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Abstract 

Whole-genome-shotgun (WGS) sequencing of total genomic DNA was used to recover ~1 Mbp of 

novel mitochondrial (mtDNA) sequence from Pinus sylvestris (L.) and three members of the closely-

related Pinus mugo species complex. DNA was extracted from megagametophyte tissue from six 

mother trees from locations across Europe and 100 bp paired-end sequencing was performed on the 

Illumina HiSeq platform. Candidate mtDNA sequences were identified by their size and coverage 

characteristics, and by comparison with published plant mitochondrial genomes. Novel variants 

were identified, and primers targeting these loci were trialled on a set of 28 individuals from across 

Europe. In total, 31 SNP loci were successfully resequenced, characterising 15 unique haplotypes. 

This approach offers a cost effective means of developing marker resources for mitochondrial 

genomes in other plant species where reference sequences are unavailable. 

 

Introduction 

Plants possess three genomes: nuclear, mitochondrial, and chloroplast, which are subject to differing 

modes of inheritance. Unlike the nuclear genome, the organellar genomes of the mitochondrion and 

chloroplast are typically inherited uniparentally, from either the female or male parent exclusively 

(Clegg, 1990; Birky, 1995). For this reason, organellar genomes can be particularly useful for 

recovering some types of population genetic structure as their lower effective population size makes 

them more susceptible to differentiation by drift and hence signals of historic events are retained, 

such as those associated with post-glacial dispersal (Ennos, 1994; Sinclair et al., 1999). In the 

majority of angiosperms, both mitochondrial and chloroplast genomes are maternally inherited and 

dispersed via seed; whereas, in gymnosperms, chloroplast genomes are normally paternally 

inherited and transmitted via pollen (Neale and Sederoff, 1988; Mogensen, 1996). The chloroplast 

has been the predominant source of molecular markers, as chloroplast genomes are short, highly 
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conserved, non-recombining and exhibit a comparatively high base mutation rate relative to 

mitochondrial genomes (Provan et al., 1998; Byrne et al., 2003; Liu et al., 2012). However, their 

paternal mode of inheritance limits their utility in analyses of demographic history in gymnosperms, 

as population structure is rapidly broken down due to the long range dispersal of pollen. 

Mitochondrial markers would accelerate the study of seed-mediated gene flow in these species, 

however their development presents numerous challenges: plant mitochondrial genomes are 

relatively large, exhibit a high level of internal rearrangement, a very low base mutation rate (Wolfe 

et al., 1987), and very few completed sequences have been published to date. New approaches to 

marker discovery in the gymnosperm mitochondrial genome are needed, that take advantage of 

new sequencing methods to enable more comprehensive surveys of variation. 

Pinus sylvestris is the most widely distributed of all conifers, with a range encompassing much of the 

northern hemisphere in Eurasia. To date, a very limited assortment of mitochondrial markers have 

been available for P. sylvestris, comprising structural variation at cox3 detected by RFLP analysis 

(Sinclair et al., 1998, 1999), and the indels at nad1 and nad7 (Soranzo et al., 2000; Naydenov et al., 

2007; Pyhäjärvi et al., 2008). Although useful, the small number and low variability of these markers 

have limited their use. Here, using P. sylvestris and three of its close relatives as a case study, we 

demonstrate an approach based on a common next-generation sequencing platform to fast 

reconstruction of mitochondrial genome sequence and its application for marker discovery. 

 

Presently, there are no completed references available for either the nuclear or mitochondrial 

genomes of P. sylvestris (although a scaffolded draft assembly has recently been made available for 

P. taeda (Neale et al., 2014)). Taxonomically, the nearest complete mitochondrial genome available 

is that of the gymnosperm Cycas taitungensis (Chaw et al., 2008), which is approximately 415 Kbp in 

length. Like those of other seed plants previously sequenced, the C. taitungensis mitochondrial 

genome is non-compact: some 89.9 % is comprised of non-coding sequence (introns, spacers, and 

pseudogenes), and relatively short (typically < 2 Kbp) repeated sequences account for 15.1 % of its 
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length. The small number of sequences available for P. sylvestris are for regions which encode genes 

(including introns), which are likely to be subject to a high degree of conservation between both 

species and individuals. Therefore, there are large quantities of intergenic sequence which have yet 

to be investigated, and which are likely to yield informative variants. Pinus nuclear genomes are 

exceptionally long: the P. taeda draft assembly is ~22 Gbp in length (Neale et al., 2014); estimates of 

the P. sylvestris genome size from flow cytometry range from ~21 to 27 Gbp (Bogunic et al., 2003 

and Valkonen et al., 1994, respectively). Being both radically shorter and present in many more 

copies, the organellar genomes should receive substantially greater coverage during whole-genome-

shotgun (WGS) sequencing and therefore be more amenable to de novo assembly. 

