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Abstract: Although chemicals risk assessment is still mainly conducted on a substance-by-

substance basis, organisms in the environment are typically exposed to mixtures of substances. 

Risk assessment procedures should therefore be adapted to fit these situations. Here, we 

compared four mixture risk assessment methodologies for risk estimations of mixtures of copper, 

zinc and nickel. We showed that using the log-normal species sensitivity distribution (SSD) 

instead of the best-fit distribution and sampling species sensitivities independently for each metal 

instead of based on inter-species correlations in metal sensitivity had little impact on risk 

estimates. Across four different monitoring datasets, we estimated between 0% and 52% of the 

samples are at risk, but only between 0% and 15% of the samples are at risk due to the mixture 

of metals and not due to any single metal individually. When examining a natural baseline 

database, we found that 10% of the samples was estimated to be at risk due to single metals or 

their mixtures when using the most conservative method (Concentration Addition applied 

directly to the SSD, i.e. CASSD). However, the issue of metal mixture risk at geochemical 

baseline concentrations becomes relatively small (2% of samples) when using a theoretically 

more correct method (CA applied to individual Dose Response Curves, i.e. CADRC). Finally, 

across the 4 monitoring datasets, we show the following order of conservatism for our 4 methods 

(from most to least conservative, with ranges of median margin of safety, MoS, relative to  

CASSD): CASSD>CADRC (MOS=1.17-1.25)>IADRC (MoS=1.38-1.60)>IASSD (MoS=1.48-1.72) (IA 

= Independent Action). Therefore, we suggest that these four methods can be used in a general 

tiered scheme for the risk assessment of metal mixtures in a regulatory context. In this scheme, 

the CASSD method could serve as a first (conservative) tier to identify situations with likely no 

potential risk at all, regardless of the method used (SumTUHC5 < 1) and the IASSD method to 

identify situations of potential risk, also regardless of the method used (msPAFIA,SSD > 0.05). The 

CADRC and IADRC methods could be used for site-specific assessment for situations that fall in-

between (SumTUHC5 > 1 and msPAF < 0.05). This article is protected by copyright. All rights 

reserved 
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INTRODUCTION 

In the environment, organisms are usually simultaneously exposed to a multitude of 

substances including pesticides, pharmaceuticals and metals [1]. Although risk assessment is still 

mainly performed on a single-substance basis, various approaches for the risk assessment of 

mixtures of chemicals have been proposed [2-6]. These approaches are mainly based on two 

fundamental concepts that predict the joint toxicity of substances in a mixture to single species 

based on each substance‘s individual effects: concentration addition (CA) and independent 

action (IA). Although these two concepts have originally been theorized and mathematically 

developed to predict mixture toxicity to different single species [2], they have also been applied 

directly to species assemblages, both real [7,8] and mathematical [3] assemblages. In the latter 

case this is done by applying the two models directly to species sensitivity distribution (SSD) 

curves, as explained by De Zwart and Posthuma [3]. These authors estimated the risks of 

chemical cocktails on species assemblages expressed as a ―multi-substance potentially affected 

fraction of species‖ (msPAF). Although these methods are gaining increased interest in the field 

of mixture risk assessment, they also show an important limitation as the predictions made by the 

models of CA and IA are theoretically only consistent when applied to single species, i.e. dose-

response curves (DRCs), and not when applied to communities, i.e. SSDs [5]. More recently, 

Backhaus and Faust [4] as well as Gregorio et al. [5] developed theoretically consistent methods, 

which apply CA or IA first to different single species separately and then combine all single-

species information to calculate risk estimates for a species assemblage. However, these two 

approaches also show a few limitations. The approach by Backhaus and Faust [4] only uses the 

‗base set‘ of toxicity data for a substance. This base set, i.e. ECx values for algae, crustaceans 

and fish, is the minimum set of data required by REACH for the calculation of a Predicted No 
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Effect Concentration (PNEC) [9]. Although their approach can be applied to a broader array of 

substances (i.e. ‗data-poor‘ substances) and can be extended to a higher number of species, the 

method applies subjective assessment factors to calculate the risk quotient for a mixture. 

Gregorio and colleagues [5] only evaluated their method using sets of species toxicity values that 

were randomly generated from species sensitivity distributions of sets of hypothetical substances, 

and they also assumed a range of possible slope values of dose-response curves for these species, 

as they argued that implementing the method on existing data was not conceivable with the 

typical amount of data available for a substance.  

Fortunately, limited data availability is not an issue for several metals. Indeed, the effects 

of the metals Cu, Zn and Ni on single species have been studied extensively, which makes these 

metals ‗data-rich‘ substances. More recently, metal mixture toxicity is receiving increased 

attention and study topics are focused both on influences of metal mixtures on single species 

[10,11] as well as on communities [7,8,12,13]. Because it is infeasible to examine the effects of 

all possible mixtures of substances on every natural community experimentally, estimations of 

risks by means of models such as the ones described above, are essential.  

In the present study, we therefore aimed to evaluate differences in (ternary) mixture risk 

estimates between four methods (Table 1) using actual chronic toxicity data for Cu, Zn and Ni. 

To this end, available toxicity datasets were first extended with recently published toxicity data 

as well as with the slope values of the dose-response curves (cf. Material and Methods). Then, 

for the first time, we applied these four methods to four existing environmental monitoring 

datasets to estimate metal mixture risks, i.e. Dommel, Rhine, Austria and Flanders (VMM). The 

Dommel dataset represents a local industrial exposure scenario (i.e. historic pollution), while the 

Rhine, Austria and VMM datasets represent a regional mixed exposure scenario (i.e. a 
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combination of urban, industrial and agricultural pollution). In addition to the environmental 

monitoring datasets we investigated one dataset that contains high quality environmental 

geochemical baseline concentrations, i.e. natural background metal concentrations of freshwater 

surfaces across Europe, FOREGS (Forum of European Geological Surveys). By doing so, we 

aimed to answer three questions. (1) How big are the differences in risk estimates between the 

four methods when using actual chronic metal toxicity data and real monitoring datasets? (2) Is 

there a rank-order in risk estimates between the different methods? We expected that the CASSD 

method (Concentration Addition applied directly to the Species Sensitivity Distribution), (see 

Figure 3) is always the most conservative method among the four based on findings by Backhaus 

and Faust [4] who demonstrated this mathematically for an assemblage of 3 species. (3) If the 

CASSD method is the most conservative method, what is the Margin of Safety (MoS) provided by 

this method relative to the other three methods? 

MATERIAL AND METHODS 

A schematic overview of the methodology applied in the present study is given in Figure 

1 and is explained step by step in the following paragraphs.  

Monitoring data gathering  

This manuscript focuses on four monitoring datasets, i.e. the Dommel, the Rhine, the 

VMM and Austria as well as a dataset with natural baseline concentrations in Europe, the 

FOREGS database. Extensive information on how these datasets were gathered and processed is 

given in the Supplementary Information S.1. Main results of all datasets are given in the main 

paper. 

Data within the monitoring datasets was only retained when information on the major 

water-chemistry variables was present, i.e. Dissolved Organic Carbon (DOC), calcium, pH and 
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dissolved metal concentrations. When not present in the database, estimations of Na, Mg, K, Cl 

and SO4 were based on reported regression relations with Ca concentrations [14]. In addition, 

alkalinity was estimated based on the pH value [15]. Although we acknowledge that the use of 

transfer functions (e.g. regressions) to estimate some water characteristics is not ideal, estimation 

of physico-chemical parameters was necessary (i.e. too little data otherwise). Within the different 

databases, certain metal concentrations were in some target water samples reported as below 

detection limit (DL) (see S.1 and S.9). Target water samples that included at least one metal that 

was reported as below the DL and for which  
𝐷𝐿

𝐻𝐶5

𝑛 
𝑖=1  was larger than one were not retained for 

data analysis (i.e. 0.3%, 8-10%, 0%, 16% and 0% of the target water samples for the Dommel, 

VMM, Rhine, Austria and FOREGS database, respectively (S.1)), because such samples would 

be categorized as ‗at risk‘ while one or more metals would be below the DL, which would not be 

a meaningful result. For the remaining target water samples (i.e. those that were not removed by 

that filter), concentrations of metals that were reported to be below the DL were set equal to the 

DL/2. Although a more detailed investigation of the issue of non-detects is outside the scope of 

the present study (which was to compare and to rank four mixture risk assessment methods), we 

acknowledge that the presence of non-detect data is a reality for many monitoring datasets that 

needs careful consideration. For example, in cases with  
𝐷𝐿

𝐻𝐶5

𝑛 
𝑖=1  >1, it might be recommended to 

water quality managers to revisit these sampling locations and measure the metal concentrations 

with more precise equipment. 

