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Abstract 17  
 

 
18 Freshwater  aquatic  organisms  can  be  exposed  to  hundreds  of  persistent  organic 

 

 

19 pollutants (POPs) discharged by natural and anthropogenic activities. Given our limited 
 

 

20 resources it is necessary to identify, from the existing evidence, which is the greatest 
 

 

21 threat so that control measures can be targeted wisely. The focus of this study was to 
 

 

22 rank POPs according to the relative risk they represent for aquatic organisms in rivers 
 

 

23 in the Bohai Region, China. A list of 14 POPs was compiled based on the available data 
 

 

24 on their presence in these rivers and ecotoxicological data. Those that were widely 
 

 

25 detected were benzo[a]pyrene, p,p'-DDE, p,p'-DDT, endrin, fluoranthene, heptachlor , 
 

 

26 hexabromocyclododecane, hexachlorobenzene, α-hexachlorocyclohexane, γ- 
 

 

27 hexachlorocyclohexane, naphthalene, perfluorooctanoic acid, perfluorooctane 
 

 

28 sulfonate and phenanthrene. Effect concentrations were compiled for Chinese relevant 
 

 

29 and standard test species and compared with river aqueous concentrations. Only bed- 
 

 

30 sediment concentrations were available so water levels were calculated based on the 
 

 

31 known local sediment organic carbon concentration and the Koc. The POPs were ranked 
 

 

32 on the ratio between the median river and median effect concentrations. Of the POPs 
 

 

33 studied, fluoranthene was ranked as the highest threat, followed by phenanthrene, 
 

 

34 naphthalene and p,p'-DDE. The risk from p,p’-DDE may be magnified due to being 
 

 

35 highly bioaccumulative. However, the greatest overlap between river concentrations 
 

 

36 and effect levels was for lindane. Overall, fish was the most sensitive species group to 
 

 

37 the risks from POPs. Hotspots with the highest concentrations and hence risk were 



mainly associated with watercourses draining in Tianjin, the biggest city in the Bohai 38 

Region. 39 

 

 

 
 

40 
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1. Introduction 44 

Persistent  organic  pollutants  (POPs)  are  of  concern  globally  due  to  their 45 

46 persistence,  long-range  transportation,  bioaccumulation  and  toxicity  to  wildlife. 

Perhaps the best example of the potentially devastating impact of POPs was that of 47 

 

 

 

48 DDT and the associated DDE on birds of prey (Ratcliffe, 1967). Consequently, many 
 

 

49 POPs are now subject to a great deal of monitoring to assess the exposure and risks 
 

 

50 from such chemicals (Wong et al., 2005; Doney, 2010; Letcher et al., 2010; Covaci et 
 

 

51 al., 2011; Elliott and Elliott, 2013). Many POPs which are extremely persistent, such 
 

 

52 as PCBs and lindane, have been banned or restricted by international conventions, so 
 

 

53 some decrease in environmental exposure is starting to occur (Lohmann et al., 2007). 
 

 

54 However, human society still needs stable organic molecules with properties such as 
 

 

55 fire resistance (eg HBCDs), non-reactivity (eg PFOS) and plasticising properties (short 
 

 

56 chain chlorinated paraffins), so the environment will continue to be exposed to such 
 

 

57 chemicals, but just how much of a risk do they represent? 
 

 
58 The Bohai coastal region, located to the east of Beijing is one of the China’s most 

 

 

59 important manufacturing areas. It includes the provinces of Shandong, Tianjin, Hebei 
 

 

60 and Liaoning which have benefitted from rapid industrialisation since the late 1970's. 
 