We used WGS sequencing to obtain sequence data from the megagametophyte tissue of three 

individuals of P. sylvestris from native European populations and one individual of each of three 

closely related species from the P. mugo complex: P. mugo, P. uliginosa, and P. uncinata. The high 

throughput rate afforded by modern WGS sequencing and the ability subsequently to distinguish 

that which originates from the mitochondrial genome now enables large quantities of mitochondrial 

sequence to be acquired in the absence of prior enrichment for mitochondria via differential 

centrifugation or other means. By taking advantage of the increased coverage of organellar relative 

to nuclear genomes we were able to identify putative mitochondrial contigs from our assembly, 

which were then corroborated by comparison with published mtDNA sequences. In doing so, 

previously unexplored regions of the mitochondrial genome were recovered, and novel variants 

were captured at the single nucleotide level. Primers were developed targeting these regions, and 

trialled on a limited set of 28 individuals from 16 Pinus populations. 
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Methods 

Sample Material 

Seed collections were made from 18 geographically disparate native woodlands across Europe. For 

marker discovery, seeds were collected from three Pinus sylvestris mother trees and one of each of 

P. mugo, P. uliginosa, and P. uncinata (Table 1). For marker validation, we used 28 trees collected 

from sites across the European range (Table 1, Fig 1). 

Preparation and DNA Extraction 

In preparation for WGS sequencing, DNA extractions were performed using megagametophytes 

isolated from seed. The relative abundance of mtDNA to nuclear in megagametophyte tissue is 

unknown, however, (1C) megagametophyte tissue was preferred with a view to reducing the 

shotgun sequencing resources expended upon nuclear DNA content. Five to six seeds per sample 

(obtained from the same cone, and sharing a common maternal lineage) were placed on damp 

tissue in Petri dishes and allowed to germinate until the seed coats had visibly split, which typically 

occurred within one week. The seed was placed on the stage of a dissecting microscope, its coat was 

removed and the haploid megagametophyte tissue was then isolated from the embryo of each seed 

with the aid of forceps. To improve DNA yield all samples from one cone were then bulked in a single 

DNA extraction, performed using a Qiagen DNeasy Plant Kit as per the manufacturer's instructions 

(Qiagen, Venlo, Netherlands). For resequencing, DNA was extracted from both megagametophyte 

and needle tissue. 

Illumina Sequencing 

Sequencing of DNA extracts was performed at the Istituto di Genomica Applicata (IGA) in Udine, 

Italy. DNA was randomly fragmented by sonication using a Bioruptor (Diagenode); libraries based on 

DNA of endosperms of seeds obtained from single mother trees were enriched by 12-cycle PCR 

reaction, and following electrophoresis of the PCR products on a 2 % agarose gel, fragments in the 
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600 bp size range were selected and adapters were attached to the ends. A Genome Analyzer 

flowcell was prepared on the cluster station supplied and six 100 bp paired-end libraries were 

sequenced in multiplex on one lane of the Illumina HiSeq2000 platform according to the 

manufacturer's instructions. Images from the instrument were processed using the manufacturer’s 

pipeline software to generate FASTQ sequence files. 

Assembly 

FASTQ files were first assessed using ‘FastQC’ (Babraham Bioinformatics, Cambridge, UK) to examine 

per-base quality, and identify any anomalous patterns in base calling across read lengths. Using 

‘trimmomatic’ (Bolger et al., 2014), adapter sequences were removed, and non-random G/C content 

was cropped from the ends of reads; low quality base calls (Phred score < 10) were then removed 

from leading and trailing ends of reads, and a 4 bp sliding window was applied, removing any reads 

where mean quality within the window was < 15. Following trimming, reads of length < 36 bp were 

excluded. Data from the sample that yielded the largest number of reads (Punkaharju) were used for 

de novo assembly using fermi (Li, 2012) with a default minimum overlap of 50 bp. Summary statistics 

for assembled contigs were produced via ‘Quast’ (Gurevich et al., 2013). 

Identification of Candidate mtDNA Contigs 

The Punkaharju assembly was used as a basis to develop a reference set of candidate mitochondrial 

sequences (Fig 2a). To estimate coverage depth, the reads used to produce the assembly were 

mapped to it using ‘BWA’ (Li and Durbin, 2009); filtering and sorting of mapped reads was 

performed using ‘SAMtools’ (Li et al., 2009), duplicate reads were removed using ‘Picard’ 

(https://broadinstitute.github.io/picard/), and coverage information was retrieved using ‘Bedtools’ 

(Quinlan and Hall, 2010). 

Coverage of the nuclear genome was expected to be very low on account of its very large size: if we 

were to assume a genome size of 24 Gbp, then with 10 million 100 bp reads (similar to our data), 
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and in the absence of any organellar genomes, we would anticipate a mean coverage depth of 

around 4.2×10-4. To further preclude short nuclear contigs from downstream analysis, the assembly 

was restricted to contigs ≥ 1 Kbp.  

NCBI's BLAST tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was then used to perform nucleotide 

searches (blastn) of the subset of contigs against the mitochondrial genome of C. taitungensis 

(Genbank: AP009381.1) and the P. taeda draft mitochondrial genome (Neale et al., 2014) (available 

at http://pinegenome.org/pinerefseq/). Only hits with an expect value (e-value) < 0.0001 were 

recorded, and contigs sharing at least 500 bp identity with the published sequences were retained in 

the final candidate set.  