An overview of the monitoring data is given in Table 2. Monitoring data for sampling 

locations in the river Meuse tributary Dommel, the Netherlands, were obtained from Verschoor 

et al. who used the data for a previous study [16]. Monitoring data for Flanders (from now on 

referred to as ―VMM‖) was gathered from the online database of the Flemish Environmental 
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Agency (VMM) (www.VMM.be). Monitoring data for the Rhine were gathered from the online 

database of the International Commision for the Protection of the Rhine (ICPR). Monitoring data 

for Austria was received from ARCHE (Assessing Risks of Chemicals, Ghent, Belgium). The 

FOREGS-EuroGeoSurveys Geochemical Baseline Database was obtained on the website of the 

Geological Survey of Finland and can also be found in Salminen et al. [17]. Additional 

information on the gathering of the monitoring data is given in the Supplementary Information 

(S.1).  

Chronic toxicity databases 

Databases containing chronic toxicity data, i.e. NOECs (No Observed Effect 

Concentrations) and EC10s (10% Effect Concentrations), of each of the three metals (Cu, Zn and 

Ni) were used for calculations. For the sake of simplicity as well as for all calculations, from 

now on ‗EC10‘ will be used to specify both NOEC and EC10 values. Although there is a 

continuous debate on the use of NOEC vs. EC10 in literature [18-19], these measures are still 

being used as equivalents of each other in regulatory single metal risk assessments [20-22].  

The following chronic toxicity databases were used as starting points for further 

calculations. The chronic Ni database was originally reported in the Nickel European Union Risk 

Assessment Report [20] and was recently updated by Nys et al. [23]. The chronic Zn database 

was reported in 2009 by Van Sprang et al.  [14]. The chronic toxicity database of copper was 

originally reported in the European Union Risk Assessment Report (EU RAR) [22]. 

The toxicity databases that were used as starting points were updated as follows. For the 

three metals, a literature search was performed to update the databases with new toxicity data 

that were published after compilation of the databases. Particular attention was devoted to 

searching for data for species that were already represented for one or two metals, but not for all 
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three, as this was helpful for further calculations. Only data from chronic toxicity studies that 

reported measured metal concentrations (rather than just nominal) and the physico-chemistry of 

the test media that is important to account for bioavailability (e.g. pH, Ca and DOC 

concentrations) were included. Chronic toxicity data for three new species were added to the Zn 

database, i.e. the great pond snail Lymnaea stagnalis [24], the fatmucket clam Lampsilis 

siliquoidea [25] and a rotifer species Brachionus calyciflorus [24]. No new species were added 

to the chronic toxicity databases of copper and nickel.  

The copper database was additionally updated in the present study according to the 

chemistry found in the original peer reviewed publications and reports. All adaptations to the 

copper database and a description of why EC10 values were not retained can be found in the 

Supplementary Information (S.2). The final toxicity databases for Cu, Ni and Zn which include 

the physico-chemistry of the test media as well as the chronic toxicity data (i.e. EC10 values) can 

be found in the Supplementary Information (S.3). The database of Cu contains 133 chronic 

toxicity test results from in total 27 species. That of Ni contains 31 species (214 test results) and 

that of Zn contains 22 species (128 test results). The toxicity databases include 7 species for 

which data on all three metals is present, i.e. they have seven species in common, these species 

include the algae Pseudokirchneriella subcapitata, the cladocerans Daphnia magna and 

Ceriodaphnia dubia, the amphipod Hyalella azteca,  the rotifer Brachionus calyciflorus and two 

fish species Pimephales promelas and Oncorhynchus mykiss. The effect concentrations of these 

seven species are evenly distributed within the toxicity databases, i.e. this set of seven species 

comprises both sensitive and less sensitive species to the different metals. For example, for an 

average water sample within the VMM database (pH 7.6, Ca 69.0 mg/L and DOC 5.9 mg/L), the 
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seven species reside between PAF values ranging from 0.04 to 0.89 for Cu, from 0.06 to 0.97 for 

Ni and from 0.05 and 0.82 for Zn. 

In addition to the chronic toxicity data that were already present in the toxicity databases 

(i.e. EC10 values) we also needed the slope of the dose-response curves, to be able to apply one 

of the four mixture evaluations tools, i.e. the IADRC method. For this, we reviewed all literature 

present in the toxicity databases for all three metals. However, information on the slope of the 

curves was never reported explicitly in the peer-reviewed papers. Therefore, other methods were 

used to gather this information. An extensive overview of how slope values were retrieved based 

on the assumption of a log-logistic dose response curve (Equation 1) is given in the 

Supplementary information (S.4). 

 

𝑦 =
100

1+ 
𝑥

𝐸𝐶50
 
𝛽  or      (Eq1) 

 

For certain EC10 values within the toxicity databases, no associated information on the 

slope of the dose-response curve could be retrieved. The percentage of EC10 values for which 

slope values could be retrieved, was equal to 87%, 84% and 85 % for Cu, Zn and Ni, 

respectively. Furthermore, this implies that for certain species within the database, no 

information could be gathered. The percentage of species for which at least one slope value 

could be retrieved was equal to 96%, 82% and 94% for Cu, Zn and Ni, respectively. The median 

slope value was equal to 3.8, 2.5 and 2.1 for Cu, Zn and Ni, respectively. 10
th

 and 90
th

 percentile 

values were equal to 1.9 and 10.9 for Cu, 1.1 and 9.6 for Zn and 1.4 and 7.1 for Ni, respectively. 

No correlation was found between slope values and the sensitivities of the species, i.e. species 

that are sensitive to a certain metal (low EC10) can show both low or high slope values 
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(Supplementary S.5). This is also clear from Figure 2 in which the distribution of the slopes for 

the different metals is shown. Because no correlations were found, slope values for the species 

generated (see further on) were sampled randomly from the log-logistic distribution fitted to the 

set of slope values for each metal (best fit distribution based on the Kolmogorov-Smirnov 

goodness-of-fit statistic [26-27]). 

Bioavailability models and normalizations 

Chronic toxicity of metals to aquatic organisms is influenced by water chemistry 

variables (e.g., pH, water hardness and DOC) due to bioavailability effects of metals. Biotic 

Ligand Models (BLM) were developed to account for this influence of water chemistry variables 

on metal toxicity [28]. Therefore, all chronic toxicity data from the three ecotoxicity databases 

(Cu, Zn and Ni) were normalized to the specific physico-chemistry of each individual water 

sample (i.e. target water sample) in each of the five monitoring databases before risks for the 

monitoring sites could be calculated. This was done in an identical way as is explained in Van 

Sprang et al. [14] for Zn, in the RAR for Cu [22] and in Nys et al. [23] for Ni. An overview of 

the process of normalization is also given in the Supplementary information (S.6). 

Normalizations for Zn and Cu were performed using BLM software [29] which incorporates the 

Windermere Humic Aqueous Model (WHAM) number V [30], while normalizations for Ni were 

performed using the ‗chronic Ni bioavailability and normalization tool‘ [23] which incorporates 

the WHAM-Model VI [31]. 

SSD construction and HC5 estimation 

After normalization of the toxicity data within the three databases to the given target 

water samples, species sensitivity distribution (SSD) curves were constructed as explained in 

Van Sprang et al. [14]. The SSDs were fitted in two different ways. (1) The log-normal 
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distribution was used to construct the SSD for all target water samples and (2) five different 

parametric distributions (i.e. log-normal, log-gamma, log-logistic, log-exponential and log-

weibull) were fitted and the best fitting distribution was determined based on the Kolmogorov-

Smirnov goodness-of-fit statistic [26-27]. These two different distribution fittings were 

compared to examine whether the output based on a single default distribution (i.e. all log-

normal) is comparable to the output using the best fit distribution, and whether or not extensive 

computational work (i.e. using best fit distributions) is redundant. 