 

61 Apart from its industrial base, the region has a combined population of 231 million 
 

 

62 people (National Bureau of Statistics, 2014). There are more than 40 rivers flowing into 
 

 

63 the Bohai Sea, a semi-enclosed sea, and they convey many chemical pollutants to the 
 

 

64 Bohai Sea (Wang et al., 2014; Wang et al., 2015b). With the Chinese rush for growth 
 

 

65 there have been concerns about a resultant chemical pollution of the environment, such 



as pesticides (Zhang et al., 2009), polycyclic aromatic hydrocarbons (Wang et al., 66 

2015a), polychlorinated biphenyls (Zhao et al., 2005), perfluoroalkyl and 67 

 

 

68 polyfluoroalkyl substances (Wang et al., 2014) and hexabromocyclododecanes (Zhang 
 

 

69 et al., 2016) in the Bohai region. China is now taking steps to ban many of the most 
 

 

70 persistent organic pollutants (POPs) as indicated by the Stockholm Convention. Whilst 
 

 

71 some pollutants may no longer be discharged and could be considered a legacy of the 
 

 

72 past, others may still be generated, for example from combustion processes. 
 

 
73 There is now an increasing appreciation for the need to better protect the natural 

 

 

74 environment in China, such as the Water Pollution Control Action Plan in 2015 and the 
 

 

75 Soil Pollution Control Action Plan in 2016 issued by the State Council. However, with 
 

 

76 so  many  kinds  of  chemical  contaminants being  discovered  and  monitored,  it  is 
 

 

77 important to find some ways for identifying which represent the greatest risk. This is a 
 

 

78 problem for the whole world and not just China. In Europe, as part of the Water 
 

 

79 Framework Directive chemicals were identified as being of special concern (priority 
 

 

80 and hazardous substances) on the basis of several properties including persistence and 
 

 

81 different toxic properties. However, a recent approach has been proposed which argues 
 

 

82 that only two factors are critical, toxicity and exposure, and that relative risk can be 
 

 

83 assessed  from the  proximity of  the  median exposure and  toxicity concentrations 
 

 

84 (Donnachie et al., 2014; Donnachie et al., 2015). In this study the environmental 
 

 

85 concentrations of POPs which have been well monitored in the freshwater Bohai coastal 
 

 

86 region were compared with the available information on toxicity concentrations. The 



objective was to identify which currently well studied POPs should be considered of 87 

greatest threat to wildlife in the region? 88 

2. Method 89 

2.1. Approach to risk ranking 90 

 

 

 
91 The  risk  ranking  approach,  which  compares  levels  of  chemicals  in  the 

 

 

92 environments and effect concentrations in ecotoxicological tests, has been applied in 
 

 

93 the UK for metals and pharmaceuticals (Donnachie et al., 2014; Donnachie et al., 2015). 
 

 

94 To obtain measured environmental data for the Bohai region, literature from both 
 

 

95 English and Chinese sources were reviewed. For toxicity information, the US EPA 
 

 

96 ECOTOX Database, as well as a wider literature review was used. With environmental 
 

 

97 data and effect data collected, the final risk ranking compared the proximity of the 
 

 

98 medians of both datasets. In this study the ecotox dataset typically comprised 8 to 90 
 

 

99 entries (see SI). So the median was considered a robust (or fair) comparator of relative 
 

 

100 risk between chemicals. It is important to note that this approach is different from 
 

 

101 traditional  risk  assessment,  where  something  like  the  5%  percentile  toxicity 
 

 

102 concentration, or lowest observable ecotoxicity concentration (LOEC) or predicted no 
 

 

103 effect concentration (PNEC) is used as a comparator. These methods often put great 
 

 

104 weight on only a few data points and the danger is that some of these studies may be 
 

 

105 weak and unrepeatable (Harris et al., 2014). It should be acknowledged that where the 
 

 

106 median ecotox value is quite similar between chemicals, the ranking should not be seen 
 

 

107 as absolute, and that the output is a relative ranking rather than an absolute risk 
 

 

108 probability. 



2.2. Chemicals selected for this study 109 

The selection of chemicals was determined both by their presence in the rivers of Bohai 110 

 

 

 

111 region (the availability and quality of measured data) and by the degree of concern 
 

 

112 expressed in the literature over their toxicity, persistence or potential to accumulate. 
 