Variant Detection 

In order to reduce potential mismapping of genomic or chloroplast reads to the candidate 

mitochondrial sequences identified, a composite reference was produced which also incorporated 

the draft P. taeda nuclear genome (v1.01) (Neale et al., 2014; available at 

http://pinegenome.org/pinerefseq/), and the P. sylvestris chloroplast genome (GenBank: 

JN854158.1) (Fig 2b). The P. taeda nuclear genome was converted from a scaffold to individual 

contigs (dramatically reducing file size due to the large gaps present),  and contigs were then filtered 

to include only those > 50 bp. 

Each of the six WGS sequenced samples were then mapped to this composite reference using an 

identical procedure as described above. Variant detection was performed with GATK (DePristo et al., 

2011); variants with a read-depth < 10 or > 200 were not recorded, in order to prevent inclusion of 

SNPs with poor support, or those with a high likelihood of being attributable to paralogues, 

respectively (large spikes in read depth are likely caused by erroneous mapping of highly similar 

reads from more than one location to the same reference locus; this may result in spurious SNP 

calls). Alignment data were visualised using ‘Tablet’ (Milne et al., 2013).  
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Sanger Resequencing of Polymorphic Loci 

Each sample submitted for WGS sequencing consisted of bulked DNA from 5 – 6 endosperms of 

seeds from the same mother tree, each of which would be expected to share the same 

mitochondrial haplotype. Despite this, some within-mother variation was observed after reads were 

aligned to the candidate mitochondrial reference. Primers were designed to flank SNPs where this 

source of variation was minimal i.e. where aligned sequences from a maternal endosperm sample 

were consistently identical or non-identical to the reference. 

An initial 48 loci were targeted among 28 individuals from across Europe (Table 1). DNA (~20 ng) was 

amplified in a total reaction volume of 20 µl using the following mixture: 1 µl DNA, 1X PCR buffer 

(160 mM (NH4)SO4, 670 mM Tris-HCl, 25 mM MgCl2, 0.1 % Tween-20 at pH 8.8 (Bioron, Germany), 5 

µM of each primer (Eurofins-MWG), 0.2 mM of each dNTP (VWR International), and 0.25 U Superhot 

Taq DNA polymerase (Bioron). PCR was performed using an initial denaturing phase at 95°C for 5 

mins, followed by 30 cycles of 30 s at 94°C for denaturation, 57°C for 60 s annealing, and 72°C for 60 

s extension. Final elongation was performed at 72°C for 10 mins, after which samples were held at 

10°C. PCR products were electrophoresed on a 1.4% agarose gel and if a single product was obtained 

the remainder of the product was cleaned up with EXO-SAP IT (Affymetrix, UK) prior to sequencing. 

Sequences for each locus from each sample that were successfully amplified (31 in total; Table 2) 

were concatenated to produce a multi-locus haplotype for each individual (Supplementary Table 1). 

A maximum likelihood (ML) tree based on the General Time Reversible (GTR) model was constructed 

via MEGA6 (Tamura et al., 2013) using 10,000 bootstrap replicates. For the purposes of tree 

construction, missing data were imputed from the most closely-related complete haplotype. 

In addition to newly discovered polymorphic loci, samples were also genotyped for the indels 

previously identified at nad1 and nad7 gene regions (Soranzo et al., 2000; Naydenov et al., 2007; 

Pyhäjärvi et al., 2008); alternative primers for nad7 were obtained from Danusevičius et al., 2013. 

The nad1 haplotypes were determined via Sanger sequencing, and nad7 on the basis of size 
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differences identified using a Licor 4300 DNA sequencer (LI-COR Biosciences, Nebraska, USA). PCR 

reaction mix was as previously described, but the forward primer was labelled with 700 nm dye 

(Eurofins-MWG) for subsequent fluorescent detection. PCR conditions were as follows: initial 

denaturing phase at 95°C for 5 mins, followed by 32 cycles of 40 s at 94°C for denaturation, 65°C for 

75 s annealing, and 72°C 60 s for extension. Final elongation was performed at 72°C for 10 mins, 

after which samples were held at 10°C.  

Results 

Assembly and Contig Identification 

The total number of paired-end reads obtained from each sample (total genomic DNA) varied from 

3.2×107 to 6.2×107; the greatest number were obtained for the sample from Punkaharju, Finland. 

Prior to enforcing a minimum contig size of 1 Kbp (which dramatically reduced overall assembly 

length), the Finnish sample assembly was ~109 Mbp in length, and relatively AT-rich (Table 3). Of the 

contigs ≥ 1 kbp, two main groups were discernible on the basis of read depth (Fig 3). A BLAST search 

revealed that the high-coverage group consisted of chloroplast contigs, with the exception of one 

which was identified as bacterial in origin. All contigs identified as mtDNA according to their 

similarity to P. taeda and C. taitungensis mitochondrial genomes lay within the lower coverage 

group, the origin of the remainder of contigs in this group was not determined. Taken together, this 

lower coverage group consisted of 1274 contigs, with an overall length of 3.2 Mbp and a mean GC 

content of 42 %. The candidate mtDNA sequences had a combined length of ~1 Mbp [GenBank 

accession nos pending], and an elevated GC content (46 %) relative to the original unmodified 

assembly (40 %), and the chloroplast genome (39 %). 
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Sequencing Depth  

Sequencing depth is reported in terms of the original de novo assembly (before subsetting), and 

separately for the candidate mitochondrial sequences and chloroplast genome after mapping reads 

to the composite reference (Fig 4). Median coverage was by far greatest for the chloroplast at 698x. 

