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Abstract The Beebe vent field (BVF) in the Cayman Trough has built an auriferous massive sulfide
deposit on the ultraslow spreading mid-Cayman spreading center. The genesis of auriferous sulfide deposits
at mid-ocean ridges is not fully understood, although there is a growing recognition that slow and ultraslow
spreading centers are conducive to gold mineralization. Analysis of hydrothermal precipitates from the BVF
indicates that the highest gold contents are present within ‘‘beehive diffusers,’’ which have developed a
highly porous pyrrhotite framework. The beehive structure allows vent fluids to effuse slowly while allowing
ingress of seawater to cool the fluid. The prevalence of pyrrhotite in the beehive samples, lack of sulfates,
association between pyrrhotite and gold grains, and results of thermodynamic modeling suggest gold pre-
cipitation occurred under highly reduced conditions even during mixing with seawater. In contrast, high-
temperature chimneys, with a single orifice, maintain high temperatures to the primary vent orifice and
much of the gold is lost to seawater. Despite this, both chimney types are relatively gold-enriched, which
points to a further underlying cause for high gold at the BVF such as interaction of hydrothermal fluids with
ultramafic lithologies in the basement. The final gold composition of the deposit is partially controlled by
loss of gold during mass-wasting of the material, with gold depletion most prevalent in blocks formed at
beehive-type chimneys. The BVF demonstrates that the overall gold content of a massive sulfide deposit is
the sum of basement, precipitation, and surface processes.

Plain Language Summary Mineral deposits form on the seafloor at hydrothermal vent sites and
are rich in metals including copper, zinc, lead, and sometimes precious metals like gold and silver. However,
the processes controlling the amount of gold that ends up in these deposits is not clearly understood. In
this article we show that as hydrothermal fluid vents on the seafloor, two different types of chimney form.
One is relatively gold-poor, while the other is gold-rich. The gold-rich chimneys, so-called ‘‘beehive’’ chim-
neys due to their appearance, are a very efficient structure for the formation of gold because the hot hydro-
thermal fluids are able to be cooled to much lower temperatures in the vicinity of the chimney. In
comparison, the other type of chimney vents most of the gold to the ocean. Therefore, at this vent site, the
formation of beehive chimneys may control the amount of gold in the deposit.

1. Introduction

Volcanogenic massive sulfide (VMS) deposits form at or near the seafloor as polymetallic sulfides pre-
cipitated from hot (up to �4008C) hydrothermal fluids [Franklin et al., 1981; Jupp and Schultz, 2000].
They form lenticular bodies rich in Cu, Zn, Pb, Ag, and Au dependent on tectonic setting, host rock
lithology, and local precipitation mechanisms [Galley et al., 2007; Mercier-Langevin et al., 2015]. Approx-
imately 9% of VMS deposits are classified as gold-rich, with more than 31 tons of contained gold at
grades of greater than 3.46 g/t [Mercier-Langevin et al., 2011]. The gold-rich VMS deposits are typically
associated with calc-alkaline, intermediate to felsic host rocks, within a rifted-arc setting, addition of
magmatic fluids, shallow emplacement leading to boiling, or postdepositional enrichment of gold
grades [Hannington et al., 1999; Dub�e et al., 2007]. However, auriferous deposits discovered at mid-
ocean ridge settings, such as at the hydrothermal fields of TAG [Hannington et al., 1995], Snakepit
[Fouquet et al., 1993], and recently the Beebe vent field (BVF) [Webber et al., 2015] do not align with
these associations.
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The BVF, in the Cayman Trough (Figure 1), is the World’s deepest known hydrothermal vent system at
4960 m below sea level [Connelly et al., 2012]. The BVF developed on basaltic crust at the ultraslow spread-
ing Mid-Cayman Spreading Centre, and vents black smoker fluid at temperatures up to 4018C [Webber et al.,
2015]. The BVF is situated 3 km from the main ridge axis on a volcanic spur trending NE-SW. The spur is
bisected along its length by a normal fault system, with a down throw of 13 m to the west. The BVF is
located on the hanging wall of this fault system, on the western periphery of a �500 m wide volcanic
dome. It is composed of a series of 30–60 m wide sulfide mounds with mass-wasted sulfide sheets extend-
ing to the west. The BVF hosts two morphologically distinct groups of chimneys. The Beebe-125 and Hash-
tag chimneys are slender, up to �30 cm wide, and vent the hottest fluids recorded (4018C) in a focused and
vigorous style from the apex of each chimney (Figure 2a). They are composed primarily of copper sulfides,
with chalcopyrite on the interior (Figure 2b), grading out to bornite 6 chalcocite, followed by pyrite and
anhydrite on the exterior. A second group of chimneys at Beebe Woods, 60 m to the south of Beebe-125,
form a cluster of 30–100 cm thick ‘‘beehive’’ structures, up to 15 m tall (Figure 2c). These have a range of
venting temperatures from shimmering water to �3508C black smoker fluid. Samples of this chimney type
show a lower-temperature mineral assemblage, with sphalerite, among a matrix of pyrrhotite, pyrite, and sil-
ica, with a highly porous pyrrhotite framework (Figure 2d). While both sets of chimneys contain a substan-
tial amount of gold, ranging between 0.5 and 8 ppm Au at Beebe-125, the beehive chimneys of Beebe
Woods contain considerably more gold ranging from 19 to 93 ppm Au [Webber et al., 2015] (supporting
information Table S1).