 

113 The  persistent  organic  pollutants  considered  in  this  research  included  industrial 
 

 

114 chemicals, pesticides and by-products of human activity. Fourteen chemicals were 
 

 

115 selected  from  more  than  20  groups  of  chemicals  on  the  basis  monitoring  data 
 

 

116 availability. The criteria used included having recent monitored data (2010-2015), 
 

 

117 abundant freshwater sampling sites and a sufficient geographic spread across the Bohai 
 

 

118 Region (Tab. 1 and Fig. 1). Lakes and reservoirs were not considered due to lack of 
 

 

119 
 
 

120 

sufficient measurements. 

 

 
121 Table 1. Chemicals assessed in this study 

 

 

  
Chemical name 

 
Usage 

 
Production 

 
 
status 

 

1 
 
α-Hexachlorocyclohexane (α-HCH) 

 
Insecticide by-product 

 
Banned 

 

2 
 
γ-hexachlorocyclohexane (γ-HCH) 

 
Insecticide 

 
Banned 

 
3 

 
Endrin 

 
Insecticide 

 
Banned 

 

4 
 
Heptachlor 

 
Insecticide 

 
Banned 



 

 

 

5 
 

p,p’-Dichlorodiphenyltrichloroethane 
 
 
(p,p’-DDT) 

 
Insecticide 

 
Restricted 

 

6 
 

p,p’-Dichlorodiphenyldichloroethylene 
 
 
(p,p’-DDE) 

 
Degradation product of p,p’-DDT 

 

7 
 

Hexachlorobenzene (HCB) 
 

Industrial use chemical 
 
Banned 

 

8 
 
Hexabromocyclododecane (HBCD) 

 
Flame Retardant 

 
Still produced 

 
9 

 
Perfluorooctanoic acid (PFOA) 

 
Insulators for electric wires, 

planar etching of fused 

silica, fire fighting foam, and 
 
 
outdoor clothing 

 
Restricted 

 

10 
 
Perfluorooctane sulfonate (PFOS) 

 

Electric and electronic parts, 

fire fighting foam, photo 

imaging, hydraulic fluids and 

textiles 

 
Restricted 

 

11 
 

Benzo[a]pyrene (B[a]P) 
 
Unintentional production chemical 

 
12 

 
Fluoranthene (Flu) 

 
Unintentional production chemical 

 

13 
 

Phenanthrene (Phe) 
 
Unintentional production chemical 

 

14 
 

Naphthalene (Nap) 
 
Unintentional production chemical 

 

122 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

123 
 
 

124 Figure 1. River segments with POPs concentrations reported in Bohai Region. 1. 
 

 

125 Taizi River; 2. Hunhe River; 3. Liaohe River; 4. Daling River; 5. Luanhe River; 6. 
 

 

126 Duohe River; 7. Yongding New River; 8. Dagu Drainage River; 9. Ziyaxihe River; 
 

 

127 10. Zhangwei New River; 11. Majiahe River; 12. Tuhaihe River; 13. Yellow River; 
 

 

128 14. Xiaoqinghe River; 15. Mihe River; 16. Weihe River; 17. Jiaolaihe River; 18. 
 

 

129 
 
 

130 

Shahe River; 19. Wanghe River; 20. Jiehe River; 21. Huangshuihe River. 

 

 
131 2.3. Estimation of POPs concentration in water 

 

 
132 Whilst it may not be entirely appropriate for POPs, most available ecotoxicity 

 

 

133 information for these chemicals is based on exposure through the water column. 
 

 

134 However, most POPs, being moderately to highly hydrophobic, partition strongly to 
 

 

135 river sediment. Due to the virtual absence of water column measurements or sediment- 
 

 

136 based toxicity data, predictions for the aqueous concentrations had to be made from 
 

 

137 Bohai region river sediment values. Measured concentrations in the Bohai Region were 

 
138 searched from the literature in the Web of Science TM database for English publications 

 

 

139 and CNKI database for Chinese publications. The partition theory can be used to 



estimate water concentrations from measured sediment concentration. Koc, the organic 140 

 

 

 

141 carbon-water partition coefficient is defined as 
 
 

142 
 

   ܭ
௧௧௧ ௧௧௧௧ 

௧௧௧௧ 

௧௧௧ 

௧௧௧ 

 
௦ ௦ ௧/௦ ௦ ௧௧௧ 

௧௧௧௧
 

௧௧௧௧௧ 

 

(Equation 1). 