The unmodified de novo assembly and the candidate mitochondrial contigs (a subset of the former) 

received substantially lower median coverage at 15x and 29x, respectively. These coverage 

distributions were, however, markedly different: mode coverage (i.e. the most common depth) 

occurred at 3x for the complete de novo assembly, and 31x for the mitochondrial subset. 

Candidate Mitochondrial Sequences 

The candidate mitochondrial subset consisted of 224 contigs, and ranged from 1 – 21 Kbp in length 

(Supplementary Fig 1).  Although contigs were allocated to the subset on the basis of their similarity 

to the C. taitungensis and P. taeda mitochondrial genomes, a number of them matched the 

mitochondrial genomes of other closely-related species: including pines, P. sylvestris, P. strobus, and 

P. monophylla; other conifers Abies sachalinensis, Larix mastersiana, and Picea smithiana; 

angiosperms Phoenix dactylifera, Ricinus communis, and Tripsacum dactyloides. Candidate 

sequences were predominantly intergenic, however, coding sequences were also present for a 

number of mitochondrial genes. 

Of the contigs which originally aligned to the P. taeda mitochondrial genome, but not to that of C. 

taitungensis, very little coverage was found on GenBank, and for many, even the best matches 

(typically plant mitochondrial or Pinus genomic sequence) shared < 5% identity. 

Identification and Resequencing of Variants 

Following PCR and Sanger sequencing, 31 SNPs in 30 contigs were successfully genotyped in 28 

samples from across Europe (primer pairs are listed in Table 2). With one exception, all of the SNPs 

were transversions (A ↔ C or G ↔ T). Following concatenation across loci, 15 multi-locus 
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haplotypes could be distinguished (Table 1). Eleven of the 31 SNP loci differentiated Finnish samples 

from the others included in the study. 

Only three SNPs were species specific within the sample, distinguishing P. uncinata from the other 

pines. Nevertheless, unique haplotypes were found within each of the species, but not all samples; 

one P. mugo individual of Polish origin was found to share an identical haplotype with P. sylvestris 

from Sweden and Italy. Generally, there was high degree of geographic correspondence among the 

haplotypes, and neighbouring populations shared similar or identical haplotypes (Fig 5). However, 

there were exceptions, as Swedish populations shared haplotypes with samples from sites in Italy 

and Austria, and were strongly differentiated from those in neighbouring Finland.  

Samples were also typed at previously identified polymorphic loci at nad1 intron B/C and nad7 

intron 1 (Supplementary Table 1).  Following the naming convention of Naydenov et al. (2007), all 

samples at nad1 were found to possess haplotype ‘A’ (lacking an insertion); at nad7 all samples were 

scored as type ‘A’ (lacking a deletion) with the exception of those from Finland, all of which 

possessed type ‘B’ (5 bp deletion). Integration of the nad1 and nad7 loci with the multilocus SNP 

haplotypes did not increase resolution. 

 

Discussion 

Assembly and Coverage 

Coverage of the P. sylvestris nuclear genome was expected to be extremely low on account of its 

large size. The original de novo assembly (total genomic DNA) was predominantly comprised of short 

contigs, and half of the assembly length was accounted for by contigs of fewer than 128 bp. 

Equivalent distributions for the chloroplast genome and candidate mtDNA contigs exhibited 

distinctly higher coverage and lower variability, as would be expected given the short size and 

greater ratio of organelle to nuclear genomes present in a cell. The mean GC content of the 
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candidate mtDNA subset (46 %) was markedly differentiated from the background of the total 

genomic assembly (40 %), and from the chloroplast genome (39 %), but was almost equal to that of 

the C. taitungensis mitochondrial genome, and comparable to mitochondrial genomes of other plant 

species.  

Of the contigs ≥ 1 kbp, many were not identified as mtDNA using the similarity criteria described, 

despite occupying a similar range of read depths. Were these contigs assumed to be mitochondrial, 

the mtDNA assembly would be substantially longer (~3.2 Mb), with a reduced GC content (42 %). On 

the basis of the P. taeda draft and C. taitungensis mitochondrial genomes, it was assumed that of P. 

sylvestris would be highly similar in GC content. In construction of the P. taeda draft, scaffolds were 

selected on the basis of a GC content ≥ 44 %, and therefore contigs selected on the basis of similarity 

to that assembly, and that of the C. taitungensis mitochondrial genome, are likely to exhibit 

comparable values. There is precedent for somewhat lower values: Sloan et al. (2012) describe the 

mitochondrial genomes of four Silene species, including the largest known to date (11.3 Mbp), which 

exhibit GC content values of ~41 – 43 %. We might anticipate lower than average GC content for 

Pinus mitochondrial genomes, should their relatively long lengths be in part attributable to the 

assimilation or repetition of large sections of nuclear DNA.  