The difference in gold content between the two adjacent chimney types is striking. With no difference in
end-member vent fluid composition between the two sites, it appears that chimney morphology and vent-
ing style could be a primary control on the differing gold concentrations. Here we show that the different
vent morphologies and mineralogy can directly account for the difference in the gold contents, with effi-
cient precipitation of gold at the Beebe Woods site producing highly gold-rich chimneys. Mixing with sea-
water under highly reduced conditions led to precipitation of gold at relatively high temperatures, and this
process may contribute toward the formation of gold-rich VMS deposits. Furthermore, we show that the

Figure 1. (a) Location of the Beebe Vent Field (BVF) in the Caribbean (inset) and on the mid-Cayman Spreading Centre (black square, which shows the extent of Figure 1b. The BVF is
3 km east of the spreading axis (black lines), on a volcanic ridge, which abuts a regional fault (red lines) 1 km to the east. (b) The area immediately surrounding the BVF comprises volca-
nic domes of basaltic pillow lavas. The BVF sits on the western flanks of a volcanic ridge, on the hanging wall side of a normal fault system which bisects the crest of the ridge. The black
outline denotes the area covered by more detailed, 20 cm gridded bathymetry, available in Webber et al. [2015].
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development of beehive-style chimneys is likely linked to the effusive velocity of venting leading to variable
pyrrhotite saturation and a complex internal chimney structure. The underlying reason for the enhanced
gold content across the BVF as a whole may be linked to interaction with ultramafic lithologies in the
basement.

1.2. Previous Work
The following is a short summary of previous findings relevant to this work. Gold transport in seafloor
hydrothermal fluids typically occurs under low to neutral pH, seawater-like salinity, high sulfidation, and
moderately reducing conditions [Hannington and Scott, 1989a; Benning and Seward, 1996; Seward and
Barnes, 1997; Stefansson and Seward, 2004]. In these settings, the AuCl– complex predominates at tempera-
tures >3508C, with Au(HS)2

– and AuHS(aq) complexes more prevalent below this temperature at higher and
lower pH, respectively. The solubility of gold in these solutions is dependent on temperature, pH, sulfur,
and oxygen activity of the solution, and consequently, processes that influence these parameters control
gold precipitation [Hannington et al., 1989b; Pokrovski et al., 2014]. For seafloor mineral deposits, these pro-
cesses include cooling, mixing with seawater, sulfide precipitation, phase change (boiling), and wall-rock
interaction. Within hydrothermal chimneys, mixing with seawater directly affects pH, temperature, sulfur,
and oxygen activity and causes sulfide precipitation, while boiling can be important in relatively shallow
environments. These observations are consistent with the highest gold concentrations usually occurring
where mixing with seawater produces lower temperature diffuse, Zn-rich, ‘‘beehive,’’ or ‘‘white smoker’’
chimneys [Hannington et al., 1986; Fouquet et al., 1993; Herzig et al., 1993; Hannington et al., 1995].

Figure 2. Examples of vent types and vent wall mineralogy. (a) High temperature, focused venting chimneys at Beebe-125 are 10–30 cm
wide and are relatively gold-poor compared to beehive diffusers. (b) High-temperature, copper-rich chimneys produce interlocking copper
minerals with low permeability, inhibiting fluid mixing. This example from the BVF is a �3 cm wide solid chalcopyrite section of chimney
wall. (c) Beehive diffusers at Beebe Woods, up to 1 m wide and 15 m tall. (d) Lower temperature, zinc, and iron sulfide-rich beehive chim-
neys produce permeable walls with millimeter-scale laths of pyrrhotite growing into open fluid pathways.
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‘‘Beehive’’ diffuser chimneys were first reported at the Snake Pit vent site at 238N on the mid-Atlantic Ridge
[Fouquet et al., 1993] where more diffuse, lower velocity flow was observed compared to focused chimneys.
The Beehive diffusers lack a principle axial conduit, instead having a highly porous axial zone through which
fluids diffuse to the top and laterally to the sides of the chimney; in this way they grow both upward and
outward. These structures were reported to contain higher gold concentrations than the focused flow chim-
neys, with gold precipitation controlled primarily by the chimney morphology which allowed restricted sea-
water mixing on the margins of the chimney structure, in a relatively oxygen-rich regime, prior to pyrrhotite
precipitation and close to the hematite-pyrite buffer. Similar structures and processes occur at other sea-
floor hydrothermal sites such as at the Lau Basin [Herzig et al., 1993] and TAG [Hannington et al., 1995].

