al ., 2014; Mül ler  and Stein, 2014; Stein 

et  al ., 2016), whi le a closely related di -unsaturated analogue (IPSO
25

; st ructure I I ; 

Fig. 1) represents a l ikely counterpar t  for  the Antarct ic (e.g., Barbara et  al ., 2010, 

2013; Denis et  al ., 2010; Massé et  al ., 2011; Col l ins et  al ., 2013; Etourneau et  al ., 

2013; Belt  et  al ., 2016). Fur thermore, sources of IP
25

 and IPSO
25

 have been ident i fied 

fol lowing isolat ion of individual species from mixed sea ice algal communit ies and 

analysis of their  l ipid content using gas chromatography–mass spectrometry (GC–

MS) (Brown et  al ., 2014b; Belt  et  al ., 2016). In contrast , al though a t r i -unsaturated 

C
25

 HBI  (HBI  I I I ; Fig. 1) has been suggested to be a possible proxy indicator  of the 

retreat ing ice edge dur ing spr ing (Col l ins et  al ., 2013; Belt  et  al ., 2015; Smik et  al ., 

2016a,b; Ribeiro et  al ., 2017), thus far , no source ident i ficat ion of this biomarker  

from such locat ions has been made.  

In the current  study, we report  the occurrence of var ious C
25

 HBIs and cer tain 

sterols in fi l tered water  samples col lected dur ing (ice-free) summers from West 

Svalbard (Arct ic) and near to South Georgia (South At lant ic, sub-Antarct ic) and, in 

par t icular , we ident i fy individual species of Rhizosolenia that  biosynthesise HBI  I I I . 
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We also bel ieve this to be the fi rst  report  of HBI  source ident i ficat ion from in si tu 

polar  and sub-polar  open water  (pelagic) set t ings. 

 

2. Exper iment al  

2.1. Sample col lect ion 

Water  samples were col lected from western Svalbard (sample V12; 

78°58.52’N; 9°21.1’E) and sl ight ly nor th of South Georgia in the South At lant ic 

(sample E103; 53°15.56'S; 38°25.01'W) as par t  of the annual Kongsfjorden “Climate 

and Ecosystem” (Norwegian Polar  Inst i tute) and JR304 (Br i t ish Antarct ic Survey) 

cruise campaigns in 2016 and 2014, respect ively (Fig. 2). Al l sampl ing was carr ied 

out in ice-free open water  condit ions (August and December for  V12 and E103, 

respect ively). The V12 sample was col lected from a single ver t ical  tow (0–30 m) 

using a plankton net (HYDRO-BIOS
©
, K iel , Germany) fi t ted with a 20 µm mesh. 

Approximately 50 ml of sampled seawater  were fi l tered onto a 47 mm Whatman 

GF/F fi l ter  and kept frozen (–20 °C) pr ior  to analysis. The E103 sample was 

obtained using a paired mot ion-compensated Bongo net (61 cm mouth diameter , 2.3 

m length) equipped with sol id cod-ends and 100 µm and 200 µm mesh sizes. Based 

on the area of the net ’s mouth and the ver t ical  sampl ing interval  (0–200 m), we 

est imate the sampled volume of seawater  to be ca. 58 m
3
. Of the 100 µm sample 

retr ieved, ca. 2 l  were fi l tered onto a 47 mm GF/F fi l ter  and kept frozen (–80 °C) 

pr ior  to analysis. Fur ther  unfi l tered al iquots of V12 and E103 (ca. 25–50 ml) were 

also col lected and kept frozen for  subsequent species ident i ficat ion and cel l  picking. 
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Surface sediment mater ial  from seven locat ions in the South At lant ic (Fig. 2) was 

taken from the upper 0–1 cm of archived box cores held at  the Br i t ish Antarct ic 

Survey, UK. 

 

2.2. Species ident i ficat ion 

Centr ic diatoms of the genus Rhizosolenia have long cyl indr ical  cel ls with 

many girdle bands and, usual ly, wi th a single, elongated, r imoportula or  labiate 

process (spine) on each cel l  valve (Round et  al ., 1990; Scott  and Thomas, 2005). 