 

143 And the mass of organic carbon in Equation 1 can be expressed as 
 

 

144 ݏ ௧    ∙ ܯ ݏݏ௧௧௧௧௧௧௧    (Equation 2). 
 

 

145 So the chemical concentration in water can be expressed as 
 

146 
 

௧௧௧௧௧௧௧ 

௧௧௧௧   

௧௧௧ 
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௧
௧ 

 

(Equation 3). 

 
 

147 In this study, prediction of water concentration was conducted for all chemicals 
 

 

148 except PFOS and PFOA, which had sufficient water measurements. The partition 
 

 

149 theory assumes equilibrium status on the surface of sediment. So the estimated water 
 

 

150 concentration was close to the pore water concentration, which was likely to be several 
 

 

151 times higher than the surface water concentration. The data collected in the previous 
 

 

152 studies (Zhou et al., 2006; Tan et al., 2009) was used to test the deviation between the 
 

 

153 predicted values and measured values. Compared with the pore water concentrations, 
 

 

154 the relative deviations were 0.53 for α-HCH, 0.56 for γ-HCH, 0.48 for p,p’-DDE, 0.02 
 

 

155 for p,p’-DDT, 0.02 for heptachlor and 4.1 for endrin. In comparison with the surface 
 

 

156 concentrations, the relative deviations were 7.7 for α-HCH, 8.0 for γ-HCH, 4.4 for p,p’- 
 

 

157 DDE,  -0.1  for  p,p’-DDT,  1.2  for  heptachlor and 3.9  for  endrin. Thus,  predicted 
 

 

158 concentrations may over-estimate water column levels, however, it could be considered 
 

 

159 better to err on the precautionary side. 
 

 
160 2.4. Effect data collection and selection 



 

161 Literature giving effect data for the selected POPs was largely obtained from the 
 

 

162 US EPA ECOTOX database, and when the dataset was not sufficient more literature 

 
163 was obtained using the Web of ScienceTM database and searched for via a series of key 

 

 

164 words (Donnachie et al., 2014; Donnachie et al., 2015). Ecotoxicity data for Chinese 
 

 

165 local freshwater species and standard test species were selected for each chemical. A 
 

 

166 range of effect measurements were present in the literature including LOEC, EC50, 
 

 

167 LC50, acute and chronic toxicity and all of these were collected. The effect data of 
 

 

168 LC50 and EC50, was preferred for each species in each study. The widest range of 
 

 

169 species and end-points were considered, to ensure that as representative a picture of 
 

 

170 species and possible effects as possible was obtained. Where several studies reported 
 

 

171 effect concentrations using the same end-point for one species then in this case only the 
 

 

172 lowest effect concentration for a single species was used. Thus, the final ecotoxicity 
 

 

173 dataset  allocated  a  single  value  for  a  single  species  for  a  particular  end-point. 
 

 

174 Alternative approaches might have been to use the median of the ecotoxicity dataset 
 

 

175 points for a single species, or simply used all the data, regardless of whether several of 
 

 

176 the points are for the same species/end-point. When a comparison was made to look at 
 

 

177 the impact on the overall median ecotoxicity value for a chemical it was found that 
 

 

178 these choices made very little difference. The value of only plotting one data point per 
 

 

179 end-point and species is it reveals clearly to the viewer the number of different species 
 

 

180 available for analysis and does not give undue weight to commonly studied species. 
 

 
181 2.5. Risk analysis 



 

182 Once the datasets for ecotoxicology and river measurements were considered 
 

 

183 sufficient, the information included in them could be plotted and the medians noted. 
 