At TAG, gold is concentrated in lower-temperature (265–3008C) ‘‘white smoker’’ chimneys on the periphery
of the main mound [Hannington et al., 1995; Thompson et al., 1988]. In these chimneys, gold concentrations
reached 42.4 ppm and were strongly associated with dendritic, Fe-poor sphalerite. Gold precipitation in the
white smoker chimneys was largely attributed to the precipitation of sulfides leading to decreased H2S and
more oxygen-rich conditions, coupled with the ability of the Au(HS)2

– complex to remain stable to low tem-
peratures. However, as a discrete gold-rich phase was not identified in the active chimneys, the gold was
assumed to be present as submicroscopic particles within sphalerite aggregates or adsorbed onto mineral
surfaces, or in solid solution within sulfides. Consequently, gold precipitation by adsorption onto mineral
surfaces, which occurs independently of gold saturation state, was considered an important mechanism for
gold precipitation in white smokers, where the processes would be enhanced by the high internal surface
area of the chimneys provided by the dendritic sphalerite, and comparatively long residence time of the
fluid within the chimney.

Once gold-rich precipitates have formed, the final gold content of the seafloor sulfide deposit may depend
on secondary processes that occur at the surface and interior of the mound. At the surface of the deposit,
gold present within sulfides can be lost to dissolution by seawater as those sulfides are oxidized [Hanning-
ton et al., 1988]. Gold has also been described as part of the zone-refining model for the distribution of Cu
and Zn within VMS deposits and seafloor sulfide mounds [Eldridge et al., 1983; Hekinian et al., 1985; Hekinian
and Fouquet, 1985; Hannington et al., 1986, 1995; Huston and Large, 1989; Huston, 2000]. As talus is incorpo-
rated into the mound, gold is remobilized by circulating fluids which then vent at white smoker sites, lead-
ing to the formation of gold-rich zones at the top of the deposit. However, this reprocessing has been
suggested to lead to a gold-poor deposit, as a large proportion of the reworked gold is vented on each
occasion [Hannington and Scott, 1989b]. However, at PACMANUS in the Manus Basin, a felsic-hosted system,
significant reworking of gold in the subsurface was not observed [Ihle et al., 2005].

2. Methods

Samples of sulfide chimneys from the Beebe vent site were collected on cruise JC82 with the ISIS remotely
operated vehicle. Samples were subsequently dried, cut for thin section, and a portion ground to a powder
for analysis. Fe, Cu, and Zn were analyzed by inductively coupled plasma atomic emission spectroscopy
(ICP-AES), other elements by inductively coupled plasma mass spectrometry (ICP-MS). Sulfides were exam-
ined under reflected light and analyzed using a LEO1450VP variable pressure scanning electron microscope
(SEM), with an X-Act, 10 mm2 area silicon drift detector, energy dispersive X-ray spectroscopy (EDS). Sam-
ples of vent fluid were collected from the BVF with gas-tight samplers and analyzed with ion chromatogra-
phy, ICP-MS, and ICP-AES. To explore the gold precipitation, thermodynamic modeling was undertaken
with Geochemist’s Workbench, using the internally consistent values of Akinfiev and Zotov [2010] and evalu-
ated by Pokrovski et al. [2014], combined with the Au-hydroxide values from Pokrovski et al. [2014]. DBCreate
[Kong et al., 2013], which in turn uses SUPCRT92 [Johnson et al., 1992], was used to create a thermodynamic
database for the prevailing conditions at Beebe: 500 bar and 0–4008C. Modeling was undertaken under two
conditions, one where no minerals are present initially, and the fluid composition reflects the measured val-
ues. The second reflects buffered conditions, which is likely to be more realistic of a hydrothermal fluid flow-
ing diffusely through a chimney with a very high internal surface area, such as within the beehive
chimneys. Given the sulfides present in the analyzed chimneys are mainly pyrrhotite and pyrite, indicating
reduced conditions, the fluid is buffered with these two minerals. In this highly dynamic system of hydro-
thermal chimney growth, we do not attempt to take account of kinetic effects, and equilibrium modeling
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should be approached with caution. However, the results presented here should give an indication as to
the state that the system is working toward, for example, gold precipitation rather than dissolution.

3. Results

3.1. Vent Fluid Chemistry
Vent fluid samples were collected from chimney orifices using gas tight syringes and screened using the
Mottl VentDB criteria. All data presented here (Table 1) meet these criteria (Mg-Ca r2 5 0.97, n 5 10). End-
member chloride content is 362 mmol kg21 and a common source fluid is inferred for the whole BVF based
on the covariance of Mg with Cl, Ca, and Na across the three discrete venting sites sampled (supporting
information Figure S1). Beehive diffusers are notoriously difficult to sample without entraining chimney
fragments and all samples from Beebe Woods suffered from this artifact, leading to anomalously high metal
contents in each sample. Excluding samples on the basis of entrainment of chimney material rich in Fe, Cu,
Zn, and other metals demonstrates that only fluids collected at Beebe-125 are free from such artifacts. End-
member fluid data for these samples indicate that Beebe vent fluids are Cu (112 mmol kg21) and Fe (6640
mmol kg21) rich with elevated H2S (3.7 mmol kg21) and depleted Cl (362 mmol kg21). These fluids are
inferred to form at high temperature and pressure from super critical phase separation by generation of a
vapor-rich, low-chlorinity phase that is enriched in metals and H2S. Gold determinations in BVF fluids are all
impacted by entrainment of chimney particulates that are rich in gold.