Species ident i ficat ion using l ight  microscopy is based, usually, on the shape of the 

valve and i ts process with associated otar ia morphology (Pr iddle et  al ., 1990; 

Armand and Zielinski  2001). Rhizosolenia set igera is narrow in diameter  (4–20 µm) 

with a long needle-like process lacking otar ia. R. hebetata f. semispina is also 

narrow (4–25 µm), with a long taper ing process, but  has a smal l  pointed otar ia. In 

contrast , cel ls of R. polydactyla f. polydactyla are wider  (15–105 µm) with a process 

that  is also wider  at  the base, taper ing to the t ip, wit h a large otar ia that  tapers 

distal ly to the process. 

 

2.3. Extract ion and pur ificat ion 

Fi l tered water  samples were extracted, par t ial ly pur i fied and analysed using 

establ ished methods (e.g., Belt  et  al ., 2012, 2013). In br ief, GF/F fi l ters were 

saponified in methanolic KOH (ca. 4 ml H
2
O/MeOH, 1:9; 5% KOH; 60 min, 70 °C) 

fol lowing addit ion of 9-octylheptadec-8-ene (10 ng) as internal standard to permit  
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quant i ficat ion of HBIs. Hexane (3 × 2 ml) was added to the saponified solut ion, 

which was vor texed (1 min) and centr i fuged (1 min; 2,000 rpm). The supernatant, 

containing apolar  l ipids, was t ransferred to a clean vial  and dried (N
2
 st ream) to 

remove hexane and t races of H
2
O/MeOH. The apolar  fract ions were re-suspended in 

hexane (0.5 ml) and fract ionated using column chromatography (0.5 g SiO
2
) to 

obtain HBIs (5 ml hexane) and sterols (5 ml hexane/methyl acetate (4:1, v/v)). The 

procedure for  analysis of the picked individual diatoms was the same as for  the 

fi l tered water  samples, except that  cel ls were extracted with hexane only (1 ml, 

ul t rasonicat ion; 5 min). Freeze-dr ied sur face sediments (ca. 2–3 g) from the South 

At lant ic were extracted using dichloromethane/methanol (3 × 3 mL; 2:1, v/v) 

according to establ ished methods (Belt  et  al ., 2012), with the result ing lipid extracts 

t reated as per  the extracted water  samples. Analysis of sediments from western 

Svalbard is descr ibed in Smik and Belt  (2017).  

 

2.4. Analyt ical  methods 

Al l  l ipid extracts were analysed using GC–MS in total  ion current  (TIC) or  

single ion monitor ing (SIM) mode using an Agi lent  7890a Ser ies I I  gas 

chromatograph, fi t ted with a 30 m fused si l ica HP
5ms

 column (0.25 mm i .d., 0.25 µm 

fi lm) coupled to a 5975c Ser ies Mass Select ive Detector  (MSD) (Belt  et  al ., 2012). 

Individual HBIs were ident i fied based on their  character ist ic retent ion indices (RI ) 

and mass spectra (Wraige et  al ., 1999; Belt  et  al ., 2000; Brown and Belt , 2016). For  

HBI  quant ificat ion (picked cel ls), individual integrated peak areas for  HBIs I I I  and 
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IV obtained from GC–MS SIM analyses were normal ised to those of the internal 

standard, instrumental  response factors obtained from cal ibrat ions using pur ified 

standards (Belt  et  al ., 2000, 2012) and the number of cel ls extracted. Since we did 

not  have sufficient  quant i ty and pur i ty of all  HBIs to conduct the corresponding 

cal ibrat ions, we took integrated peak areas of the molecular  ion for  each isomer and 

the cal ibrat ions using HBI  I I I  and IV to provide est imates of the concentrat ions of 

al l  other  HBI  components. Sterol  fract ions were der ivat ised using N,O-

bis(t r imethylsi lyl )t r i fluoroacetamide (BSTFA; 50 µl ; 70 °C; 60 min) pr ior  to analysis 

by GC–MS. Individual sterols were ident i fied by compar ison of the mass spectra of 

their  TMS ethers with publ ished data (e.g., Volkman, 1986).  

 

3. Resul t s 

3.1. C
25

 HBIs and sterols in phytoplankton from western Svalbard and the South 

At lant ic 

The par t ial ly pur i fied extracts of the fi l tered water  samples from western 

Svalbard (sample V12) and South Georgia in the South At lant ic (sample E103) 

contained a number of C
25

 HBIs that  could be ident i fied by compar ison with 

previously reported GC–MS data. Thus, sample V12 (western Svalbard) contained 

HBIs I I I –VI I I  wi th VI I  present as the major  component  (Fig. 3a). HBIs I I I –VI I I  

were also present in the fi l tered water  sample from the South At lant ic (E103), with 

V and VI I  as the most abundant  isomers in approximately equal amounts (Fig. 3b). 