From these SSDs we calculated HC5 values for each of the single metals, i.e. hazardous 

concentrations for these metals that are assumed to protect 95% of the species within a 

community against adverse effects of exposure beyond their no-effect level (here EC10). 

Parameters of the various SSDs are reported in the Supplementary information S.7.  

Toxic pressure (msPAF) calculations 

All toxic pressures (expressed as msPAF) reported are on the basis of EC10 values and 

are given as fractions (ranging between 0 and 1), e.g. msPAF=0.5 means that 50% of the species 

are assumed to experience 10% effect or more by the mixture. 

The toxic pressure of the metal mixture for the different target water samples within the 

monitoring databases was calculated with four different methods. The R code that was used to 

apply these methods can be found in the Supplementary Information (S.8).  

A first method, and also the most simple approach (Figure 3), was proposed earlier by De 

Zwart and Posthuma [2] (i.e. their msPAFCA method, Table 1). In this approach, the CA model is 

applied directly to the SSDs. For this, the species are considered the ‗ecological receptors‘ in an 

equivalent way as ‗toxicological receptors‘ in individual organisms. Hence, the SSD curve of an 

individual substance (representing the fraction of species affected as a function of the 
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concentration of a substance) is considered the equivalent of the dose-response curve of a 

species, i.e. representing the % effect of the considered endpoint as a function of the 

concentration. Following this approach, a risk quotient (RQ) for a given chemical mixture can be 

calculated as follows [3]: 

 

𝑅𝑄 𝑃𝐸𝐶

𝑃𝑁𝐸𝐶

=  
𝑃𝐸𝐶𝑖

𝑃𝑁𝐸𝐶𝑖
  𝑛

𝑖=1               (Equation 1) 

 

With PECi the Predicted Environmental Concentration and PNECi the Predicted No Effect 

Concentration of substance i. However, the PNEC is under influence of a certain arbitrariness 

(i.e. choice of the safety factor applied to toxicity data for each individual substance i [3]), and an 

equivalent, but more general alternative, devoid of arbitrariness, can be formulated based on 

measured environmental concentrations (EC) and the HC5: 

 

𝑅𝑄 𝑐𝑖
𝐻𝐶5

= 𝑆𝑢𝑚𝑇𝑈𝐻𝐶5 =  
[𝑐𝑖]

𝐻𝐶5𝑖
𝑖            (Equation 2) 

 

With [ci] the environmental concentration of a metal i and HC5 the hazardous concentration of a 

metal i affecting 5% of the species within a community. According to this approach, which we 

will further on call the CASSD approach (Concentration Addition applied directly to the Species 

Sensitivity Distribution), the community is considered to contain exactly 5% of the species that 

are potentially affected under the mixture exposure when 𝑅𝑄 𝑐𝑖
𝐻𝐶 5

= 𝑆𝑢𝑚𝑇𝑈𝐻𝐶5 = 1, i.e. the toxic 

pressure expressed as the multisubstance potentially affected fraction of species (msPAFCA,SSD) 

is equal to 0.05. When 𝑅𝑄 𝑐𝑖
𝐻𝐶 5

= 𝑆𝑢𝑚𝑇𝑈𝐻𝐶5 > 1, more than 5% of the species are potentially 
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affected. To evaluate whether a sample is at risk or not due to a mixture of metals, i.e. to 

calculate the SumTUHC5, only information on the HC5 of the metals is necessary, which makes 

this method the most simple one of the four methods considered (Figure 3). 

Next to a Risk Quotient or SumTUHC5 for a given mixture scenario, it is also possible to 

calculate the exact toxic pressure (expressed as msPAFCA,SSD). This is done by solving Equation 

3 for x, i.e. searching for x such that the SumTUHCx is exactly one, given the ci for the three 

metals. This value of x  is then the msPAFCA,SSD value of the water body. Calculating an exact 

toxic pressure therefore not only requires information on the HC5 of each metal (as is the case for 

the SumTUHC5 calculations), but also knowledge of the mean and standard deviation of the SSD 

distribution. 

 

𝑆𝑢𝑚𝑇𝑈𝐻𝐶𝑥 =  
[𝑐𝑖]

𝐻𝐶𝑥 𝑖
= 1  (Equation 3) 

 

This method for calculating the exact msPAFCA,SSD value is conceptually similar to that of De 

Zwart and Posthuma [3]. However, with our method we acknowledge that differences between 

slope values of SSDs may exist among metals, while the method by De Zwart and Posthuma 

assumes that the slopes of the SSDs are equal across chemicals. 

A second approach is analogous to what Backhaus and Faust [4] call the RQSTU approach 

(Table 1), which they applied for demonstrative purposes to a limited toxicity dataset containing 

three acute toxicity values (i.e. EC50 values for fish, Daphnia and algae) and which also makes 

use of a safety factor (i.e. assessment factor AF) (Equation 4).  

 

𝑅𝑄𝑆𝑇𝑈 = max⁡( 
𝑃𝐸𝐶𝑖

𝐸𝐶50𝑖,𝑎𝑙𝑔𝑎𝑒

𝑛
𝑖=1 ,  

𝑃𝐸𝐶𝑖

𝐸𝐶50𝑖,𝑑𝑎𝑝 𝑕𝑛𝑖𝑑𝑠

𝑛
𝑖=1 ,  

𝑃𝐸𝐶𝑖

𝐸𝐶50𝑖,𝑓𝑖𝑠 𝑕

𝑛
𝑖=1 ) ∙ 𝐴𝐹 (Equation 4) 
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The difference with the approach that we follow here is that we extended their methodology to a 

method for data-rich substances by using an SSD approach. In this approach, which we call the 

CADRC approach (Concentration Addition applied to individual Dose Response Curves before 

calculating the msPAF), the CA model is first applied to toxicity data (i.e. dose response data) of 

the individual species by calculating a SumTUEC10 for each species j (Equation 5). 

 

𝑆𝑢𝑚𝑇𝑈𝐸𝐶10,𝑗 =  
[𝑐𝑖]

𝐸𝐶10𝑖,𝑗

𝑛
𝑖=1            (Equation 5) 

 

With [ci] the environmental concentration of substance i and EC10i,j the 10% effect 

concentration for species j for a given substance i. Using Equation 4, a species j is considered 

‗affected‘ if the sum of toxic units relative to the EC10 (i.e. SumTUEC10,j) across ‗n‘ substances 

exceeds 1. The toxic pressure (expressed as msPAFCA,DRC) is then estimated as the fraction of 

species that at a given mixture exposure are predicted to have a SumTUEC10 > 1, as this implies 

that the species would experience an effect of >10% compared to a control (according to the CA 

concept). To calculate the toxic pressure with the CADRC method therefore requires information 

of all EC10 values within each SSD, as is the case for calculation of the msPAFCA,SSD value 

(Figure 3). An advantage of this method compared to the CASSD method is that we apply the CA 

concept on individual species, which is consistent with the original theory of CA [3,4]. 

A third method is grounded in the other important mixture toxicity concept, i.e. 

Independent Action (IA), and will be called the IASSD method (Independent Action applied 

directly to the Species Sensitivity Distribution). This method has first been proposed by De 

Zwart and Posthuma [3] (Table 1) and applies the IA model directly to the SSD (Equation 6). 
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𝑚𝑠𝑃𝐴𝐹𝐼𝐴,𝑆𝑆𝐷 = 1 − (1 − 𝑃𝐴𝐹𝑖)
𝑛
𝑖=1  (Equation 6) 

 

With PAFi the potentially affected fraction of species as a result of substance i. Similar to the 

CASSD and CADRC method, to calculate the toxic pressure with the IASSD method requires 

information on the whole SSD of each metal (i.e. all EC10 values within each SSD) (Figure 3). 