Plant mitochondrial genomes are prone to high recombinational activity, contain large intergenic 

regions, and are known to incorporate DNA from both chloroplast and nuclear genomes (Knoop, 

2004; Wang et al., 2007), the latter having similarly assimilated mtDNA (Timmis et al., 2004). Many 

of the assembled contigs which showed a high degree of similarity to the mitochondrial genomes of 

P. taeda and C. taitungensis did so for only a short portion of their length, suggesting a low degree of 

conservation outside of coding regions. Inversions were common among the sequences that aligned 

to C. taitungensis; these are likely to be ancient and may offer a useful resource for phylogenetic 

inference, and indeed structural changes in mtDNA have previously been used to resolve plant 

phylogenies (Manhart and Palmer, 1990; Dombrovska and Qiu, 2004). Following development, 
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candidate mtDNA sequences were searched against those available on GenBank. Contigs which had 

been identified based on their similarity to C. taitungensis were often found to share greater identity 

with the mitochondrial genomes of other plant species, in particular Pinus when available.  

Sequences that were retained on the basis of their similarity with the P. taeda mitochondrial 

genome (but not C. taitungensis), generally did not align with other published sequences: these 

sizeable intergenic regions may have origins in the nuclear genome, and share little identity with the 

mitochondrial genomes published thus far.  

Complete chloroplast genomes are available for numerous species, and are significantly shorter than 

mitochondrial genomes, typically ranging from 120 – 160 Kbp in length (Palmer, 1985). For the 

purposes of marker discovery, we included references for the chloroplast genome of P. sylvestris and 

the nuclear genome of P. taeda when aligning reads to the candidate mitochondrial reference, to 

reduce the potential for mismapping of similar sequences between genomes. The read depth 

attained for the chloroplast genome (approaching 679x) was substantive, and shows that WGS 

approaches are well suited to studies of chloroplast diversity, as large numbers of samples could be 

multiplexed whilst maintaining a significant level of coverage.  

Marker Discovery 

After deriving the mitochondrial subset from our original assembly, we aligned WGS reads from a 

further five samples taken from P. sylvestris and the P. mugo complex.  On the initial pass, a large 

number of the potential SNPs detected between samples were also bi-allelic within samples. There 

are two possible reasons for this, which are not mutually exclusive: heteroplasmy, whereby an 

individual may possess more than one mitochondrial haplotype, or the occurrence of paralogous 

sequences elsewhere in the mitochondrial or nuclear genomes. 

Heteroplasmy is believed to be common for plant mitochondria (Kmiec et al., 2006), and in species 

where mitochondria are maternally inherited, may arise from leakage of the mitochondrial genome 
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of the paternal parent. This can in turn facilitate the establishment of new recombinant haplotypes 

(Städler and Delph, 2002; Pearl et al., 2009), and may provide a means by which to offset ‘Muller’s 

Ratchet’: the otherwise irreversible accumulation of deleterious mutations in asexually reproducing 

populations (Muller, 1964; Neiman and Taylor, 2009). Paternal leakage of the mitochondrial genome 

has previously been reported to occur in other Pinus species (Wagner et al., 1991), and it would be 

of interest to determine the rate at which it may occur in P. sylvestris and P. mugo. This would have 

implications for studies of population structure, as mtDNA markers have previously been assumed to 

disperse exclusively via seed. However, the strong spatial structure that has been observed suggests 

that pollen-mediated dispersal of mitochondria is rare. Another, more likely, explanation is the 

occurrence of paralogues which exhibit minor differences; these align to the same reference loci, 

superficially resembling SNPs. Duplicate sequences may be present throughout the length of the 

mitochondrial genome, but given the propensity for exchange of genetic material, it’s conceivable 

that within sample variation also occurs as a result of paralogues between the nuclear and 

mitochondrial genomes. The nuclear genome is subject to a significantly higher base mutation rate, 

and paralogues that lie within the nuclear genome are therefore more likely to deviate than those 

within the mitochondrial genome. Primers were designed to target those SNP loci that exhibited 

little to no variation within samples to minimise the potential for ambiguous variant calls during 

resequencing.  

In total, 31 SNPs were successfully resequenced, almost all of which were transversions. The rarity of 

transitions seems unusual, but is not without precedent: Wolfe et al. (1987) found that transitions 

comprised less than 50% of SNPs occurring in plant mitochondrial genes, and in a study of date palm 

cultivars, ~70% of the mitochondrial substitutions reported by Sabir et al. (2014) were transversions, 

in this case found overwhelmingly in intergenic regions. Although we performed a number of 

filtering steps to generate a set of mitochondrial contigs from an assembly of total genomic DNA, an 

analysis of the products of controlled crosses involving parents with differing haplotypes would be of 

benefit to strengthen the evidence that the new markers indeed lie within the mitochondrial 
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genome by exhibiting maternal inheritance and a consistently haploid profile. Each sample used for 

marker discovery comprised a pooled DNA extract of several megagametophytes from the same 

mother, and although SNPs were filtered on the basis of low within-sample variation, it is possible 

that nuclear polymorphisms detected between samples could be misconstrued as mitochondrial. 

