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(Introduction) (Interdune Guiding) (Eolian Dune Breach)

The preserved sedimentary expression within dryland environments was traditionally thought of as the Examples of coeval dune- interdunes with Interdune guiding results from the incursion of the eolian dunefield by fluvial waters along open JES ff‘;, ; o LT Google Earth images of dune/interdune control on Interdune breach results from the cutting of Examples of eolian dune breach by fluvial channel elements. Fluvial channel Examples of eolian dune breach

product of either extensive ephemeral fluvial sedimentation or by eolian sedimentation in the form of diagrammatic illustrations. Feathering denotes interdune corridors. The size of the interdune and dune wavelengths can either limitthe incursioninto = & o8 " phitatera{oigi ey R .\ fluvial waters (dune guiding). A) Northwest of Lake eolian dunes by fluvial incursions. Such penetration into the dunefield is restricted to the most energetic channel elements, as a result of fluvial channel [l Lvuit N VGRERHERREO (R

varying styles of migrating duneforms. However, within the last couple of decades increasing evidence coeval nature, most notable in ‘B* & ‘C’. small highly guided corridors or allow more freedom within relatively larger interdune expanses. Geor %”Fggg%rsggg"rfni / Chad, Chad, B) Southwest Taklimakan Desert, instances usually involve relatively large flood as a result they often contain features not normally observed in other smaller penetration. A) North Lake Eyre, [ 0

has shown that few dryland environments remain solely within the remit of either eolian or fluvial Conceptual model below indicates Interdune guiding as depicted in the modern examples (situated to the right of this text) force the [l & B0 0 RZiuneie = ‘ China, C & D) Central Tombouctou Region, Mali. events, whereby the fluvial incursion has the channel-forms. South Australia B) Namib | | Sk

completely, commonly exhibiting a mix of both. This study details the four types of eolian-fluvial relationship. fluvial system to flow perpandicular to the prevailing eolian migration direction. As such, instances LS il & s e . Note that dune guiding occurs with intermittent energy to erode and remove barrier dunes. This Photos: A) Large channel element with highly irreqular erosive base cutting into ggietﬁ’ uins“t?:‘l’ig,) LS;‘esHoaJ% LR R e

S Sedimentary structures include desiccation cracks, whereby the fluvial drainage direction and wind direction are near perpendicular to each other Jl= = i iy = *E N A Wy examples of dune breach. interaction is best facilitated where competing underlying sand dune element, B) Large channel fill succession with cyclic pulses Taklimakan Desert, China. SR k
adhesion structures, root mottling & bioturbation facilitates this interaction type. Dune guiding also commonly occurs with close association to [ll® 6 A S e system flow directions are opposed (180°). in energy regime denoted by coarser bands, note eolian sand inclusions, C) B '

Dunefield arrangement Conceptual model below details the dune guiding Close-up example taken from photo ‘B’, D) Energetic fluvial channel fluvial that AL

' includes large tree trunks. b oAb e UL
effect that larger eo_llan dunef_orr_ns or draaforms g 7 suggest multiple separate |
may exert upon fluvial waters in instances where ~ flow events within the dunefield
Sma”er bedformS are breaChed and reworked_ R g ST Ry SR ' SR TR T NS AT ; T 2 VLT T RN AN RO - ¢ O R R

,‘l.!' ﬂ A g
o ¢ Ty

. o A R B
(£ eVl i)

Significant alluvial corridor

examples of eolian dune breach.
In-phase duneformtrains =
Sinuous duneforms that maintain equidistant spacing between bedforms in
the train. As such, the interdune space is often open and continuous along its

length.

background

A y ) |

In this idealised example, in-phase configuration of the sinuous transverse
dunes allows fluvial incursions, as either a pervasive or channelised flow, to
occupy and flow along interdune corridors.

Channelised by

——_ larger bedforms

I "f..- ‘

Lateral b7 " e ﬂ\f‘( ;//:{ Vo D
* - Photo isAhigthoinque and scale bar shown applies to foreground only Featherlng Of dune & |nt erdun\e/agrleaCt))rgllte);rI;/‘] :./_‘
i @ Rhizolith and associated concretion @ Obstacle / fallen blocks / hollows [] Interdune interdune strata pinch-out of nterdune
O.ut-of-phase duneformtrains _ _ _ 2 Rip-up clast -~ Interdune bounding surface [ ] Photo background element common
Sinuous crested bedforms with an out-of-phase configuration. The ~_Cross-strata []Sand dunes Q Scale indicator

configuration generates areas in the dune train where interdunes narrow,
and dependant upon the dune wavelengths, become pinched. This
relationship creates natural bottle-necks to incursive fluvial flow.