A final method has been proposed by Gregorio et al [5] (Table 1), and is the most 

complex method. This method will be referred to as the IADRC approach (Independent Action 

applied to individual Dose Response Curves before calculating the msPAF). For this approach, 

similar to the CADRC approach, the IA model is first applied to the dose-response data of the 

individual species, after which the SSD approach is used to calculate the msPAFIA,DRC value. In a 

first step, the effect on each individual species j due to each substance i in a given mixture is 

calculated following the IA concept (Equation 7). 

 

𝐸𝑗 = 1 − (1 − 𝐸𝑖)
𝑛
𝑖=1  (Equation 7) 

 

To this end it requires the full dose-response curve of each species, i.e. not only the EC10 value 

but also the slope of the dose-response curve. Subsequently, the toxic pressure (expressed as 

msPAFIA,DRC) is estimated as the fraction of species that at a given mixture exposure is predicted 

to have more than 10% effect, i.e. Ej > 0.1. This method is the most complex approach as it 

requires not only the EC10 values per species and per substance, but also information on the 

slopes of the dose-response curves of each substance for each species that is in the toxicity 

database (Figure 3).  
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The toxic pressure was calculated using the four above described approaches for all target 

water samples in the monitoring databases and the natural baseline database. A sample was 

defined to be at risk when the toxic pressure (expressed as msPAF) was higher than 0.05, which 

is equivalent to the typical protection goal for single substances, i.e. a maximum of 5% affected 

species at the HC5 concentration. The percentage of samples that is predicted to be at risk was 

calculated for each database. Furthermore, it was examined which individual substances or 

combinations of substances contributed to the adverse effects. 

Generalization of species 

Two out of the four approaches listed above, i.e. CADRC and IADRC, require data on the 

individual species. If only the data present in the three chronic toxicity databases would be 

considered, it would be possible to predict mixture toxicity for only seven species. This is 

because only these seven species are represented in all three toxicity databases. As natural 

communities are composed of a multitude of species, the set of actual toxicity data was used to 

generate a set of hypothetical toxicity data for 20 000 hypothetical species (i.e. species 

sensitivities were sampled from the SSD) by applying methods to extrapolate unknown species 

sensitivity from known species sensitivity [33]. This was done in two ways, (1) by not taking 

into account inter-metal sensitivity correlations when sampling hypothetical species for a given 

target water sample and (2) by sampling the species based on the correlations found between the 

sensitivity of a species for one metal and its sensitivity for a second metal for a given target 

water sample. As the effects of water chemistry on chronic metal toxicity - as predicted with the 

bioavailability models used - depend on metal identity and species, inter-metal sensitivity 

correlations can be dependent on the water chemistry of the target water sample. The sampling 

method that accounted for inter-metal sensitivity correlations was executed using the method of 
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Iman and Conover [32]. This method is used to generate rank order correlated input distributions 

and is often applied in literature [33-34].  

These two methods were performed and their output (i.e. msPAF values) was compared 

to examine whether sampling species randomly, i.e. a less computation-time demanding 

approach than sampling non-randomly, has an influence on the outcome of the risk estimates.  

For the present study we chose to use the non-random sampling technique, and in that 

way we used ‗full option‘ methods for our toxicity predictions and msPAF estimations. The R-

codes for both options (random and non-random sampling) are given in the Supplementary 

information (S.8), so that other users can choose which method to use. 

Margin of Safety 

The CASSD method is the most simple method to implement and it is claimed to be a 

conservative method. By calculating the Margin of Safety (MoS)  provided by the CASSD 

approach relative to the other methods, the following question can be answered: ―By how-many-

fold can the SumTUHC5 in a given target water sample be raised until ‗risk‘ (msPAF = 0.05) is 

just being predicted with each of the methods?‖ For MoS calculations, we start from a situation 

in which the metals are present at the concentrations and metal-metal ratios as reported in the 

databases. Then, the metal concentration of each metal is increased (keeping all metal 

concentration ratios constant) until the level where toxic pressure according to the different 

approaches equals 0.05. The SumTUHC5 at this new combination of metal concentrations is then 

calculated and this value is equal to the MoS provided by the CASSD approach. Only those 

samples were examined which, according to the three different methods (CADRC; IASSD and 

IADRC) were not affected by the metal mixture (i.e. msPAF < 0.05), as an MoS calculation does 

not make sense for target water samples not falling in this category.  
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RESULTS AND DISCUSSION 

Monitoring data 

A detailed overview of the four monitoring datasets and the geochemical baseline dataset 

is given in the Supplementary material (S.9). An overview of the main physico-chemical 

variables and the dissolved metal concentrations is given in Table 3 for all datasets. Median Cu 

concentrations are similar across the monitoring databases and are on average 91% lower than 

the median bioavailability corrected HC5 values in all four monitoring databases (Table 3). 

Median Zn and Ni concentrations differ more between monitoring databases than Cu. Median Zn 

and Ni concentrations are below the median bioavailability corrected HC5 values in all four 

monitoring databases, and are on average 71% and 84% lower, respectively. For the geochemical 

baseline dataset (FOREGS) median Cu, Zn and Ni concentrations are below the median 

bioavailability corrected HC5 values and are 95%, 93% and 87% lower, respectively.  

SSD construction: log-normal or best-fit? 

Probability distributions were fitted to the data using (1) log-normal distributions for all 

data and (2) using distributions that best fitted to the data. The log-normal distribution was the 

best-fit distribution in 29.2%, 1.8% and 3.9% of the samples for Cu, Zn and Ni respectively. The 

highest percentage of data was fitted with the log-logistic distribution, i.e. 33.6%, 93.1% and 

73.1% of the target water samples for Cu, Zn and Ni, respectively. From the fitted distributions, 

HC5 values (based on dissolved concentrations) per target water sample were estimated and 10
th

, 

50
th

 (median) and 90
th

 percentiles of the HC5 for each monitoring database are given in Table 3. 

If the conventional log-normal distribution was fitted to all target water samples, median HC5 

values vary between 4.1 µg/L and 46.6 µg/L for Cu, 22.2 µg/L and 52.1 µg/L for Zn and 7.0 

µg/L and 27.3 µg/L for Ni. Fitting the best-fit distribution to all target water samples gives 
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median HC5 values that vary between 4.3 µg/L and 46.6 µg/L for Cu, 22.9µg/L and 47.9 µg/L 

for Zn and 6.9 µg/L and 27.3 µg/L for Ni. On average, the HC5 values generated from log-

normal distributions and best-fit distributions are 3.6% higher for Cu, 0.25% higher for Zn and 

0.01% higher for Ni. Thus, using a single default distribution (i.e. all log-normal) for mixture 

toxic pressure estimations, which is computationally less demanding, seems justified.  

Furthermore, as the msPAF values calculated based on log-normal and best-fit SSD 

distributions were similar (see further), the preference was given to only present data (in figures 

and tables) and conduct downstream data-analyses based on the log-normal species sensitivity 

distribution in this manuscript and report all results based on best fitting SSDs in the 

supplementary material. 

Generalization of species: random or non-random? 

Hypothetical species were generated in 2 ways: (1) by not taking into account inter-metal 

sensitivity correlations and (2) by taking into account inter-metal sensitivity correlations, which 

depended on the chemistry of the target water sample. When considering all monitoring datasets 

together, correlations between the sensitivity of species to Ni and Zn ranged from r = -0.36 to r = 

0.48. However, none of these correlations were statistically significant (p > 0.05). Correlations 

between Ni and Cu ranged from r = -0.9 to r = 0.22, and only 6.6% were significant (p < 0.05). 

These significant correlations are strong negative correlations (r < -0.6), suggesting that – in 

these 6.6% cases - when a species is sensitive to Ni it is more likely to be less sensitive to Cu and 

vice versa. In addition, these negative correlations between Cu and Ni sensitivity are more likely 

to occur at  low pH and positive correlations are more likely at high pH (Supplementary 

information S.9), i.e. at low pH, a species that is less sensitive to Ni is more likely to be more 

sensitive to Cu and vice versa. Such a correlation is not apparent with either DOC or Ca 
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concentrations, two other variables affecting metal bioavailability. Correlations between Zn and 

Cu ranged from r = -0.80 to r = 0.47, and of these only 0.06% were significant correlations (p < 

0.05). Here too,  we observed a trend of negative correlations between Zn and Cu sensitivity at 

low pH and positive correlations at high pH, and again no trend is apparent with either DOC or 

Ca concentrations (Supplementary S.9). 