This, however, seems unlikely given the extremely low nuclear coverage predicted; furthermore, 

heterozygotes were not apparent in the 28 samples resequenced via Sanger. Due to the potential 

homology between the two genomes,  primers developed for the mitochondrial genome might 

simultaneously target nuclear sequence; nevertheless, due to the overwhelming number of copies 

present, any signal observed following amplification should originate predominantly from the 

mitochondrial genome.   

 

Distribution of Variants in Europe 

A number of investigators have attempted to retrace post-glacial migration routes and locate the 

refugia occupied by P. sylvestris using mtDNA variation, and with some success (Naydenov et al., 

2007; Pyhäjärvi et al., 2008; Sinclair et al., 1998, 1999; Soranzo et al., 2000). However, these studies 

have been constrained by a very limited pool of markers located around gene coding regions that 

are highly conserved among plant taxa. We tested our panel of novel SNP markers on a pilot sample 

of 28 individuals drawn from across the European range, consisting of P. sylvestris and three 

subspecies of the closely related P. mugo complex (P. mugo, P. uliginosa, and P. uncinata). In doing 

so, 15 multilocus haplotypes were identified; however, the discovery of further unique haplotypes is 

likely should larger samples be genotyped at the same loci. 

Our results were broadly consistent with those of earlier studies, which indicated the presence of 

distinct refugia in southern and northern Europe. The Iberian Peninsula is known to have harboured 

Scots pine populations during the last glacial maximum, but is not believed to have contributed to 
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the recolonisation of northern Europe (Soranzo et al., 2000): we observed two unique haplotypes 

among Spanish individuals, distinct both from one another and from those in the remainder of the 

mainland distribution. Strong differentiation was observed between the haplotypes found in 

Swedish and Finnish populations, contributing to the evidence that two ancestral lineages meet in 

Fennoscandia (Naydenov et al., 2007; Pyhäjärvi et al., 2008). Interestingly, Scottish populations, 

which represent the western range edge, were more similar to those in Poland than any of the 

others sampled: although these regions have been shown to share haplotypes previously, here we 

also found them to be differentiated from populations in Italy or Sweden.  

Also included in the study were samples from the closely related P. mugo species complex; P. mugo, 

P. uliginosa, and P. uncinata. Haplotypes from these species did not form a distinct monophyletic 

clade, one of the Polish P. mugo samples shared a haplotype present in Swedish and Italian P. 

sylvestris. P. sylvestris and species from the P. mugo complex have a recent common ancestry and 

are known to hybridise in the wild, and no fixed differences have been observed at nuclear loci 

(Wachowiak and Prus-Głowacki, 2008; Wachowiak et al., 2013). As mitochondrial markers are 

maternally inherited, they should provide a useful means to investigate the extent and direction of 

hybridisation in future studies.  

Modern sequencing techniques enable large quantities of novel sequence data to be obtained at 

relatively low cost: here, by exploiting the distinctive coverage profile of the mitochondrial genome, 

we recovered ~1 Mbp of sequence and identified 31 new SNP markers from an initial panel of only 

six samples. We designed and tested primers targeting these loci and successfully verified their 

application in a multispecies sample set, recovering 15 haplotypes. A more extensive sample of 

European Pinus is now required to ascertain the extent to which new inferences can be drawn on 

the basis of the expanded marker set. Efficient discovery of further novel polymorphisms may be 

facilitated by targeted resequencing of known mtDNA sequence, effectively concentrating high-

throughput sequencing effort on specific regions of interest across multiple individuals. Here, the 
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emphasis was upon P. sylvestris and P. mugo, however, the same techniques may be applied to 

develop novel markers and genomic resources for organelles of other plant species. 
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Tables and Figures 

Figure 1 Map displaying species and location of origin for samples analysed. 

Figure 2 Flowchart describing development of candidate mtDNA contigs and marker discover. A) De 
novo assembly built from sample with largest data set, and reads mapped to determine coverage; 
contigs then filtered by size, before comparison with published mtDNA sequences to produce final 
set. B) Composite reference constructed from the candidate mtDNA sequences as well as the draft 
nuclear genome of P. taeda, and the P. sylvestris chloroplast genome to reduce potential for 
erroneous variant calls due to read mismapping. WGS sequenced reads from all samples mapped to 
this reference and screened for variants. 

Figure 3 Assembled contigs ≥ 1 Kbp plotted with respect to GC content and mean read depth; 
identity was assigned via BLAST search (see methods). All contigs with exceptionally high read depth 
were attributed to the chloroplast, with the exception of one which was found to be bacterial in 
origin. Contigs identified as mitochondrial exhibited markedly lower coverage, and relatively high GC 
content; coverage was comparable for contigs of undetermined origin. 

Figure 4 Distribution of read depth for a) the unmodified de novo assembly, and b) the candidate 
mitochondrial contigs and chloroplast reference genome. Read depth was log transformed prior to 
plotting (log10(Depth + 1)); values are presented on the original scale. All data shown are based upon 
read-mapping of the P. sylvestris sample from Punkaharju, Finland. 