Eolian surface generation

L ) Y o

: Deflati (f Floodi (f
Deflationary Supersurfaces eflationary Supersurface ooding Supersurface

Generated from periods of sediment supply restriction and/or
increase wind carrying capacity. Resulting in a net loss of
sediment from the dunefield with duneforms migrating at zero
angles of climb (bypass).

The idealised example here depicts the complete barring of fluvial flow where Compound duneforms and draaform

two duneforms meet.

St

Dunefield arrangement

Conceptual model of eolian dune guiding Eolian dune shape and wavelength w
control the size and shape Example from the Undivided Cutler

of the interdune | = ] - : Group, Paradox Basin, SE Utah. In Conceptual model of eolian dune breach The dune breach may occur as a single
- e e this example eolian sand dune fluvial channel or larger channel

e_Iements are eroded to form two Eolian dune breach often belt (see modern examples above)
discrete separate lenses. Beyond the

limits of the photo the upper and lower
sand dune elements meet, suggestive
of a coevalrelationship.

Modern examples of eolian AL, . re T R , | Fluvial incursion may completely
dunefield configuration. W piRE 4 A ) | . - or partially fill interdune dependant
Each example is ; W | e | P - on discharge amount and
aecomeanles by ;e i oy » 7. interdune dimensions
diagramatic representation o | | y 3 Ry - =

of the dune and interdune
morphologies. Note barchan
dunes of ‘B’ and their
arrangement generate no
continuous interdune
corridors, as such,
preventing this interaction

type.

Flooding Supersurfaces

Fluvial incursions result in the raising of the activation energy of
sediment to wind entrainment - effectively reducing the sediment
supply. Duneforms begin to bypass.

Upper fluvial package is largely pervasive
(non-channelised flow)

Fluvial incursions are :
g inatelv short-lived Eolian §and_dune_|oca|ly removed
preaominately forming discontinuous lenses

with rapid onsets

A) Sinuous-crested highly
variable dunes, Taklamakan
Desert, China, B) Barchan

dunes,Lencgcodis Fluvial drainage direction is broadly

Maranhenses, Brazil, C) ’ perpandicular to eolian migration direction
Regular spaced linear

dunes, Simpson Desert,
Australia.

Out-of-phase dune
trains create
isolated interdune

deposits

Palaeosol development indicates
protracted times of quiescent conditions

Xeric
environments
of the world
(highlighted
in yellow)

Regionally correlatable
eolian sand dune unit

Examples of regional correlatable eolian supersurfaces.
In both of the above examples rhizoliths eminate from the
supersurface and denote an unconformity; i.e. the time
required for colonisation by vegetation.

Dune breaching can occur along
multiple dunes in the dune train

Sand dune . Fluvial overbank Palaeosol Dune breaching occurs at
Fluvial channel . Conglomeratic Channel + Obscured outcrop PreSgerrécaete?’ffftur\rlllizlit;hl?)ggﬁyl/ IS?:ﬁaJETaﬁznsoodusrcO; ;il:élvely OPPOSing angle of f|_OW between
Eolian sand dunes u Eolian interdune the eolian and fluvial SyStemS

In-phase, sinuous and straight
crested eolian duneforms generate
Eolian sand dunes u Eolian interdune Open interdune Corridors

(Interdune Damming) (Accessory Flooding) (Conclusion)
Modern Examples Dunefield arrangement

Interdune damming occurs where flood waters become blocked within the dunefield; a result of A Accessory flooding, though very similar in Accessory Flood types

three-dimensional, out-of-phase duneform configurations. The damming of the fluvial waters may Google earth images of dune damming of fluvial expression to dune damming / ponding, is distinct in The diagrammatic cross-sections detailed in this section

not be restricted to one interdune, but result from the destruction of some eolian dunes to form a wider v[\)/aterrst.éA ) Lake If_yrel,DSokutg Al:ﬁt'&a“?’ I?-) Sémﬁsﬁn \ Fhat it OCCUIS Isolated from the di_rect effects of fluvial compare three types of accessory flood and an example of dune
esert Conservation Park, South Australia, C) Lake | incursions. Accessory flooding occurs where 0 breach. In each example the interdune flooding occurs in the

dammed area depending on the strength ofthe fluvialincursion. gat{r‘]fo?tal‘.ra[); QLT ) isolated interdune depressions fall below the level R | interdune situated on the leftside of the diagram which is
outh Australia, . A N di> |