As median correlation coefficients between the sensitivity of species to one metal and 

their sensitivity to a second metal are rather low (see Supplementary S.9), one would expect that 

the results (i.e. msPAF values) when sampling species by not taking into account inter-metal 

sensitivity correlations is quite similar to results when sampling the species based on the 

correlations found between the sensitivities. Indeed, we found that differences in msPAF values 

between these two methods were small, i.e. on average 0.002 (stdev 0.005) difference in toxic 

pressure for the CADRC method and on average 0.001 (stdev 0.003) difference in toxic pressure 

for the IADRC method. Therefore, sampling species randomly appears a justifiable option to 

reduce computational time.   

Risk calculations 

Results for the most simple method to estimate risks due to metal mixtures, i.e. CASSD, 

are visualized in Figure 4.  In this figure the (Sum)TUHC5 is given for every metal and for every 

monitoring database. For the Dommel dataset, median TUHC5 values are smaller than 1 for all 

three metals. However, 9% of the TUHC5‘s for Ni, 35% of the TUHC5‘s for Zn and 0.3% of the 

TUHC5 for Cu within the Dommel basin show a TUHC5 >1, indicating that there might be a risk 

due to the single metals at these sites. Adding up the TUHC5‘s gives a SumTUHC5 that is 

indicative for the risk of a mixture of substances. Figure 4 shows that the median SumTUHC5 for 

the Dommel lies above 1, indicating a risk due to the metal mixture or due to single metals in 
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more than half of the cases. Similar results are found for the VMM, Austria and FOREGS 

database (Figure 4). However, for these waters the median SumTUHC5 lies below 1, indicating 

that less than half of the cases show a risk due to metal mixtures or single metals.  For the Rhine, 

none of the TUHC5 or SumTUHC5 values lie above 1, indicating no risk according to the CASSD 

method in this waterway.  

More advanced methods to calculate the toxic pressure include the four methods 

described above in which the exact msPAF value of a sample is calculated. Table 4 shows the 

distribution of toxic pressure  (expressed as msPAF values) for all four methods for the different 

monitoring datasets. For the results using the best-fit SSD calculations, the supplementary 

material (S.10) can be consulted. A toxic pressure > 0.05 indicates that the sample is affected by 

the metal mixture.  

For the Dommel monitoring database, the median toxic pressure is above 0.05 only when 

using the CASSD method (Table 4), which suggests that the most simple method is the most 

conservative. The median toxic pressure is lowest (0.024) using the IASSD method, suggesting 

that this method is the most liberal (least conservative) method. The percentage of samples 

affected within the Dommel dataset ranges between 52% and 39% depending on the method 

used. Similar results were obtained for the best fit SSD (S.10), which shows that using the log-

normal distribution by default does not have a large influence on the outcome of the toxic 

pressure calculations. The results suggest that almost half of the samples within the Dommel 

waterway in the Netherlands are at risk due to metal contamination. However, according to the 

CASSD method, 15% of the samples in the Dommel are affected by the mixture itself and not by 

any individual metal while the IASSD methods predicts only 3% of the samples to be affected by 

the mixture of metals itself (Table 4). When going into more detail (Table 5), we see that zinc 
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has a large effect individually, i.e. in 26.84% of the samples a risk due to Zn alone. Furthermore, 

in 8.48% of the samples a risk is caused by both zinc and nickel individually (i.e. the TUHC5 of 

zinc and of nickel is above 1).  When examining the remaining samples that are affected by the 

mixture and not by any individual metal, 13.01% of the samples has an effect due to a binary 

combination of the metals, while 2.14% is affected due to a ternary combination of the metals. 

When examining the contribution of each metal to the SumTUHC5 of these mixture effects, we 

see that zinc, which has the largest TUHC5 in 70.96% of the cases, is the largest contributor to the 

mixture effect.  

Verschoor and colleagues [16] also investigated the mixture toxicity due to Cu, Zn and 

Ni in the Dommel waterways. These authors assessed the risk by calculating the multi-metal 

Risk characterization Ratios (RCR) (Equation 7), which is conceptually identical to our CASSD 

approach. 

 

  𝑅𝐶𝑅 =
[𝐶𝑢]

𝐻𝐶5𝐶𝑢
+

[𝑁𝑖]

𝐻𝐶5𝑁𝑖
+

[𝑍𝑛]

𝐻𝐶5𝑍𝑛
    (Equation 7) 

 

A similar percentage of affected samples was predicted by Verschoor et al [16], i.e. these authors 

found that 47% of the samples was at risk, while we found that 52% of the samples were affected 

(Table 4). In addition, when comparing annual mean RCR values (by Verschoor et al. [16]) with 

TUHC5 values (the present study), these were equal for Zn (i.e. 1.36) and Cu (i.e. 0.075), but not 

for Ni (i.e. 1.35 vs. 0.47) and therefore also not for the Zn-Cu-Ni mixture (2.79 vs. 1.91). 

The difference between the results of Verschoor et al. [16] and our present study could be 

due to a number of factors. A first factor could be the different parameterization of the BLMs 

used for bioavailability normalisation. For Cu and Ni, Verschoor et al. [16] used the stability 
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constants describing the interactions at the biotic ligand from the original BLMs [35, 20], while 

we used the updated BLMs [36-39]. Furthermore, the choice of speciation software is also 

different between both studies. Whereas Verschoor et al. [16] used WHAM Model-VI for all 

speciation calculations, we used WHAM Model-V for Cu and Zn speciation calculations because 

the BLMs for Cu and Zn were originally calibrated and developed with WHAM Model-V. 

Finally, we used updated toxicity databases as well as validated BLMs that have been cross-

validated for other species and that are currently used in regulatory environmental risk 

assessments of the three metals. However, despite the considerable differences in methods used 

by both studies, the differences in the % of samples calculated to be at risk as well as the 

differences in RCR are still relatively small. 

When considering the three monitoring databases other than the Dommel database, the 

samples in the VMM database are most at risk due to metals with between 23 – 27% of the 

samples affected (Table 4), depending on the method used. The Rhine is the least at risk, with 

none (0%) of the samples at risk due to metal contamination. The Austrian samples are situated 

in-between, with 5-8% of the waters affected (Table 4).  

For the FOREGS database, between 7-10% of the waters, depending on the method used, 

are predicted to be affected (Table 4). The latter demonstrates that even for waters with assumed 

―natural geochemical baseline‖ concentrations of metals, a substantial number of water bodies is 

predicted to be at risk. This result is a well-known issue in metals risk assessment in general, 

which arises when natural background concentrations of metals, which can vary markedly 

between geologically different areas, are not taken into account in risk assessment procedures of 

metals. One way to deal with this issue, e.g. in a higher tier of risk assessment, could be to use 

the added risk approach [40], but this is beyond the scope of the current study.  
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When only examining those waters that are affected by the metal mixture and not by any 

single metal individually in the FOREGS database, between 0.3 and 4% of the samples is at risk 

depending on the method used (Table 4). This analysis not only shows that true mixture risks are 

relatively low for the FOREGS database, but also that the ‗issue‘ of risk at geochemical 

background levels is higher when CASSD is used compared to the other methods used. Indeed, 

4% of the samples is at risk when using the CASSD while only between 0.3% and 2% of the 

samples is at risk when using the other methods.  

When generalized to all databases, we see that – when the conservative CASSD method is 

used – in approximately 1/3 of the samples that is predicted to be ‗affected‘, a risk is predicted 

due to an actual mixture of metals (and not by any individual metal) (Table 4). However, when 

the theoretically more correct methods are used (i.e. CADRC and IADRC), 1.5 – 2.0 times less 

samples are affected by mixtures according to the CADRC method and 2.3 – 8.0 times less 

samples are affected by mixtures according to the IADRC method. The difference between 

mixtures risk between the two latter methods emphasizes the need to establish which model, i.e. 

CA or IA, is the ‗best model‘ in predicting chronic metal mixture toxicity to individual aquatic 

species, such that a well-informed choice can be made between CADRC or IADRC in the actual 

metal mixture risk assessment implementation. 