 

184 The difference between these medians can be described as a risk ratio, which can be 
 

 

185 used to rank concern; the larger the value, the greater the concern (Equation 4). 
 
 

186     
௧௧

 
௧௧ 

 

(Equation 4) 

 
 

187 Where mW is the median river water concentration (µg/L) and mT is the median 
 

 

188 effect concentration (µg/L). 
 

 
189 3. Results and discussion 

 

 

190 3.1. Risk ranking: which chemicals posed the greatest threat to wildlife? 
 

 
191 The approach used was able to rank the 14 chemicals considered on the basis of 

 
192 risk (Fig. 2 and Fig. 3). The risk ratios ranged from 1×10-3 to 1×10-7, so this method 

 

 

193 suggests most wildlife would not be suffering unacceptable direct toxic effects via 
 

 

194 water exposure in rivers in the Bohai Region. Based on the median risk ratio, the PAHs 
 

 

195 group tended to be the POPs of greatest concern for the Bohai Region, with Flu, Phe, 

 
196 Nap and B[a]P ranking 1st, 2nd, 3rd  and 5th. These were followed in terms of risk by 

 
197 traditional pesticides including p,p’-DDE and γ-HCH ranking 4th  and 6th. The novel 

 
198 POPs including PFOA, HBCD and PFOS were further down ranking 7th, 9th and 12th. 

 

 

199 The other selected POPs including endrin, α-HCH, heptachlor and HCB had the lowest 
 

 

200 
 
 

201 

relative risk. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

202 
 

 

203 Figure 2. Risk ranking of 14 chemicals in rivers in Bohai Region. For each chemical 
 

 

204 both the: effect concentrations data (solid filled circles) and: water concentrations 
 

 

205 predicted from sediment measurements in Bohai Region (unfilled circles) are shown 
 

 

206 
 
 

207 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

208 

side by side. The large black circles are the median points. 

 
 

209 Figure 3. Risk ratio ranking of 14 chemicals based on comparison of the median 
 

 

210 
 
 

211 

ecotoxicity and median river values 



 

212 It is noted that for some of these chemicals there is an overlap, with some 
 

 

213 estimated/measured water values exceeding some of the levels where effects have been 
 

 

214 reported (Fig. 2). These include phenanthrene, DDE, benzo[a]pyrene, lindane, HBCD 
 

 

215 and PFOS. Lindane (γ-HCH) had the largest overlap according to the number of species 
 

 

216 involved. The insects/spiders were the most sensitive category, as well as crustaceans 
 

 

217 and fish (Fig. 4). Thus, from the available ecotoxicity information the possibility exists 
 

 

218 for lethal effects on insects such as mosquito (Culex sitiens) (Oh et al., 2013). Some 
 

 

219 crustaceans, such as ostracod (Cypris subglobosa), might receive adverse effects such 
 

 

220 as immobility (Cheng et al., 2011). Fish, such as walking catfish (Clarias batrachus) 
 

 

221 
 
 

222 

 
 
 
 
 
 
 
 
 
 
 
 

 

223 

and pool barb (Puntius sophore) may also experience lethal effects. 

 
 

224 Figure 4. Effect concentrations of different species groups (red) and environmental 
 

 

225 
 
 

226 

level (blue) of γ-HCH in rivers in Bohai Region. 

 

 
227 The  effects  data  can  be  disaggregated  into  algae,  fish,  insects/spiders  and 

 

 

228 invertebrates/molluscs/crustaceans to examine their different sensitivities to these POPs. 



 

229 Generally, fish were the most sensitive group of species to this group of POPs. 
 

 

230 Insects/spiders and molluscs/crustaceans/invertebrates were less sensitive to POPs with 
 

 

231 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

232 

algae being the least sensitive to these POPs (Fig. 5). 