Localised fluvial runoff in intra- Dune damming occurring at junction Extensive areas of calcrete Fluvial splays & floodouts
Conceptual model of dune-field setting between fluvial and eolian systems ~ palaeosol development indicate areas during periods of increased Eolian Erg Margin

an eolian dunefield of little to no deposition funoff
from the erg centre to Eolian Erg Centre Dunes migrating SE
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(isolated) interdunes
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thick lacustrine e A . duneforms. Some . [ T Silbey -7 ‘-‘{i ARG ke_y.dlagno.stlc feature in dlscrlmlqatlng between B)Access_oryﬂoodlng relating to the proximity to larger bodies of subsequen’_t interdune 8
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- commonly resulting from wind agitation. C) Accessory flooding relating to fluvial incursions. Such fluvial channels

accessory flooding would be most prevalent adjacent to the
flood incursion.

Two higher resolution Predominately eolian strata
intermediate-scale with limited evidence for rare
models below depict fluvial incursion
examples of the erg

(right to left); i) fluvial Numerous solitary fluvial Regionally extensive

At the erg margins preservation
favours fluvial sedimentation

i

D) Example of dune breach for comparison. Note the removal of
the barrier duneform and the chance to preserve fluvial facies
types in the adjoining interdunes.

T incursion of dunefield, channels preserved in section deflationary supersurface o Unconfined fluvial sheetflood deposits with
and, ii) fluvial smaller fluvial i _ o localised evidence for eolian reworking
Modern Examples . influenced eolian erg Larger channels penetrate dunefield Matier fiuvial Incursions ®
: Conceptual model of accessory floodin . - . . are more easily guided o Incr fr ncy of damp & w
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types present within ponded in an out-of-phase geometry e watertable rise. A) Lencdis Maranhenses, Brazil, B) South Gobi Desert, level abovg the mterdune ] . i : . . . L ) . . i . ..
interdune (dammed Dune lee slope collapse may be | . | | Mongolia. depression flooding \ Intermediate-scale model: fluvial incursion of dunefield Sheet-like sedimentation controlled primarily by Intermediate-scale model: fluvial influenced eolian erg margin Fluvial overbank deposition
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Note that the example from Lencdis Maranhenses experiences accessory space Eolian d ontation act susceptibility of reworking by - erg centre to margin. In this example desiccation cracks & Langford & Ch ;J 088
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. _ { oo transmission & evaporation =
highlighted well by finer, — 1 = ) S W
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lighter sediment fill to the \\\ o = horizons preserved
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o L water via transmission f f hiah /
iy i eeilen Ineweums, © arrangement controls N\ NENN\ to the sub-surface "’ " moisture content ”
Interdune deposit with small potential to bar and collect \ | o 7
climbing ripples overlain by fluvial waters \ \ Ponding of fluvial . P[e,ser"ed Vegetated interdune flats subject
dessication cracks, D) channel by eolian dune Larger trunk channels maintain calcrete-rich palaeosol {0 calorete palacosol development
T v e Non-fluvial facies types \ \ Preserved sedimentary expression discharge for longer periods marked by rhizoliths P P
. : S _ resent in accesso of the duneforms is indicative and root mottling
Ilkgly .resultlng el \.de Sedimentary structures " flood element K of out-of-phase geometries Larger fluvial channels able to break Older eolian dune sequence
agitation, E) well-defi ngd present vary through dune corridors Episodic avulsion of the channel Solitary channel recording previous episode of
rippleforms, F) smaller thin Interdune pond may be larger Rise in watertable linked to fluvial activity | | belts leads to complex stacked Restrictions of sediment supply with extensive o erg development
example of silcrete lens. - - Relict abandoned Smaller splay channel linked fluvial architectures locally causes migratory but Minor isolated splay
. . than a single interdune . N . . o7 overbank sheet . .
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Zoomed architectural panel
of well preserved chute channel

238
99 —

accreting ele

283

The boreholes detailed
here show the general bulk
facies assemblages of the
Sherwood Sandstone
Group. Note the absence of
eolian facies types from the
boreholes taken from
central and eastern
England (see map in intro
section).
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Whilst prevailing climatic
conditions were conducive
to eolian dunefield
development across both
the east and west of
England during the early -
Triassic the lack of any (CO"C'USIO[ﬂ
observed instances in the
east is suggestive of a

sediment supply or Dominant palaeoﬂow Overbank areas preservation Depositional Model