Ranking the methods and MoS calculations 

A larger difference in % of samples that are at risk is found between the four methods 

proposed here, i.e. a difference of 3% (Austria) to 13% (Dommel) between the methods. At 

present, it is too early to conclude which method might be the proper approach. Indeed, these 

approaches arise from two major toxicity concepts, CA and IA. It is currently not known which 

of both models is the most appropriate. Moreover, results suggest that the ‗most appropriate‘ 
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model may be dependent on the metal combination, the species tested, the water chemistry of the 

test medium and so forth [10, 41]. However, earlier research [4] demonstrated mathematically 

that for an assemblage of 3 species, the 𝑅𝑄 𝑃𝐸𝐶

𝑃𝑁𝐸𝐶

 approach (i.e. analogous to our CASSD approach) 

was always more conservative than the RQTU approach (analogous to our CADRC method). 

Nonetheless, we found here that at high toxic pressure (above 0.15)  (expressed as msPAFCA,SSD) 

the CASSD approach is no longer the most conservative method as a higher conservatism is found 

for the CADRC approach (Figure 5 and Figure 6). Furthermore, for the IADRC approach, the value 

at which this shift occurs is higher (i.e. msPAFCA,SSD of 0.55) (Figure 5 and Figure 6). However, 

we see that at toxic pressure values (expressed as msPAFCA,SSD) below 0.15, there is 0% chance 

of finding a msPAFCA,SSD value smaller than msPAFCA,DRC or msPAFIA,DRC values (Figure 5). 

Therefore, at toxic pressures around 0.05, the CASSD method is the most conservative not only 

for assemblages of 3 species but also at the community level.  

This is also clear from our calculations in which the MoS of the CASSD approach 

compared to the other methods was calculated. Figure 7 shows the MoS that the CASSD method 

provides relative to the three other methods for all monitoring databases. For the Dommel 

database, using the CADRC method, variability in the MoS is the lowest and the median MoS is 

equal to 1.17. MoS show higher variability and higher median values with the IADRC and IASSD 

method, i.e. 1.38 and 1.48, respectively. The CASSD method is thus a factor 1.17 to 1.48 more 

conservative than the other methods. This means that for example, 1.48 fold higher metal 

concentrations are needed to conclude ‗risk‘ based on the IASSD approach than based on the 

CASSD approach. Even more, if CA (or IA) is a conservative estimator of mixture toxicity across 

all species, which is demonstrable in toxicity tests, then the simple CASSD method is on average a 

factor of 1.17 (or 1.48) conservative. 
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Our MoS calculations can be compared to the findings by Gregorio et al [5], who based 

their research on theoretical data sets generated for hypothetical substances. These authors 

showed that the use of concentration addition directly on SSD (i.e. our CASSD method) may lead 

to an overestimation or underestimation of the mixture concentration affecting 5% of the species 

depending on the standard deviation (s) of the SSD of the substances within the mixture. These 

results were found by calculating DmsPAF=5, which is the ratio of the mixture concentration 

affecting 5% of the species calculated with the M2ssd,CA method (i.e. our CASSD method) to the 

mixture concentration affecting 5% of the species calculated with the M1sp,CA method (i.e. our 

CADRC method). This DmsPAF=5 value is therefore the reciprocal of our MoS value (i.e. 1/MoS). 

For mixtures of substances with a steep SSD (s ≤ 0.55), Gregorio et al [5] demonstrated a higher 

likelihood of underestimating the mixture concentration affecting 5% of the species when using 

CASSD relative to using CADRC (i.e. DmsPAF=5 < 1). This is in compliance with our results. The 

mixtures of metals considered in our analysis also showed steep SSD‘s (i.e. mean s; Dommel s = 

0.37, VMM s = 0.39, Rhine s = 0.47, Austria s = 0.50) and average MoS values for all 

monitoring databases were larger than 1 (Table 4). Results by Gregorio et al [5] based on 

hypothetical data for hypothetical substances are therefore confirmed with our results based on 

real toxicity data for real substances.  

In general, our calculations show the following order of conservatism (from most 

conservative to most liberal): 

 

CASSD > CADRC > IADRC > IASSD 
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This rank order indicates that these methods could be implemented in a tiered metal-mixtures 

risk evaluation scheme (Figure 8). As CA gives a more cautious risk estimate (at low msPAF 

values), the CASSD method could serve as a first (conservative) tier to identify situations with 

likely no risk of metal mixtures (SumTUHC5<1). The IASSD method could be applied in a second 

tier to identify situations of risk regardless of the method used (msPAF > 0.05). The CADRC and 

IADRC methods could be used in a third tier for more detailed calculations for situations that fall 

in-between, e.g. as part of a weight-of-evidence approach. For situations for which the outcome 

is dependent on the method used (i.e. CADRC or IADRC), targeted research could be performed in 

a final tier. 

Our MoS calculations also demonstrate the possibility for an intermediate tier between 

the proposed Tier 1 and 2. When the SumTUHC5 is > 2 (Figure 7), risk is always predicted, 

independent of the method used. The intermediate tier could therefore implement a cut-off on the 

SumTUHC5 value, above which risk is always predicted and thus avoid unneeded time and 

resource investment in the more complicated calculations. However, this case is so far only 

demonstrated for the 4 monitoring datasets examined here and should first be examined more 

thoroughly before this intermediate tier can be added to the tiered metal-mixtures risk evaluation 

scheme (Figure 8). 

Strengths and weaknesses 

The research conducted here shows certain strengths when compared to existing 

literature. We evaluated the use of four mixture risk assessment methodologies simultaneously. 

For this, we used available real toxicity data and monitoring datasets. In addition, we compared 

the influence of the use of the log-normal and the best-fit SSD on the risk estimations, as well as 

the influence of generating hypothetical species randomly versus non-randomly on the risk 
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estimations. However, certain weaknesses in our research also exist. An important obstacle for 

applying either method at this moment is that the underlying assumptions of the different 

methods needs to be tested and the degree of conservatism compared to community-level metal 

mixture toxicity effects needs to be investigated (e.g. based on mesocosm or field data). Another 

current limitation of our methods is the fact that calculations of mixture toxicity have been 

performed on the basis of dissolved metal concentrations, while possible interactions between 

metals at DOC sites have not been accounted for. This is due to the fact that in the validated 

bioavailability models, speciation calculations for the different metals are performed with 

different speciation models in the current BLMs (i.e. WHAM Model V for Cu and Zn vs. 

WHAM Model VI for Ni). Taking into account these interactions at DOC sites could result in 

higher predicted msPAF values. However, we expect that this would only influence the absolute 

msPAF values per method, but not the relative ranking of msPAF values among the different 

methods.  

Research recommendations  

Although the CASSD approach is the most conservative (at msPAFCA,SSD  values < 0.15), is 

the most easy to implement and shows a high margin of safety, more research is needed to 

conclude whether more complex, liberal methods (i.e. CADRC or IADRC) might be more accurate 

in predicting the level of risk posed by mixtures of metals. This could for instance be examined 

by performing mesocosm experiments. The real ecological meaning of the msPAF has been a 

topic of research [42-44], but uncertainties remain. For instance, although it is assumed that the 

HC5 value for a single substance is protective for 95% of the species within a community, it is 

not straightforward to predict what effects may occur in an actual community when exposed to a 

concentration equal to the HC5 of that substance. This uncertainty applies invariantly to mixtures 
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of substances and thus, it is not straightforward to predict what effects on natural communities 

may be expected when exposed to a metal mixture with a toxic pressure equal to any msPAF. 

The relation between msPAF and actual effects of metal mixtures on natural communities should 

be the subject of future research. The calculated toxic pressure (expressed as msPAF values) 

could possibly be applied in an absolute way if the toxic pressure can be correlated to ecological 

effects or in a relative way by ranking contaminated sites. Either way, we propose that applying a 

tiered metal mixture risk evaluation scheme in which the four methods described here are 

applied, might be a way forward to evaluate risks implied by mixtures of substances.  

