nerc.ac.uk

The nitrogen, carbon and greenhouse gas budget of a grazed, cut and fertilised temperate grassland

Jones, Stephanie K.; Helfter, Carole; Anderson, Margaret; Coyle, Mhairi; Campbell, Claire; Famulari, Daniela; Di Marco, Chiara; van Dijk, Netty; Tang, Y. Sim; Topp, Cairistiona F.E.; Kiese, Ralf ; Kindler, Reimo; Siemens, Jan; Schrumpf, Marion; Kaiser, Klaus; Nemitz, Eiko; Levy, Peter E.; Rees, Robert M. ; Sutton, Mark A.; Skiba, Ute M.. 2017 The nitrogen, carbon and greenhouse gas budget of a grazed, cut and fertilised temperate grassland. Biogeosciences, 14 (8). 2069-2088. 10.5194/bg-14-2069-2017

Before downloading, please read NORA policies.
[img]
Preview
Text
N517002JA.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
[img]
Preview
Text (Supplement)
N517002JAX.pdf - Published Version
Available under License Creative Commons Attribution.

Download (161kB) | Preview

Abstract/Summary

Intensively managed grazed grasslands in temperate climates are globally important environments for the exchange of the greenhouse gases (GHGs) carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). We assessed the N and C budget of a mostly grazed and occasionally cut and fertilised grassland in SE Scotland by measuring or modelling all relevant imports and exports to the field as well as changes in soil C and N stocks over time. The N budget was dominated by import from inorganic and organic fertilisers (21.9 g N m−2 a−1) and losses from leaching (5.3 g N m−2 a−1), N2 emissions (2.9 g N m−2 a−1), and NOx and NH3 volatilisation (3.9 g N m−2 a−1), while N2O emission was only 0.6 g N m−2 a−1. The efficiency of N use by animal products (meat and wool) averaged 9.9 % of total N input over only-grazed years (2004–2010). On average over 9 years (2002–2010), the balance of N fluxes suggested that 6.0 ± 5.9 g N m−2 a−1 (mean ± confidence interval at p > 0.95) were stored in the soil. The largest component of the C budget was the net ecosystem exchange of CO2 (NEE), at an average uptake rate of 218 ± 155 g C m−2 a−1 over the 9 years. This sink strength was offset by carbon export from the field mainly as grass offtake for silage (48.9 g C m−2 a−1) and leaching (16.4 g C m−2 a−1). The other export terms, CH4 emissions from the soil, manure applications and enteric fermentation, were negligible and only contributed to 0.02–4.2 % of the total C losses. Only a small fraction of C was incorporated into the body of the grazing animals. Inclusion of these C losses in the budget resulted in a C sink strength of 163 ± 140 g C m−2 a−1. By contrast, soil stock measurements taken in May 2004 and May 2011 indicated that the grassland sequestered N in the 0–60 cm soil layer at 4.51 ± 2.64 g N m−2 a−1 and lost C at a rate of 29.08 ± 38.19 g C m−2 a−1. Potential reasons for the discrepancy between these estimates are probably an underestimation of C losses, especially from leaching fluxes as well as from animal respiration. The average greenhouse gas (GHG) balance of the grassland was −366 ± 601 g CO2 eq. m−2 yr−1 and was strongly affected by CH4 and N2O emissions. The GHG sink strength of the NEE was reduced by 54 % by CH4 and N2O emissions. Estimated enteric fermentation from ruminating sheep proved to be an important CH4 source, exceeding the contribution of N2O to the GHG budget in some years.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.5194/bg-14-2069-2017
CEH Sections: Dise
ISSN: 1726-4170
Additional Information. Not used in RCUK Gateway to Research.: Open Access paper - full text available via Official URL link.
NORA Subject Terms: Agriculture and Soil Science
Atmospheric Sciences
Date made live: 09 May 2017 13:41 +0 (UTC)
URI: http://nora.nerc.ac.uk/id/eprint/517002

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...