3.2. Occurrence of Gold
At the Beebe Woods vent site, gold occurs as discrete, amorphous, 1–10 lm sized grains of gold and gold
alloys (Figure 3). These grains occur in a variety of locations, often on the edges of grain boundaries of pyr-
rhotite and iron oxides (Figure 3b). They are sometimes enclosed within pyrrhotite and iron oxide, and only
once seen within chalcopyrite, as a series of discrete inclusions and gold-rich domains (Figure 3c). Discrete
gold grains are absent in proximity to fluid conduits, which are 1–20 mm scale voids into which euhedral
pyrrhotite has grown. The gold occurs either as native grains, as electrum with 8–13% Ag, or rarely alloyed
with 52–60% Sb (Table 2). Gold grains were not observed in the higher-temperature chimney samples.

3.3. Thermodynamic Modeling
Thermodynamic modeling used the end-member fluid compositions of the BVF vent fluid, conventionally
established [Von Damm et al., 1985] by extrapolation of vent fluid analyses to zero magnesium (Table 1). We
use an estimate of the end-member gold concentration in order to explore the behavior of gold in the BVF
fluid, based on estimated gold concentrations in fluids at other sites of 0.0003–0.001 lmol/kg [Hannington
et al., 2005]. The different gold concentrations do not greatly affect the results, with only a �208C difference
in the gold saturation temperature between these high and low concentrations. For the following simula-
tions we use 0.001 lmol/kg. Using this value, the end-member fluid is severely under-saturated with respect
to gold at 4008C and is capable of dissolving around 4 orders of magnitude more gold.

Under conductive cooling conditions (Figure 4), AuCl–2 is the dominant species from 400 to 3508C (Figure
4a). Below this, AuHS(aq) is the main gold species. In the absence of any mineral buffers, gold saturation is
not reached until �408C (Figures 4c and 4e). In the presence of a pyrite-pyrrhotite buffer from 4008C, which
keeps the fluid highly reduced, AuHS(aq) is the primary gold species above 1508C, and below this tempera-
ture gold is evenly complexed as AuHS(aq) and Au(HS)2

– (Figure 4b). In this model, gold saturation occurs at
�1408C (Figures 4d and 4f). If the hydrothermal fluid is cooled by mixing with seawater (Figure 5), gold spe-
ciation results are similar to the conductive cooling model except the molar concentrations trend to lower
values due to dilution by seawater. The temperature at which Au(HS)2

– becomes equal to AuHS(aq) is slightly
lower at 1258C under buffered conditions (Figure 5b) but the temperature at which gold becomes stable is
similar to the conductive mixing model (Figures 5d and 5f).

The behavior of the copper minerals gives a strong indication as to which model is the most realistic. If the
fluid is not buffered by the presence of pyrite or pyrrhotite, chalcopyrite does not reach saturation until
�2758C and the primary copper mineral is bornite (Figures 4c and 5c), which is not consistent with the
observation that the high-temperature (4008C) chimneys are lined with chalcopyrite. Under pyrite-
pyrrhotite buffered conditions, chalcopyrite is stable at 4008C and the sequence of copper mineral precipi-
tation, from high to low temperature, matches the observed sequence of copper minerals from inside to
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out in the chimney samples; chalcopyrite followed by bornite then chalcocite (Figures 4d and 5d). In addi-
tion, the close association between pyrrhotite and the inclusions of gold suggest the fluid is highly reduced
during gold precipitation (Figure 6).

The pyrite-pyrrhotite buffer controls the temperature at which gold reaches saturation. If no minerals are
present, and none are allowed to precipitate in the model (the fluid is not buffered), gold does not reach
saturation until �30–408C (Figures 4c and 5c). In the presence of a pyrite-pyrrhotite buffer, however, gold

precipitates at temperatures of �1408C (Figures
4d and 5d). If pyrrhotite is present throughout
the entire mixing regime, the temperature at
which gold precipitates is maximized because
gold is stable at higher temperatures in more
reduced conditions (Figures 7a–7d). However, if
the quantity of pyrrhotite is limited, it can be
totally consumed and the fluid is allowed to
depart from the pyrite-pyrrhotite buffer, leading
to more oxidized conditions and, as long as
SO4/H2S< 1, a lower temperature of gold forma-
tion. This scenario leads to the possibility that
gold can be remobilized by flushing through a
more oxidized fluid at similar or higher tempera-
tures, or by the growth of the chimney allowing
gold particles to interact with fluid at higher
temperatures. There is evidence for gold inter-
acting with higher-temperature fluids in the