In addit ion, relat ively small  amounts of HBI  IX could also be ident i fied in E103, 
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although i ts geometr ic isomer, X, was not detected (Fig. 3b). In contrast , C
25

 HBIs I  

(IP
25

) and I I  (IPSO
25
) and C

30
 HBIs could not  be ident i fied in water  samples from 

ei ther  locat ion. The main sterols in sample V12 were 24-methylcholesta-5,22-dien-

3-ol  (epi-brassicasterol ), 24-methylcholesta-5,24(28)-dien-3-ol  (24-

methylenecholesterol ), cholesta-5,22-dien-3-ol  (22-dehydrocholesterol), cholesta-

5,24-dien-3-ol  (24-dehydrocholesterol  or  desmosterol), cholest-5-en-3-ol 

(cholesterol ) and 24-methylcholest-5-en-3-ol  (24-methylcholesterol), wi th 

desmosterol  and cholesterol  as the major  const i tuents. In contrast , 22-

dehydrocholesterol  and cholesterol  dominated the sterol  composit ion of sample E103, 

with 22-dehydrocholesterol  as the main component, whi le epi -brassicasterol , 24-

methylenecholesterol  and desmosterol  were only present in relat ively minor  

quant i t ies. 

 

3.2. C
25

 HBIs in picked cel ls 

The taxonomic composit ion of sample V12 (western Svalbard) was dominated 

by Rhizosolenia set igera (> 90% of total  diatom abundance) and the same HBIs 

ident i fied in the mixed microphytoplankton assemblage were also ident i fied in the 

picked cel ls of this species, and in simi lar  distr ibut ion, especially for  the three most 

abundant components I I I , V and VI I  (Fig. 3a, 4a). The most abundant  diatom taxa 

in the South At lant ic Bongo net  sample (E103) were Pseudo-ni tzschia l ineola (ca. 

50%) and Tr ichotoxon reinboldi i  (ca. 22%), with R. polydactyla f. polydactyla (ca. 

11%) and R. hebetata f. semispina (3%) only present as relat ively minor  species. The 
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main HBIs in picked cells of R. polydactyla f. polydactyla and R. hebetata f. 

semispina were I I I , V and VI I , al though their  relat ive concentrat ions were 

somewhat di fferent  to those of the same l ipids in the total  sample, with a much 

more even distr ibut ion in the picked cells (Figs. 3b and 4b,c). On the other  hand, 

some other  C
25

 HBIs (e.g., IV, VI  and VI I I ) were ei ther  absent or  below the l imit  of 

detect ion. Unfor tunately, cel ls of the most abundant species (P. l ineola) were too 

smal l  and di fficul t  to remove from the glass vial  wal ls to enable their  isolat ion and 

l ipid analysis. The total  C
25

 HBI  concentrat ion was est imated to be ca. 7, 3 and 2 

pg/cel l  for  R. set igera, R. hebetata f. semispina and R. polydactyla f. polydactyla, 

respect ively. 

 

3.3. C
25

 HBIs in western Svalbard and South At lant ic sur face sediments 

Previously, HBI  I I I  has been reported in 27 sur face sediments from western 

Svalbard with concentrat ion in the range 0.27–8.78 ng/g (Smik and Belt , 2017). 

Here, we re-examined the GC–MS chromatograms from this previous study and 

ident i fied t r i -unsaturated IV as the major  HBI  in most cases, together  with I I I , as 

reported previously, and IX as an addit ional minor  component . In contrast , of the 

more unsaturated HBIs, only V could be ident i fied, and this was only present in a 

few extracts and in very low relat ive amounts (ca. 1%; Fig. 5a). For  the seven 

sur face sediments from the South At lant ic, I I I  was the most abundant HBI , with a 

concentrat ion range of 6–250 ng/g. Simi lar  to the western Svalbard sediments, HBI  
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t r ienes IV and IX could also be quant i fied, but  only t race amounts of HBI  V were 

detected (Fig. 5b). 