Figure 5 Unrooted cladogram constructed via maximum likelihood using the general time reversible 
model and 10,000 bootstraps. Node values represent bootstrap support. Due to the occurrence of 
missing data, 25 of the possible 31 loci were used in tree construction. Sample abbreviations 
correspond to those listed in Table 1; those used in WGS marker discovery are marked with a ‘*’. 
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Table 1 Origin of samples sequenced by WGS for marker discovery, and samples sequenced by 
Sanger for marker validation. The mitochondrial haplotypes (A - O) are listed for each of the 
populations in which they were observed. 

Table 2 Forward and reverse primers targeting each of the 31 SNP loci located on 30 contigs. PCR 
conditions were held constant throughout (see methods). 

Table 3 Descriptive statistics for the de novo assembly produced using reads from the Finnish 
(Punkaharju) sample of P. sylvestris. When ordered by increasing length, the N50 and L50 describe 
the length of the contig which occurs at 50 % of the total assembly length, and the minimal number 
of contigs required to cover that length, respectively. 

 
 
Table 1 Origin of samples sequenced by WGS for marker discovery, and samples sequenced by 
Sanger for marker validation. The mitochondrial haplotypes (A - O) are listed for each of the 
populations in which they were observed. 

 Species Country Site Abbreviati
on 

Lat Long No 
Sample
s 

Haplotype(
s) 

Used for 
marker  
discover
y 

P. 
sylvestri
s 

Finland Punkaharju Fin_PK 61.7
6 

29.2
9 

1 E 

Scotlan
d 

Glen Loy Scot_GL 56.9
1 

−5.1
3 

1 A 

Spain Valsain Spa_VS 40.8
7 

-
4.04 

1 K 

P. 
mugo 

Poland Slaskie 
Kamienie 

Pol_SK 50.7
7 

15.6
0 

1 N 

P. 
uliginos
a 

Poland Węgliniec
Reserve 

Pol_WR 51.2
8 

15.2
4 

1 M 

P. 
uncinat
a 

Andorra Vall de Ransol And_VD 42.5
5 

1.61 1 I 

Used for 
marker 
validatio
n 

P. 
sylvestri
s 

Austria Pernitz Aus_PZ 47.9
1 

16.0
0 

1 C 

Finland Kolari Fin_KL 67.1
8 

24.0
5 

2 E 

Finland Punkaharju Fin_PK 61.7
6 

29.2
9 

2 D/E 

Italy Cella di Palmia' Ita_CP 43.7
1 

11.1
5 

3 O 

Poland Jarocin Pol_JR 51.9
7 

17.4
8 

2 B 

Scotlan
d 

Glen Tanar Scot_GT 57.0
5 

-
2.86 

1 A 

Scotlan
d 

Rothimurchus Scot_RM 57.1
5 

-
3.77 

2 A 

Scotlan Shieldaig Scot_SD 57.5 - 3 A 
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d 1 5.64
Spain Trevenque Spa_TV 37.0

8 
-
3.55 

2 F 

Spain Valsain Spa_VS 40.8
7 

-
4.04 

1 J 

Sweden Krp. 
Tjärnbergshed
en 

Swed_KT 64.6
2 

20.8
0 

3 C/O 

Sweden Väster 
Mjöingen 

Swed_VM 62.7
5 

13.5
7 

2 G/O 

P. 
mugo 

Poland Slaskie 
Kamienie 

Pol_SK 50.7
7 

15.6
0 

1 O 

Romani
a  

Eastern 
Carpathians 

Rom_EC 47.5
7 

24.8
0 

1 L 

P. 
uliginos
a 

German
y 

Mitelwalde Ger_MW 47.4
8 

11.2
7 

1 M 

P. 
uncinat
a 

Andorra Vall de Ransol And_VD 42.5
8 

1.64 1 H 

 

 
 
Table 2 Forward and reverse primers targeting each of the 31 SNP loci located on 30 contigs. PCR 
conditions were held constant throughout (see methods). 