Three dimensional depiction of the architectural panel. Note orientation of north.
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carrying capacity limitation Analysis of one particularly well-exposed and accessible sandstone section at otential was likelv low The facies elements support the previous

100 _ i} tothe wind conditions. Styrrup Quarry (north Nottinghamshire) has allowed the sedimentology and was to the southeast P y general interpretations of a low-to moderate-
- Log legend inlternjll geomgtries oftthet llg)r\]/ver part of tpe Sherwc_)od Sand§t0n1e4(grm|1p to bg Downstream le No eolian facies Plant sipuosity braid_ed fluvial system.l .It i§ likely that

- \ placed inamodern context. The quarry section comprises a section mlongan accreting barforms == e present in overbank colonisation thls_ system did not. reach eq.unl!arlu.m, and a
_ . up to 8 m high, allowing elements both broadly parallel and perpendicular to variable rate of discharge is indicated by

‘ Trough xbedded SDST depositional flow to be examined. areas notobserved | 1erous reactivation surfaces and chute
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Planar xbedded SDST

channel development, although variability is
thought to have been limited, allowing for
continuous river flow. This point is interesting
when considering the distance from source
(500 - 600 km to the south), suggesting a
significant input of water into the basin.
Perennial conditions are also supported by the
absence of eolian deposits preserved at Styrrup
Quarry.

Relevance

This greater understanding provides data at the sub-seismic scale
pertaining to internal sandbody heterogeneities which can be

108 — 292 53 —

Description Smaller mesoforms

Ripple laminated SDST The sandstone at Styrrup Quarry preserves four main also present
fluvial pulses comprising five discrete facies elements.
Downstream accreting barforms comprise the
SDST - massive majority of the section,and are upto atleast40 m wide,
with a preserved thickness of up to 2.6 m. The
relationship of surfaces within the downstream
Upper plain beds (SDST) elements suggests smaller parasitic bedforms infront
of, or on, the larger bedforms. Lateral accretion
bedforms may be associated with some downstream
amanipporied xpeddec influence, or be related to deposition in the falling

stage, triggering lateral bedform development. Preserved
Channel elements are also preserved, with horizontal
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55 Matrix-supported xbedded L ) " . expression Is - upscaled and used to parameterise fluid flow and transport models.

113 e 3 Thinsection captions: A) Cross (lanar) congl. lamination indicating upper flow regime conditions n dominated by vertically ' | The facies of the Sherwood Sandstone are known to exert a strong

g beds, mud laminations and soft - | Matrix-supported xbedded some examples. Anotable feature at Styrrup Quarry is d laterallv stacked I~ O — influence on secondary diagenetic processes (cementation,

I, Z sediment deformation. Differential " (trough) congl. a preserved, low-sinuosity chute channel, cut into a and laterally stacke : deformation including fractures), that may result in the development

= s compaction. B) Gross beds, || Horzontat-aminated fines major downstream accretion element. Such features barform elements of reservoir compartmentilisation. These improved models are
2 IEUISRRI BN G lssaliiell, ©) REIE . have not been identified previously. Preserved . i : - iviti

2 eolian grain with quartz overgrowth, ° o - U _ may have been L releva_nt to_ hydrocarbon exploration and production activities

38 framework grain dissolution and B N overbank deposits are common, but are sand, rather partially emergent : targeting either the Sherwood Sandstone (e.g. Morecombe Bay,

TE== =373 patcuySitictepcementabRBdnyte Sand dune than mud-prone. Lateral extents vary up to 20 m, with southern North Sea), or traps associated with dryland fluvial

§ g5 ?Zﬂ:ﬁ? Z?atmogigfoﬁgﬁgnatéi o i e O thicknesses up to 3 m. Preserved mud in the system is Barform bounding surfaces Channel belt systems. This work is also important to the development of

R——— Q Daformed muceovite. framework - N S i Y Interdune restricted to mudstone intraclasts, which range up to | . bblo | Some bars had a _ bounding surface hydrogeological flow models for water resource management and

"R s T T<[E[g grain dissolution. ’ BRI ER s[E[ T [ T<[E] EHE EECHEREEE ST n[- <52 BECHRBEEE HEEAREE AR a0 e cobble size. commonly contain a pebble lag component of lateral accretion contaminant transport studies in redbed fluvial systems.
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