 

4. Discussion 

Despite the common occurrence of C
25

 HBIs in sediments (e.g., Rowland and 

Robson, 1990; Belt  et  al ., 2000; Sinninghe Damsté et  al ., 2004; Belt  and Mül ler , 

2013), relat ively few studies have reported on the presence of these l ipids in their  

nat ive mar ine or  lacustr ine set t ings, ei ther  in mixed phytoplankton assemblages or  

in individual taxa. Except ional ly, IP
25

 and IPSO
25

 have been ident i fied in individual 

and mixed assemblages of Arct ic and Antarct ic sea ice diatoms (Nichols et  al ., 1988; 

Belt  et  al ., 2007, 2013, 2016; Brown et  al ., 2011, 2014b), di- through to penta-

unsaturated C
25

 HBIs have been reported in a smal l  number of Antarct ic 

phytoplankton samples (Massé et  al ., 2011; Smik et  al ., 2016a), and some fur ther  di- 

and t r i -unsaturated C
25

 HBIs were also observed in Pseudosolenia calcar-avis 

isolated from sur face waters of the south-eastern Balt ic Sea (Kaiser  et  al ., 2016). 

IP
25

 and some other  HBIs have also been reported in sinking par t icles fol lowing the 

release of sympagic algae from melt ing sea ice in the Arct ic (Brown et  al ., 2016; 

Rontani et  al ., 2016). As such, our  ident i ficat ion of a range of C
25
 HBIs in 

phytoplankton samples from polar  (western Svalbard) and sub-polar  (South 

At lant ic) locat ions adds to the growing reports of these biomarkers in their  source 

environments and we believe i t  to be the fi rst  example from individual taxa isolated 

from Arct ic or  South At lant ic pelagic set t ings. 
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 With respect to the individual HBI -producing diatoms descr ibed in the 

current  study, our  findings represent the fi rst  report  of HBIs in R. polydactyla f. 

polydactyla and R. hebetata f. semispina, although the occurrence of C
25

 and C
30

 

HBIs within R. set igera is wel l  known (Volkman et  al ., 1994; Sinninghe Damsté et  

al ., 1999; 2004; Belt  et  al ., 2001a, 2002; Rowland et  al., 2001; Massé et  al ., 2004) 

and some HBIs have also been ident i fied in R. fal lax, R. shrubshrolei  and R. 

pungens (Sinninghe Damsté et  al ., 2004). The absence of any C
30

 HBIs is also 

intr iguing given their  biosynthesis by R. set igera in most laboratory cul tures 

(Volkman et  al ., 1994; Belt  et  al ., 2001a, 2002; Rowland et  al ., 2001). On the other  

hand, C
30

 HBIs were also absent in cul tures of R. set igera isolated from the east  

coast  of the USA (Sinninghe Damsté et  al ., 1999), al though this strain was 

addit ional ly unusual in that  i t  produced only one (penta-unsaturated) C
25
 HBI  and 

with a double bond at  C5/6 compared to C7/20, which is a more common 

character ist ic of C
25

 and C
30

 HBIs in other  strains of R. set igera (Belt  et  al ., 2001a, 

2002; Rowland et  al., 2001). However, even within the C
30
 HBI -producing strains, 

the presence and distr ibut ion of the C
25

 counterpar ts exhibi t  notable di fferences. For  

example, Volkman et  al . (1994) fi rst  reported the occurrence of several  C
30
 HBIs (but  

no C
25

 HBIs) in an Austral ian strain (CS-62) of R. set igera, and Belt  et  al . (2001a) 

reported simi lar  findings for  a fur ther  strain (Nant es 99) isolated from northern 

France. In contrast , Rowland et  al . (2001) detected both C
25

 (including I I I –VI  

ident i fied here) and C
30

 HBIs in an Austral ian strain of R. set igera (CS 389/A), 

whi le Belt  et  al . (2002) showed subsequent ly that  their  distr ibut ion was strongly 
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influenced by l ife cycle character ist ics, with the biosynthesis of C
25

 HBIs, in 

par t icular , being st imulated dur ing the sexual reproduct ion or  auxosporulat ion 

stage. In any case, the absence of C
30
 HBIs in our  mixed phytoplankton and 

individual Rhizosolenia diatoms isolated from natural  sur face waters may 

potent ial ly explain the relat ively smal l  number of reports of these biomarkers in 

mar ine sediments, at  least  compared to their  C
25

 pseudo-homologues (Rowland and 

Robson, 1990; Belt  et  al ., 2000; Sinninghe Damsté et  al ., 2004; Belt  and Mül ler , 