Prim
er 
Pair 

Contig Forward (5’ - 3’) Reverse (5’ - 3’) Amplic
on Size 

SNP 
Positi
on 

SNP

1 GenBank_Ac
c_1 

CTACAAGCGACACAG
GAGCA 

AGTTTCAATTTACTTATTG
GCCCCC 

339 
3630 

G/T

2 GenBank_Ac
c_2 

ACGAAGTCAACACCG
GGAAA 

GTGAGAGAGAAAGAGCT
CAGGT 

349 
3792 

A/C

3 GenBank_Ac
c_3 

ATTCCTGTGCTTGGTT
GGGA 

GGCGCTTACCCACACACT
TA 

570 
14419 

G/T

4 GenBank_Ac
c_4 

TTTGATGGGGTACGG
CACTT 

ACCCAGAAGGTACGTGTG
GT 

597 
7782 

A/C

5 GenBank_Ac
c_5 

TGAGTTCGTTGACCGC
GTAA 

TCAGGCGAGCTTGTGCTT
TA 

514 
6408 

A/C

6 GenBank_Ac
c_5 

AGAAAGCAGTGATCC
CGAGC 

TTGAAGCGGACCTCATCG
AC 

444 
1688 

A/C

7 GenBank_Ac
c_6 

TTCCATTCTTCGCCAC
GGAA 

ATCTGCCGAACAAGGACC
AG 

574 
1375 

G/T

8 GenBank_Ac
c_7 

ACACAGCAATGATGC
AACGG 

TGGTGAAACTGATGCCCC
TT 

417 
2662 

G/T

9 GenBank_Ac
c_8 

CGTTGAACGGACCTTT
GCAG 

TAAAATACGGGTCCACCG
GC 

311 
422 

A/C

10 GenBank_Ac
c_9 

CACTCAGAACCGGCTT
GACA 

TTTAGGCTTCTGGCCCTT
GG 

564 
1301 

A/C

11 GenBank_Ac GATCGGGTCGGAGGC AGTTGAAGCAAGCCAGC 369 3250 A/C
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c_10 ATAAT AAG
12 GenBank_Ac

c_11 
TTTACGAAGCCCTTGG
CGAT 

CTGAACCGGGTGTAGCCT
TT 

548 
1866 

G/T

13 GenBank_Ac
c_12 

CATCCTCTCCTCTCGAT
GGC 

GCTTTTGGCTTGGTGCGA
AT 

358 
208 

G/T

14 GenBank_Ac
c_13 

AGCTGGTCATAGCCAA
TAGCC 

CCAAGTTTCATGCGCTCA
CA 

600 
12002 

G/T

15 GenBank_Ac
c_14 

TTCGAGGGTCGAGAA
CATGG 

GTCAGTGCTTGTCAATGC
CG 

502 
5460 

A/C

16 GenBank_Ac
c_15 

GGCCTTACGGCTCCTG
AAAT 

GTACCCTGGACGGAACAC
AG 

486 
286 

A/C

17 GenBank_Ac
c_16 

CGGAGCGAGGTGAAG
AAACT 

GCGAGAAGCAGTAGTGG
GTT 

593 
2178 

G/T

18 GenBank_Ac
c_17 

TCCGATGATGAGGTG
GAGGT 

AGTTGAAGGCAGGAAGG
TCG 

522 
4108 

G/T

19 GenBank_Ac
c_18 

TGCATTCTGGCTGGCT
TTCT 

GGCGTCGATAGACTCGGT
TT 

434 
1528 

G/T

20 GenBank_Ac
c_19 

GGCATGTCCGCTATGG
AAGT 

AGGCTCCGGAAGTACCTG
T 

398 
1517 

G/T

21 GenBank_Ac
c_20 

ATCGGCTCGACTGTTA
AGGC 

ACTGGTGCTCAAACCACA
CT 

419 
558 

G/T

22 GenBank_Ac
c_21 

GGTTGGTTGATCCATC
CGGT 

CCGGCTTGGGTACGTCTT
TT 

558 
4134 

G/T

23 GenBank_Ac
c_22 

TGCGACCTGTGAATG
GATGT 

CGGCGGTTCTAGCCTTGA
TT 

558 
4372 

A/C

24 GenBank_Ac
c_23 

TTTGCTCCTGCTGGTG
AGAC 

GGCGAAATCCTCTCTCGA
CG 

331 
3726 

C/T

25 GenBank_Ac
c_24 

GGGCACAAGGGGATC
TATGG 

TTGGCTTAACGCTTCGGA
AC 

484 
3457 

G/T

26 GenBank_Ac
c_25 

ATTGCCTGCCACTACA
GACC 

GGGAAAAGGTCTCCCCA
GTG 

541 
1559 

G/T

27 GenBank_Ac
c_26 

GGGATTAGACCGGCA
AACCT 

CCCTGCAACTTGCCTCTG
AA 

410 
3864 

G/T

28 GenBank_Ac
c_27 

GAGGGAGAGAACGCG
AAATC 

CCCATTTCCTCCCTACACG
A 

574 
3963 

G/T

29 GenBank_Ac
c_28 

GGCGGCGGTATAGGG
AAATA 

GACCGGGTCAATCCTCTG
TT 

600 
2147 

A/C

30 GenBank_Ac
c_29 

GGTGTACGTGTGGTA
GGTGG 

CACCACCGAAAGACGAG
GAA 

585 
6557 

G/T

31 GenBank_Ac
c_30 

GCCAATCCACCTGCAT
GTTC 

GAGGTGCGGGAAGTAAT
GCT 

592 
679 

G/T
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Table 3 Descriptive statistics for the de novo assembly produced using reads from the Finnish 
(Punkaharju) sample of P. sylvestris. When ordered by increasing length, the N50 and L50 describe 
the length of the contig which occurs at 50 % of the total assembly length, and the minimal number 
of contigs required to cover that length, respectively. 

Reference Length GC% N50 L50
De novo Assembly 108,996,556 39.8 128 286,153
Chloroplast 119,793 38.5 Single Contig Single Contig
Mitochondrial 985,624 46.3 6,425 52
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