Figure 3. SEM images of gold grains found in samples from Beebe Woods. (a) Lath-like gold enclosed within iron oxide on the boundary
of altered marcasite. (b) Gold enclosed within pyrrhotite. A high proportion of pore space is visible. (c) Gold-rich areas within chalcopyrite-
sphalerite grain. The grain boundary has been marked for clarity. (d) Gold grain on pyrrhotite and iron oxide boundary. mc is marcasite, po
is pyrrhotite, sp is sphalerite, cpy is chalcopyrite, Fe-ox is iron oxide.

Table 2. EDS Results for Gold Blebsa

Spectra

Alloying Elements

Ag Au %Ag

1 6.93 48.3 13%
2 5.5 40.32 12%
3 3.51 31.17 10%
4 2.81 24.31 10%
5 2.73 24 10%
6 1.56 16.32 9%
7 1.46 16.2 8%
8 1.41 9.88 12%
9 0.87 9.8 8%

Sb Au %Sb
10 4.05 3.74 52%
11 3.87 2.68 59%
12 3.41 2.32 60%

aResults of EDS analysis of individual gold alloy inclusions. The
inclusions were chemically defined in three groups; pure gold (18)
– not shown, Au-Ag alloy (9), and Au-Sb alloy (3).
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Figure 4. Results of thermodynamic calculations, where BVF fluid is conductively cooled from 400 to 28C. Figures 4a and 4b show results of Au speciation, Figures 4c and 4d show min-
eral saturation without mineral precipitation, and Figures 4e and 4f show minerals present where precipitation is allowed. The left-hand figures are performed without a mineral buffer
present, and the right-hand figures are performed with pyrite and pyrrhotite present in sufficient quantities to exist through the entire reaction path. Note that the saturation and precip-
itation of the copper-sulfides is more realistic under buffered conditions, and the temperature of gold precipitation is raised from �75 to �1758C.
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Figure 5. Results of thermodynamic calculations, as in Figure 4, except cooling is achieved by mixing with ambient seawater.
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form of gold-rich domains in
chalcopyrite and sphalerite over-
grown by chalcopyrite (Figure 3c).

Under conditions commonly
found at black smoker sites,
with moderate to low pH, gold
stability is affected strongly by
both the oxidation and pH of
the fluid (Figure 7). Maintaining
log SO4/H2S< 0 results in a gen-
erally lower temperature at
which gold precipitates but that
temperature increases with
decreasing SO4/H2S (Figures 7c
and 7d). Under more oxidized
conditions, gold stability occurs
at temperatures as high as
2508C, and the pH of the fluid
has comparatively little effect.

4. Discussion

4.1. Precipitation of Gold
The results of the thermody-
namic modeling are consistent
with the observation that chim-

ney morphology at the BVF strongly influences the gold content of the vent site. At Beebe-125 and Hashtag,
hydrothermal fluid at 4008C or greater, well above the stability temperature of gold, is transported rapidly
along primary fluid conduits to the apex of the chimneys, with little opportunity for the precipitation of
gold in the chimney walls. The chalcopyrite inner walls, which are relatively impermeable, limit the amount
of fluid that can pass into the more permeable, lower-temperature anhydrite-pyrite portion of the wall. At
Beebe Woods, however, the high permeability of the chimney walls and large quantity of smaller fluid con-
duits has allowed much more of the fluid to experience lower temperatures. The sphalerite-rich mineralogy
of these chimneys suggests that the fluid regularly reaches temperatures lower than 1508C (e.g., Figure 4d).
Furthermore, the quantity of pyrite and pyrrhotite in these chimneys and the amount of pore space sur-
rounding these phases suggest the fluid composition is kept close to the pyrite-pyrrhotite buffer, which
raises the temperature at which gold can precipitate (Figure 7). This finding is contrary to most other studies
of gold-rich chimneys at hydrothermal sites, which instead attribute gold precipitation under oxygen-rich
conditions by mixing with seawater, close to the hematite-pyrite buffer [Herzig et al., 1993; Fouquet et al.,
1993; Hannington et al., 1995] and prior to pyrrhotite precipitation [Fouquet et al., 1993]. This may be true
for white smoker chimneys, which show evidence of mixing with seawater in the mound prior to entering
the chimney and which contain abundant sulfates such as anhydrite and barite. Under these conditions,
the fluid is likely to intersect the gold stability boundary where SO4/H2S> 1. We find no evidence for this
at the BVF. Instead, the abundance of pyrrhotite at Beebe Woods, general lack of anhydrite or other sulfates,
and the venting of typical black smoker fluids, suggests that the fluid precipitating gold is close to the
pyrite-pyrrhotite buffer under highly reduced conditions. The modeling suggests these reduced conditions
can be maintained up to very high degrees of seawater mixing, until the complete consumption of pyrrho-
tite occurs. In the higher-temperature, copper-rich chimneys, lower temperatures only exist in the relatively
impermeable walls of the chimneys, but under much more oxidized conditions, as evidenced by the preva-
lence of a pyrite-anhydrite assemblage. As a result, a much lower proportion of the fluid experiences condi-
tions suitable for gold precipitation, and the gold content of these chimneys is lower. However, it is not
clear which type of chimney precipitates the greater net quantity of gold, given the differing fluid flow rates
and chimney growth rates. If a vastly higher quantity of fluid is vented by the higher-temperature chimneys,
they may precipitate as much or more gold than the beehive chimneys, albeit at a lower overall grade.