2013). On the other  hand, the ident i ficat ion of desmosterol  as the major  sterol  in the 

R. set igera-r ich V12 sample is consistent  with previous findings from laboratory 

cul tures (Barret t  et  al ., 1995; Massé et  al ., 2004; Rampen et  al., 2010). Simi lar ly, 

the presence of 22-dehydrocholesterol  as the major  sterol  in sample E103 from the 

South At lant ic is consistent  with the occurrence of Pseudo-ni tzschia l ineola as the 

most  abundant diatom. Thus, al though we are not  aware of any invest igat ions into 

the sterol  content of P. l ineola in cul ture, Rampen et  al . (2010) ident ified 22-

dehydrocholesterol  as the major  sterol  in P. ser iata.  

In addit ion to the var iabil i ty in HBI  composit ion within Rhizosolenia diatoms, 

the type, concentrat ion and distr ibut ion of individual isomers ident i fied in V12, 

E103 and picked cel ls from both of these mixed algal  assemblages, exhibi t  some 

paral lels with HBI  content in other  diatoms, even in those of diverse 

(phylogenet ical ly) genera. For  example, the co-occurrence of I I I –VI I I  found here in 

centr ic Rhizosolenia diatoms has been reported previously in laboratory cul tures of 

the pennate diatom Pleurosigma intermedium (Belt  et  al ., 2000), which is also 
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capable of biosynthesising IX (Brown and Belt , 2016). Fur thermore, our  est imates of 

cel lular  (total) HBI  concentrat ions (ca. 2–6 pg/cel l ) are typical  of those reported 

previously in laboratory cul tures of HBI -producing diatoms (Volkman et  al ., 1994; 

Rowland et  al., 2001; Massé et  al ., 2004; Belt  et  al ., 2013; Brown et  al ., 2014a; 

Kaiser  et  al ., 2016) and individual species isolated from natural  ice-algal  

assemblages (Brown et  al ., 2014b; Belt  et  al ., 2016).  

 For  al l  three Rhizosolenia species, we note, in par t icular , the presence of a 

t r i -unsaturated C
25

 HBI  (HBI  I I I ) that  has been proposed as a potent ial  proxy for  

ice-edge pelagic condit ions in both the Arct ic and the Antarct ic (Col lins et  al ., 2013; 

Belt  et  al ., 2015; Smik et  al ., 2016a,b; Ribeiro et  al ., 2017). Given the near -ubiqui ty 

of Rhizosolenia spp. in mar ine phytoplankton wor ldwide, including the Arct ic and 

Antarct ic (Pr iddle and Fryxel l , 1985; Pr iddle et  al ., 1990; Scott  and Thomas, 2005), 

i t  seems l ikely that  the Rhizosolenia species ident i fied here contr ibute to the 

sedimentary budget of HBI  I I I  in cer tain polar  and sub-polar  environments. 

Previously, HBI  I I I  has been reported in surface and down-core sediments from 

western Svalbard (Cabedo-Sanz and Belt , 2016; Smik et  al ., 2017) and we also 

ident i fied i t  in each of the sur face sediments from the South At lant ic as par t  of the 

current  study, so a combinat ion of our  new and previous findings suggest that  

Rhizosolenia spp. are l ikely sources. However, since only a single sample was 

col lected from each region, and these were both from ice-free sur face waters dur ing 

spr ing/summer months, the results from the current  study do not really add to the 

evidence descr ibed previously for  the use of HBI  I I I  as a proxy for  ice-edge 
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condit ions in the Arct ic and the Antarct ic (Col l ins et  al ., 2013; Belt  et  al ., 2015; 

Smik et  al ., 2016a,b; Ribeiro et  al ., 2017). Fur ther , our  study does not reveal 

whether  HBI  I I I  (or  other  HBIs) might be biosynt hesised by other  diatoms in these 

regions that  bloom dur ing other  intervals. An examinat ion of a greater  number of 

diatom species is therefore required before the contr ibut ion from Rhizosolenia spp. 

in polar  and sub-polar  environments can be ful ly evaluated.  