In addition, the perception exists that adding more metals to a mixture, even when metals 

are present at background concentrations, will result in risk predictions for a higher percentage of 

samples. However, when examining the results from the FOREGS database, we see that only a 

limited percentage of samples (i.e. up to 4%) is affected by a mixture of 3 metals. Even more, 

when applying theoretically more correct models (i.e. CADRC and IADRC) the issue of mixture 

toxicity is even lower, i.e. 0.5 to 2% of the samples is said to be at risk at background 

concentrations. However, more research is needed to establish whether CA or IA is the ‗best‘ 

model to implement. Further research needed also includes the update of existing chronic metal 

bioavailability models to the same speciation model (e.g. WHAM model VII) to allow more 

consistent speciation-based computations of msPAF. 

CONCLUSION 

The present study examined the use of 4 mixture risk assessment methodologies that 

combine chronic toxicity data, bioavailability modelling, SSDs and CA or IA for ecological risk 

assessment by calculating the toxic pressure (expressed as msPAF values) based on measured 

concentrations of metals in 4 monitoring databases and 1 natural baseline database. The 
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percentage of samples predicted to be at risk differed between the methods used and were 

between 0 % (Rhine) and 52 % (Dommel) when using the most simple approach (CASSD). When 

only examining the samples that were at risk due to metal mixtures and not due to any individual 

metals, % of affected samples ranged between 0 % (Rhine) and 15 % (Dommel). The % of 

samples predicted to be affected also differed between the methods used, with a difference of 3 

to 13% between methods. 

In general, our calculations showed the following order of conservatism for the 4 

methods (from most to least conservative): CASSD > CADRC > IADRC > IASSD. As the CASSD 

method, the most simple method to implement, was shown to be the most conservative method 

(below certain risk values), MoS values could be calculated. It was demonstrated that the CASSD 

method is a factor 1.17 to 1.48 more conservative that the other methods (based on the Dommel 

dataset). Finally, we suggest applying these four approaches in a general tiered scheme for the 

risk assessment of chemical mixtures in a regulatory context. In this scheme, the CASSD method 

could serve as a first (conservative) tier to identify situations with likely no potential risk at all, 

regardless of the method used (SumTUHC5 < 1) and the IASSD method to identify situations of 

potential risk, also regardless of the method used (msPAFIA,SSD > 0.05). The CADRC and IADRC 

methods could be used for site-specific assessment for situations that fall in-between (SumTUHC5 

> 1 and msPAF < 0.05). 

Supplemental Data—The Supplemental Data are available on the Wiley Online Library at DOI: 

10.1002/etc.xxxx. 
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Figure 1. Overview of the methodology used for the calculations in the present study. Hexagonal 

boxes represent different steps of data collection and data handling, rounded boxes represent 

calculations and rectangular boxes represent outcomes of calculations. Reference is given to 

tables, figures and supplementary material. ECx = x% Effect Concentration ; BLM = Biotic 

Ligand Model; SSD = Species Sensitivity Distribution; HC5 = hazardous concentration affecting 

5% of the species within a community; CA= Concentration Addition; IA = Independent Action; 

msPAF = multi-substance potentially affected fraction. All msPAF values reported are on the 

basis of EC10 values. 

Figure 2. Distribution of slope values of dose-response curves for the Zn (A), Cu (B) and Ni (C) 

chronic ecotoxicity database. Slope values for fish, invertebrates and algae are depicted as 

squares (red), triangles (blue) and diamonds (black), respectively.  

Figure 3. Overview of 4 different methods combining two mixture toxicity concepts, 

concentration addition (CA) and independent action (IA) with species sensitivity distribution 

(SSD) functions to estimate toxic pressure expressed as multi-substance potentially affected 

fractions (msPAF) of species exposed to metal mixtures. For each method, the general 

mathematical function is given as well as the data required to calculate the msPAF value. The 

msPAF values reported are on the basis of EC10 values. 

Figure 4. Toxic Units (TUHC5) for Ni, Zn and Cu for the different target water samples of the 

Dommel (A), VMM (B), Rhine (C), Austria (D) and FOREGS (E) dataset. SumTUHC5 shows the 

summation of the TUHC5‘s according to the CASSD method using the log-normal SSD 

distribution. The horizontal line indicates a TUHC5 or SumTUHC5 of 1. Results are represented as 

box plots: median values are given in bold, bottom and top of the box plots give the 25
th

 and 75
th
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percentile. Bottom and top of the error bars represent the 5
th

 and 95
th

 percentile, open circles are 

outliers.  

Figure 5. Percentage of samples for which the msPAFCA,SSD value is smaller than the 

msPAFCA,DRC value (top) and for which msPAFCA,SSD value is smaller than msPAFIA,DRC value 

(bottom), for different categories of msPAFCA,SSD values (for the Dommel, VMM, Austria and 

FOREGS databases combined). 

Figure 6. Comparison of the toxic pressure (expressed as msPAF) according to the CASSD versus 

CADRC method (left graphs) and according to the CASSD versus IADRC method (right graphs) for 

the Dommel (A), the VMM (B), Austria (C) and FOREGS (D) database. The msPAF values 

reported are on the basis of EC10 values. 

Figure 7. Representation of the Margin of Safety (MoS), i.e. the SumTUHC5 corresponding to a 

msPAF of 0.05 for the Dommel (A), the VMM (B), Rhine (C) and Austria (D) database, for the 

different methods: CADRC; IADRC and IASSD. Results are represented as box plots: median values 

are given in bold, bottom and top of the box plots give the 25
th

 and 75
th

 percentile. Bottom and 

top of the error bars represent the 5
th

 and 95
th

 percentile, asterisks are outliers. 

Figure 8. Possible tiered metal mixture risk evaluation scheme. A sample is defined to be at risk 

when the toxic pressure (expressed as msPAF) was higher than 0.05 (or SumTUHC5 >1), which is 

equivalent to the typical protection goal for single substances, i.e. a maximum of 5% affected 

species at the HC5 concentration. The msPAF values reported are on the basis of EC10 values.
a
 

Unless very strong synergisms at low effect levels. 
b
 unless very strong antagonisms at low effect 

levels.  
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Tables 

Table 1. Four different approaches to calculate the toxic pressure expressed as multisubstance 

potentially affected fractions (msPAF
a
) of species that are described in this study, and 

terminology of equivalent or analogous approaches used by De Zwart and Posthuma [2], 

Backhaus and Faust [3] and Gregorio et al [5]. a The msPAF values reported are on the basis of 

EC10 values. 

This study De Zwart and Posthuma Backhaus and Faust Gregorio et al. 

CASSD CA RQPEC/PNEC M2ssd,CA 

CADRC NI RQSTU M1sp,CA 

IASSD RA or IJA NI M2ssd,IA 

IADRC NI NI M1sp,IA 

CA = Concentration Addition; SSD = Species Sensitivity Distribution, RQ = Risk Quotient, PEC = 

Predicted Environmental Concentration; PNEC = Predicted No Effect Concentration; DRC = Dose-

Response Curve, NI = Not Included; RA = Response Addition; IJA = Independent Joint Action; STU = 

Sum of Toxic Units 
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Table 2. Overview of the monitoring databases used in this study 

Database 
Exposure scenario 

Time period Number of samples 
Number of 

sampling locations 

Dommel Industrial (historic pollution) 2007-2010 3176  97 

VMM Regional mixeda 2012 155  48 

Rhine Regional mixeda 2010-2011 209 53 

Austria Regional mixeda 2006 2138  249 

FOREGS Natural background 1998-2001 784 784  
a  i.e. a combination of  urban, industrial and agricultural pollution 
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Table 3. Physico-chemical parameters (pH, Dissolved Organic Carbon and Ca concentration) and dissolved metal concentrations 

(Nickel, Zinc and Copper) of the different monitoring databases. In addition, HC5 values (hazardous concentration affecting 5% of the 

species within a community, beyond their no-effect level (here EC10)) for the different monitoring datasets (log-normal SSD and best-

fit SSD).  