Figure 6. The stability of iron phases at 500 bar, log SO2–
4 activity 5 23, log Cl–

activity 5 20.5, O2 activity is expressed as SO2–
4 /H2S. The availability of pyrite and pyrrho-

tite to the fluid will buffer the fluid to very low oxygen activities.
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Figure 7. Speciation diagrams for Au at 500 bar, log SO2–
4 activity 5 23, log Cl– activity 5 20.5, O2 activity is expressed as SO2–

4 /H2S. Figures 7a through 7d demonstrate how Au specia-
tion varies with O2 at differing pH. When log SO2–

4 /H2S< 0, more reduced fluids tend to precipitate gold at higher temperatures. Figures 7e and 7f explore the variation of pH, which
strongly controls the speciation. More acidic solutions carry gold as AuCl–2 and AuHS(aq), while alkaline solutions carry gold as Au(HS)2

–. Sulfide is speciated over pH. Diagrams adapted
from Cleverley and Bastrakov [2005].
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4.2. Formation of the Beehive Chimneys
The thermodynamic modeling showed that a complex interplay exists between pyrrhotite, pyrite, and
gold precipitation when seawater is used to cool the hydrothermal fluid. By buffering the fluid, the
amount of pyrrhotite available controls the temperature at which gold precipitates, and pyrrhotite itself
can be totally consumed in this process (Figure 8a). However, as the mixing with seawater continues, at
lower temperatures pyrrhotite saturation increases and can reprecipitate (Figure 8a). The beehive chim-
neys contain complex structures, with regular, horizontal rib-like pore spaces that allow lateral flow of flu-
ids toward the chimney walls [Fouquet et al., 1993]. The structure and high porosity can be seen clearly on
a CT scan of a beehive chimney (Figure 8b). We suggest this structure may be the result of fluctuations in

Figure 8. (a) Mixing between 4008C Beebe vent fluid and 48C seawater, with an initial 1 mol of pyrrhotite present. At �1308C, all of the pyrrhotite has been consumed (either dissolved
or replaced by pyrite); however, at temperatures less than 608C it is again saturated. This fluctuating pyrrhotite saturation may lead to the development of rib-like structures. (b) CT scan
of a beehive chimney (12 cm diameter by 18 cm high) from the Moytirra vent field, 458N mid-Atlantic Ridge [Wheeler et al., 2013], showing internal rib structures. The beehive chimney
has been imaged using a 450 kV Hutch Nikon/Metris custom-designed hard X-ray CT-scanner at the m-Vis facility, University of Southampton. Making the medium-density material invis-
ible reveals the internal structure, comprising alternating bands or ribs of sulfide material (brown) separated by lower-density anhydrite rich areas (invisible). By highlighting the pore
space (blue) the internal fluid pathways are also made visible revealing an internal vertical pipe-like structure within the beehive chimney. (c) A one-dimensional flow-through model
where 4008C Beebe vent fluid is replacing 48C seawater. After 24 s, an initial ridge of pyrrhotite is produced, and behind this ridge is an area with less pyrrhotite. After 1.8 min, three
ridges of pyrrhotite have developed, similar to the internal structure of beehive chimneys.
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pyrrhotite saturation. As the vent fluid moves through the chimney structure and ultimately mixes with
seawater, pyrrhotite is replaced with pyrite and other sulfides, and quartz and anhydrite are precipitated
at moderate (100–2008C) temperatures. Below �1308C, few minerals are precipitated until the fluid
reaches 608C, when pyrrhotite is again precipitated (Figure 8a). A one-dimensional flow-through model
can recreate this phenomenon, producing an initial ‘‘ridge’’ of pyrrhotite, followed by a trough as the pyr-
rhotite is dissolved, before another ridge of pyrrhotite is formed (Figure 8c). These ridges and troughs of
pyrrhotite in the fluid mixing model may be analogous to the ribs and fluid pathways in the beehive
chimney. At the apex of the chimney, cooling by mixing with seawater results in pyrrhotite precipitation,
but fluid flow must be slow enough to allow large degrees of mixing, in order to reach �608C, across the
width of the chimney. This is consistent with previous work that has linked effusive velocity to chimney
morphology [Fouquet et al., 1993]. The pyrrhotite occurs as millimeter-scale hexagonal plates (Figure 2b),
creating an open structure with a high proportion of pore space. This structure encourages higher
degrees of seawater mixing, development of the rib-like structures, lower-velocity venting over a wider
proportion of the chimney, and thus the process is self-perpetuating. In contrast, more focused, higher-
velocity venting, perhaps from an individual fissure rather than a wider area of sulfide talus, would inhibit
seawater mixing, maintaining higher temperatures and therefore the prevalence of interlocking copper
minerals, which create an impermeable barrier to further seawater mixing (Figure 2a). Lower-velocity
venting would lead to higher degrees of seawater mixing and therefore lower temperatures in proximity
to the existing chimney structure. Since lower temperatures are required to precipitate, rather than con-
sume pyrrhotite, this would lead to pyrrhotite precipitation.