For  both western Svalbard and the South At lant ic study regions, the 

sedimentary HBI  distr ibut ions di ffer , however, from those found in the fi l tered 

water  samples or  individual diatom taxa. Specifical ly, whi le the tetra- and penta-

unsaturated HBIs V and VI I  were present as the major  components in the samples 

of fi l tered water  and picked diatoms from both regions (Fig. 3), HBI  t r ienes (I I I , IV 

and IX) were the most significant  const i tuents of the sur face sediments, with only V 

as the other  quant i fiable HBI , and in very low amounts (Fig. 5). We offer  three 

possible explanat ions for  these differences.  

First , the snapshot nature of our  phytoplankton sampl ing l ikely l imits the 

extent  to which the corresponding HBI  distr ibut ions paral lel those that  reflect  

accumulat ion over  seasonal or  annual t imeframes that  are per t inent to sediments.  

As descr ibed ear l ier , there may be fur ther  diatoms in these regions that  

biosynthesise HBIs dur ing di fferent  seasons, such that  sedimentary distr ibut ions 

may better  reflect  the col lect ive contr ibut ion result ing from seasonal species 

succession. Thus, addit ional phytoplanktonic sources of HBIs such as I I I , IV and IX 

would likely resul t  in their  increased accumulat ion, relat ive to HBIs V–VI I I , in 
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sediments. To date, the only other  known sources of HBI s I I I , IV and IX are diatoms 

belonging to the genus Pleurosigma (Belt  et  al ., 2000; Brown and Belt , 2016), but  

Pleurosigma spp. were ei ther  absent or  only present in extremely low abundances 

in our  samples. However, this does not discount the possibil i ty of HBI  product ion by 

Pleurosigma spp. or  other  diatoms dur ing different  seasons, or  by unpicked species 

in the current  samples. Indeed, we note that  the distr ibut ions of HBIs I I I , V and VI I  

in R. polydactyla f. polydactyla and R. hebetata f. semispina (Fig. 4b,c) were sl ight ly 

di fferent  from that  in the mixed phytoplankton sample from which they were picked 

(E103; Fig. 3b), indicat ing the likely occurrence of addit ional  HBI -producers in the 

lat ter . Fur ther , and in contrast  to the HBI  distr ibut ions in the fi l tered 

phytoplankton and picked cells from sample V12, the ident i ficat ion of IX and the 

increased relat ive abundance of IV compared to I I I  in sediments from western 

Svalbard (Fig. 5a), indicate that  species other  than R. set igera potent ially 

contr ibute to the HBI  sedimentary budget in this region. On the other  hand, the 

contrast ing outcomes between phytoplankton and sedimentary analyses may simply 

reflect  the var iabi l i ty in HBI  distr ibut ion observed previously in Rhizosolenia spp. 

(Volkman et  al ., 1994; Sinninghe Damsté et  al ., 1999; Belt  et  al ., 2001a, 2002; 

Rowland et  al., 2001), with sediment composit ion indicat ive of a temporal  average of 

any shorter -term HBI  var iabi l i ty within this genus.   

Second, the l ikely increased degradat ion rates of more unsaturated HBIs 

such as V–VI I I  compared to those of HBI  t r ienes (i .e. I I I , IV and IX) potent ial ly 

leads to the lat ter  becoming relat ively enhanced in sediments. Indeed, al though a 
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direct  compar ison of the react ivi ty of HBIs I I I –I X under environmental  condit ions 

has not yet  been carr ied out, in laboratory studies a general  increase in react ivi ty 

towards photo- and autoxidat ion processes has been reported for  some HBIs 

containing a larger  number  of double bonds (Rontani et  al., 2011, 2014).  

Third, some addit ional (smaller) HBI -producing diatoms may not have been 

obtained dur ing water  sample col lect ion in the South At lant ic, especial ly, due to the 

increased mesh size of the Bongo net employed (100 µm). In any case, the extent  to 

which Pleurosigma, or  other  diatom genera, are addit ional contr ibutors to the 

sedimentary budget of HBI  I I I  (or  other  HBIs) wi l l  require analysis of a larger  

number of phytoplankton samples with var iable diatom composit ion. For  now, 

al though we were not able to isolate individual cel ls of the abundant (ca. 50%) 

Pseudo-ni tzschia l ineola from sample E103, we note that  P. ser iata has been shown 

previously not  to produce HBIs in cul ture (Sinninghe Damsté et  al ., 2004).     