    Dommel VMM Rhine Austria FOREGS 

pH 
 

7.1 (6.5 - 7.6)a 7.6 (7.0 - 8.0) 8.0 (7.8 - 8.2) 8.0 (7.6 - 8.3) 7.7 (6.4 - 8.3) 

DOCb (mg/L) 9.4 (5.5 - 15.0) 7.7 (5.2 – 15.1) 2.4 (1.7 - 3.4) 1.6 (0.7 - 4.5) 5.3 (1.0 - 17.1) 

Ca (mg/L) 41.4 (31.0 - 57.0) 84.0 (26.4 - 146.0) 67.0 (50.0 - 110.4) 45.9 (18.8-80.0) 40.3 (2.8 - 118.2) 

Ni 

(µg/L)  
8.3 (0.8 - 29.0) 2.5 (2.0 - 11.0) 1.1 (0.5 - 2.0) 0.5 (0.03 - 1.9) 1.9 (0.4 - 4.7) 

Zn 

(µg/L)  
28 (3.5 - 98.0) 15.0 (5.0 - 66.0) 2.8 (1.0 - 5.1) 1.9 (0.4 - 7.8) 2.7 (1.0 - 9.8) 

Cu 

(µg/L)  
2.1 (0.5 - 4.6) 1.0 (1.0 - 4.0) 1.6 (0.8 - 2.3) 0.5 (0.4 - 1.6) 0.9 (0.3 - 2.3) 

Ni HC5 
log-normal 27.3 (18.1-39.4) 20.6 (14.9-32.8)  7.9 (5.3-18.9)  7.0 (3.9-14.4)  14.8 (4.1-39.3) 

best-fit 27.3 (18.2-39.3) 22.1 (16.0-31.3) 7.9 (5.2-17.2) 6.9 (3.8-14.7) 14.6 (3.9-38.1) 

Zn HC5 log-normal 42.8 (27.4-67.9)  52.1 (27.9-92.9) 24.4 (19.1-36.5)  22.2 (13.2-40.4) 36.2 (14.2-100.0)  

 
best-fit 42.6 (27.3-67.8) 47.9 (27.0-81.9) 25.5 (19.0-40.3) 22.9 (12.9-40.4) 37.8 (14.1-95.3) 

Cu HC5 
log-normal 46.6 (19.0-78.8)  39.5 (24.3-82.0) 12.5 (7.3-21.7)  4.1 (1.9-13.3) 19.6 (3.4-74.3) 

best-fit 46.6 (19.0-78.8) 39.4 (24.3-78.5) 13.4 (7.2-23.6) 4.3 (2.2-13.1) 19.7 (3.7-73.9) 
a Values reported are median values, 10th and 90th percentiles are given in between parentheses. 
b DOC = Dissolved Organic Carbon 
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Table 4. Toxic pressure expressed as multisubstance potentially affected fraction of species (msPAF
a
) for the Dommel, VMM, Rhine, 

Austria and FOREGS database obtained with the different methods (CASSD; CADRC; IASSD and IADRC) when SSDs are fitted with log-

normal distributions. The percentage of affected samples is given per method. Furthermore, median Margin of Safety (MoS) values 

provided by the CASSD approach for the other methods are given. NA = not applicable, a the msPAF values reported are on the basis of 

EC10 values 

 
Dommel VMM Rhine 

 
CASSD CADRC IASSD IADRC CASSD CADRC IASSD IADRC CASSD CADRC IASSD IADRC 

median msPAF 0.054 0.038 0.024 0.027 0.009 0.004 0.003 0.003 0.006 0.002 0.002 0.002 

10th percentile msPAF <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 <0.001 <0.001 

90th percentile msPAf 0.423 0.466 0.342 0.364 0.227 0.2201 0.177 0.185 0.012 0.0005 0.003 0.004 

% samples affected (msPAF>0.05) 52 46 39 44 27 25 23 23 0 0 0 0 

% samples affected by mixture of metals 
and not by any of the individual metals 

15 10 3 5 7 4 2 3 0 0 0 0 

MoS provided by the CASSD approach NA 1.17 1.48 1.38 NA 1.18 1.57 1.46 NA 1.25 1.72 1.60 

 

 Austria FOREGS 

 CASSD CADRC IASSD IADRC CASSD CADRC IASSD IADRC 

median msPAF 0.004 0.001 0.001 0.001 0.004 0.001 0.001 0.001 

10th percentile msPAF <0.001 <0.001 <0.001 <0.001 <0.001 0 <0.001 <0.001 

90th percentile msPAf 
 

0.035 0.023 0.016 0.017 0.052 0.039 0.031 0.033 

% samples affected (msPAF>0.05) 
 

8 6 5 5 10 8 7 7 

% samples affected by mixture of metals 
and not by any of the individual metals 
 

3 2 0.2 0.6 4 2 0.4 0.5 

MoS provided by the CASSD approach NA 1.21 1.52 1.45 NA 1.22 1.52 1.43 
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Table 5. Percentage of samples that is not affected and percentage that is affected (msPAF value > 0.05) by a mixture of Cu, Zn and/or 

Ni according to the CASSD method for the Dommel database. 

 
Percentage 

  No effect 48.33 

   Effect 51.67 

   
 

Individual metal effects 36.52 

  

  

Only Zinca  26.84 

 

  

Only Nickela 0.91 

 

  

Only Coppera 0.09 

 

  

Both Zinc and Nickelb 8.48 

 

  

Both Zinc and Copperb 0.16 

 

 

Mixture effects 15.15 

  

  

Binary combinationsc 13.01 

 

  

Ternary combinationd 2.14 

 

   

Shows the 

largest TU
e
 Percentage 

   

Zn 77.96 

   

Ni 22.04 

   

Cu 0 
a The Toxic Unit of zinc, nickel or copper is above 1 
b The Toxic Unit of all mentioned metals is above 1 
c At least one of the possible binary combinations (i.e.Zn&Ni, Zn&Cu, Ni&Cu) shows an effect 
d The ternary combination (but none of the 3 possible binary combinations) shows an effect 
e For each metal the percentages of samples is given in which that metal has the largest Toxic Unit in the sample affected by a binary or ternary combination, 

i.e.in which that metal is the largest contributor to the toxic effect 
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Figure 2. 
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CASSD 

𝑺𝒖𝒎𝑻𝑼𝑯𝑪𝟓 =!
[𝒄𝒊]
𝑯𝑪𝟓𝒊𝒊

 

• if SumTUHC5 > 1: risk 
• i.e. msPAF > 0.05 
• data need for SumTUHC5: 

ci and HC5 
• data need for msPAF: 

ci and full toxicity database (i.e. all 
EC10 values of SSDs) 

IASSD 

𝒎𝒔𝑷𝑨𝑭 = 𝟏 − ∏ (𝟏 − 𝑷𝑨𝑭𝒊𝒊 ) 

• if msPAF > 0.05: risk 
• data need for msPAF: ci and full 

toxicity database (i.e. all EC10 
values of SSDs) 
	
	
	

	
	

CADRC 

𝑺𝒖𝒎𝑻𝑼𝑬𝑪𝟏𝟎 =!
[𝒄𝒊]
𝑬𝑪𝟏𝟎𝒊𝒊

 

• msPAF =  fraction of species for which 
SumTUEC10 > 1 

• if msPAF > 0.05: risk 
• data need for msPAF: ci and full toxicity 

database (i.e. all EC10 values of SSDs) 
 
 
 
	
	

	

IADRC 

𝑬𝒎𝒊𝒙 = 𝟏 −! (𝟏 − 𝑬𝒊)
𝒊

 

• msPAF =  fraction of species for which 
Emix > 10% 

• if msPAF > 0.05: risk 
• data need for msPAF: ci and dose-

response curve  (EC10, EC50 and slope) 
per species 
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Figure 4.   
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Figure 5.  
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Figure 6. 
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Figure 7.  
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Figure 8. 

 

 

 

 

 

 

 

 

 

 

Uncertain (outcome dependent on method used) 
 

Chronic ecotoxicity databases, chronic BLMs, 
monitoring data, … 

 

Apply CASSD: 
SumTUHC5 >1 

 

Apply IASSD: 
msPAF > 0.05 

 

Weight-of-evidence suggests risk based 
on advanced computational methods: 

- CADRC msPAF > 0.05 
- IADRC msPAF > 0.05 
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