4.3. Mass Wasting
The BVF is built on the side of a steeply sloping edifice of pillow lavas, and mass wasting of the sulfide is a
prominent feature of the deposit. Talus spreads westward from the BVF in fans which extend up to 200 m
from the vent sites, with finer sand and mud-sized particles extending even further [Webber et al., 2015].
The talus is highly recrystallized, showing little evidence for chimney structures at the hand specimen scale
and is severely depleted in Cu and Zn compared to the zero-age chimneys (Figure 9a). However, the behav-
ior of gold during weathering is less clear, with some talus samples being relatively high in gold compared
to chimneys (Figure 9b). When the talus material is grouped by their Cu and Zn content, it is possible to
infer which type of vent that talus material came from, focused chimneys, and beehives having high Cu/Zn
compared to low Cu/Zn, respectively (Figure 9a). This allows some assessment of the mobility of elements
in the two types of talus. Certain elements behave as expected; addition of Mn and loss of Ca is consistent
between both chimney types, for example (Figures 9b and 9c). But gold exhibits very different behavior
depending on which type of vent the sample was formed at. Beehive chimneys seem to have lost gold,
with the scaled isochron diagram indicating it has a similar mobility to Ca, Cu, Zn, Al, and Ag (Figure 9b).
However, the high-temperature chimneys show much less evidence for gold loss, appearing to behave simi-
larly to Cr and Zr (Figure 9c). This seems to suggest that gold is less available for reaction or loss from talus
created from high-temperature chimneys than beehives, perhaps due to lower permeability and surface
area. Gold dissolution from altered seafloor sulfides has previously been reported [Hannington et al., 1988].
The release of lattice-bound and fine-grained gold from weathering sulfides is one possible way to get gold
into seawater quickly. In addition, there is likely to be a physical removal of nanoscale gold particles at least
from the exterior of talus blocks, with particles being either washed away or preserved within finer sedi-
ments that were not sampled.

The amount of gold preserved in the mass-wasted material is likely to be related to the grain size distribu-
tion of the talus, which in turn is linked to the distance the clasts have travelled from the vent site. As blocks
are transported, they will be broken, increasing surface area, releasing gold particles and exposing fresh
crystal faces to seawater. More proximal deposits should contain more gold than those found distally. This
process is controlled by the terrain on which the deposit forms; flatter terrain will lead to a shorter transport
distance, thicker talus beds, and therefore more gold preserved. Steep terrain, like that found at the BVF,
leads to longer transport distances, a finer grain size distribution, thinner talus beds, and therefore less gold
preserved. Similar conclusions can be reached for the Cu and Zn content of the talus. Although the mound
talus appears to have lost gold, it retains a high gold content in comparison to other VMS ores and seafloor
sulfides. With 0.5–15 ppm Au, they would form a gold-rich horizon that would otherwise be described as a
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barren pyrite lens due to the lack of base metals. This may be equivalent to gold-rich pyritic bodies
observed in ancient VMS deposits [e.g., Poulson and Hannington, 1996].

4.4. Origin of High Gold
At the BVF, gold precipitation is strongly controlled by beehive chimney formation, but other chimney types
are relatively gold-rich too, and while beehives are important in trapping gold in the deposit, it cannot be
the underlying control on the high gold content. Similar to other high-gold mid-ocean ridge vent sites, it
does not share recognized characteristics with high-gold VMS deposits in the geological record where the
auriferous deposits are generally associated with an arc setting, bi-modality in host-rock composition or
continuous magmatic suites, shallow formation leading to boiling, or some other ‘‘special’’ characteristic