   

5. Conclusions 

A number of C
25

 HBI  alkenes have been ident i fied in natural  phytoplankton 

populat ions obtained from West Svalbard in the Arct ic and nor th of South Georgia 

in the South At lant ic (sub-Antarct ic), including a t r i -unsaturated isomer (HBI  I I I ) 

proposed previously as a potent ial  proxy for  seasonal ice-edge condit ions in polar  

and sub-polar  set t ings. From the same samples, picked diatoms belonging to the 

genus Rhizosolenia contained simi lar  distr ibut ions of HBIs to those of the mixed 

phytoplankton assemblages, al though they exhibi ted clear  di fferences to those in 



  

 19 

surface sediments from each region and also those reported previously in laboratory 

cul tures of R. set igera, with the absence of any C
30

 HBIs being par t icular ly 

noteworthy. In contrast , the ident i ficat ion of desmosterol  as the major  sterol  in the 

sample from West Svalbard, containing > 90% R. set igera, is consistent  with 

previous invest igat ions into diatom sterol  composit ion. In the future, i t  wi l l  be 

important  to determine whether  any other  diatoms are capable of producing C
25

 

HBIs (especial ly HBI  I I I ) in other  polar  and sub-polar  pelagic set t ings, and to 

invest igate whether  there are any specific environmental  controls (e.g., season) over  

HBI  product ion in order  that  their  potent ial as palaeoenvironmental proxies can be 

better  understood. Such invest igat ions are current ly underway in our  laborator ies. 
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Figur es and Tables 

 

Fig. 1. Structures of C
25

 HBI  alkenes descr ibed in this study.  

 

Fig. 2. Map of sampl ing regions: (a) western Svalbard; (b) South At lant ic. The 

water  sample locat ions are indicated with a red dot .  The locat ions of sur face 

sediments analysed for  HBIs in previous studies (Smik and Belt , 2017) and the 

current  invest igat ion are indicated mainly with black dots. Locat ions indicated by 

yel low dots represent the sur face sediments for  which par t ial  GC–MS data are 

shown in Fig. 5.  

 

Fig. 3. Par t ial  GC–MS chromatograms (SI M mode) of extracted water  samples: (a) 

V12; (b) E103. In each case, the selected ion corresponds to the molecular  ion of C
25

 

HBIs with di fferent  degrees of unsaturat ion (m/z 346: C
25:3

; m/z 344: C
25:4

; m/z 342: 

C
25:5

). Label led peaks correspond to the structures shown in Fig. 1. Values in 

parentheses refer  to the % contr ibut ion of the selected HBI  to the total  HBI  content. 

 

Fig. 4. Par t ial  GC–MS chromatograms of par t ial ly pur i fied hexane extracts of 

picked cel ls of different  diatoms: (a) R. set igera; (b) R. polydactyla f. polydactyla; (c) 

R. hebetata f. semispina. In each case, the selected ion corresponds to the molecular  

ion of C
25

 HBIs with different  degrees of unsaturat ion as per  Fig. 3. Label led peaks 
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correspond to the structures shown in Fig. 1. Values in parentheses refer  to the % 

contr ibut ion of the selected HBI  to the total  HBI  content. 

 

Fig. 5. Par t ial  GC–MS chromatograms of par t ial ly pur i fied hexane extracts of 

selected sur face sediments: (a) western Svalbard (V12); (b) South At lant ic (E103). In 

each case, the selected ion corresponds to the molecular  ion of C
25

 HBIs with 

di fferent  degrees of unsaturat ion as per  Fig. 3. Label led peaks correspond to the 

structures shown in Fig. 1. Values in parentheses refer  to the % contr ibut ion of the 

selected HBI  to the total  HBI  content. For  consistency with Fig. 3 and 4, the 

retent ion t ime of HBI  VI I  is indicated by a dashed ver t ical  l ine, al though i t  was 

below the l imit  of detect ion for  al l  sediments. 
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Highlights 

C25 HBIs identified in phytoplankton from western Svalbard and the South Atlantic 

Sources of C25 HBIs identified as three species of Rhizosolenia 

HBIs include HBI III proposed previously as a possible sea ice-edge proxy 

Phytoplankton sterol content consistent with laboratory cultures of major taxa 
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