Figure 9. Assessing the degree of mobility of gold in the sulfide talus. (a) Grouping talus samples based on Cu/Zn ratio indicates which style of vent they were formed at; beehives or
chimneys. This grouping was used to separate the samples into their respective protolith groups for the isocon plots. (b) Plotting Au against Cu shows that the high-temperature chim-
neys are relatively Cu-rich and Au-poor compared to the beehive chimneys, while the talus samples have highly variable Au concentrations. (c, d) Scaled isocon diagrams (following
Humphris et al. [1998]) of selected elements for beehive and focused chimney talus samples, respectively. These diagrams compare the concentration of an element in the original mate-
rial (C0 i) with that in the altered material (C0i), with each element scaled to allow easy visual comparison. Low C0i/C0 i indicate loss of that element, whereas a high ratio indicates gain.
(b) Samples with a low Cu/Zn ratio, and therefore are likely to have originated at beehives, show gold plotting as highly mobile, along with Ca, Cu, Zn, Al, and Ag. (c) In contrast, for the
samples with high Cu/Zn, Au plots as immobile, along with Mn, W, Pb, Mo, Cr, U, and Zr.
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that sets it apart from neighboring depos-
its [Hannington et al., 1995; Dub�e et al.,
2007; Mercier-Langevin et al., 2011, 2015].
That these high-gold, mid-ocean ridge
deposits have not been recognized in the
geological record is probably a function of
their low preservation potential compared
to arc systems. Despite this, the data for
global VMS deposits show that a larger
proportion of mafic-hosted systems are

auriferous compared to either bi-modal mafic or felsic host-rock types (Table 3), although only 11 of the
69 mafic-hosted deposits are recognized as being mid-ocean ridge deposits. On the seafloor, there is
growing evidence that vent sites situated on ultraslow spreading and ultramafic crust are particularly
gold-rich [Munch et al., 2001; Tao et al., 2011; Nayak et al., 2014; Fouquet et al., 2010; Wang et al., 2014].
The mid-Cayman spreading center is ultraslow spreading, with one of the lowest melt thicknesses in the
world [Klein and Langmuir, 1987; White et al., 2001] producing an extremely thin mafic crust just a few
hundred meters thick [Stroup and Fox, 1981; ten Brink et al., 2002]. However, silica geothermobarometry
indicates that the depth of hydrothermal circulation may be �1.8 km [Webber et al., 2015], much deeper
than the inferred thickness of basaltic crust. This low crustal thickness and depth of hydrothermal circula-
tion, together with indications from the sulfide geochemistry [Webber et al., 2015] and H2 content of the
fluids [Seewald et al., 2012], suggest that ultramafic lithologies may be present in the reaction zone
beneath the BVF. The upper mantle is generally richer in gold than MORB, with average MORB having a
gold value of 0.34 ppb [Webber et al., 2013] compared to the upper mantle value of �1 ppb [Salters and
Stracke, 2004]. Gold is likely to be present in accessory sulfide grains within the ultramafic lithologies,
since the partition coefficient of gold between sulfide and silicate melt is �15,000 [Peach et al., 1990].
Therefore, scavenging gold from gold-rich sulfide grains within ultramafic lithologies in the reaction zone
below the BVF may be a source of gold, particularly given the efficient nature of this process [Patten et al.,
2016].

The BVF vent fluid shows clear evidence for being the low-salinity vapor phase of a supercritical, phase-
separated hydrothermal fluid, with a salinity lower than that of seawater (362 mmol kg21). The behavior of
gold during this process is unclear, and any conclusive analysis is prevented by the lack of a gold end-
member value for the BVF and other black smoker vent fluids. However, there is some suggestion that gold
is preferentially partitioned into the vapor phase in other hydrothermal systems [Pokrovski et al., 2014, and
references therein] and it may be that this process plays a role at the BVF.

5. Conclusions

The highest gold concentrations at the BVF are controlled by the formation of beehive chimneys, which
produce a highly porous pyrrhotite framework allowing for slow effusion and cooling of vent fluid. The
prevalence of pyrrhotite in the samples, association with gold inclusions, and the geochemical modeling
suggest gold precipitates under reduced conditions at temperatures around 130–1408C. These conditions
are readily produced within beehive chimneys, which keep the fluid highly reduced by buffering with pyrite
and pyrrhotite, and allow the ingress of seawater to cool the fluid. In contrast, high-temperature chimneys
with relatively impermeable walls and a single orifice maintain high temperatures to the primary vent ori-
fice, and so a much larger proportion of the gold is lost to the ocean.

The gold content of the deposit is partially controlled by alteration of chimney fragments during mass-
wasting. Gold appears to be lost during this process, most prevalently from sulfide formed at beehive
chimneys.

The high gold concentrations found in all chimney samples at the BVF suggest an underlying reason
for high gold. Observations including a thin basaltic crust, together with penetration of hydrothermal
fluids to �1.6 km [Webber et al., 2015], suggest mantle peridotite as a likely source of gold compared
to basalt.

Table 3. Auriferous Volcanogenic Massive Sulfide Deposits by Host-Rock
Lithologya

Deposit Type n Auriferous Other % Auriferous

Bimodal-Mafic 172 11 161 6.4%
Felsic 300 22 278 7.3%
Mafic 69 7 62 10.1%

aVMS deposits can be separated into groups based on their host-rock
composition. Doing so reveals a greater proportion of mafic-hosted
deposits are auriferous compared to other types. Data from USGS, avail-
able on at http://mrdata.usgs.gov/vms/.
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