 

 

233 Figure 5. Risk ranking of chemicals for different groups of species. (a) algae, (b) fish, 
 

 

234 (c)  insects/spiders,  (d)  molluscs/crustaceans/invertebrates.  X  means  not  enough 
 

 

235 
 
 

236 

ecotoxic data available for this chemical. 

 

 
237 3.2. Hot-spots: in which areas of the Bohai Region might POPs have the 

 

 

238 greatest impacts? 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
239 

 
 

240 
 
 

241 

Figure 6. Locations where the maximum concentrations were recorded. 

 

 
242 The Dagu Drainage River featured as a hot-spot where 5 chemicals were found at 

 

 

243 their highest concentrations (Fig. 6). It is 68 km long and is the primary drainage canal 
 

 

244 for Tianjin City, which is one of the four municipalities directly under the National 
 

 

245 Central Government and is an important industrial centre, with a population of 11 

 
246 million. The Dagu Drainage River, receives 0.8 million m3/day effluent from municipal 

 

 

247 wastewater treatment plants and industrial and agricultural wastewaters along its way 
 

 

248 to Bohai Sea (Li et al., 2011). In order to improve water quality, local government 
 

 

249 dredged the contaminated sediment in this waterbody in 2008 and 2009, but clearly the 
 

 

250 POPs  have  not  been  eliminated.  The  Yongding  New  River,  had  the  highest 
 

 

251 concentrations of p,p’-DDE and p,p’-DDT, is a similar artificial river located in 



 

252 Tianjin, which receives the river flows from Haihe River Basin and municipal and 
 

 

253 industrial wastewater along its way to Bohai Bay as well. 
 

 

254 3.3. Bioconcentration Factor (BCF) ranking of POPs 
 

 
255 Whether a chemical is bioaccumulative has been a traditional concern of chemicals 

 

 

256 in  risk  assessment.  A  judgement  on  whether  a  chemical  could  be  considered 
 

 

257 bioaccumulative  has  been  linked  to  the  bioconcentration  factor,  which  is  the 
 

 

258 partitioning of a chemical between the water phase and an aquatic organism. According 
 

 

259 to the European standard, a BCF value above 2000 is considered to be bioaccumulative 
 

 

260 and 5000 is considered very bioaccumulative (EC, 2006). 
 

 
261 The median BCF value of each POP was examined, using data from the US EPA 

 

 

262 Ecotox Database and additional literature (Fig. 7). Of the top ranked POPs in this study 
 

 

263 (Fig. 2 and 3) only p,p’-DDE would be considered bioaccumulative. This could be an 
 

 

264 argument for raising our concern over this chemical within the top five ranked POPs in 
 

 

265 
 
 

266 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

267 

the rivers of the Bohai region. 



 

268 Figure 7. Ranking of POPs based on median value of Bioconcentration Factor (BCF). 
 

 

269 A BCF value above 2000 is considered to be bioaccumulative and 5000 is considered 
 

 

270 
 
 

271 

very bioaccumulative. 

 

 
272 Local source of the PAHs 

 

 
273 PAHs can be introduced into the environment from both natural and anthropogenic 

 

 

274 processes including biomass burning, fossil fuel combustion, transportation emissions, 
 

 

275 and petroleum industries (Yunker et al., 2002). As for the individual research in the 
 

 

276 Bohai Region, the sources of PAHs in the environment were usually attributed by their 
 

 

277 characteristic isomer ratios, such as InP/(InP+BghiP), Flu/(Flu+Pyr), An/(An+Phe) and 
 

 

278 BaA/(BaA+Chr) (InP for indeno[1,2,3-cd]pyrene, BghiP for benzo[ghi]perylene, Flu 
 

 

279 for fluoranthene, Pyr for pyrene, An for anthracene, Phe for phenanthrene, BaA for 
 

 

280 benz[a]anthracene  and  Chr  for  chrysene).  The  ratios,  as  well  as  their  sources 
 

 

281 represented, varied in locations in these investigations, and even varied in sampling 
 

 

282 sites in individual campaign. For the rivers involved, biomass and coal combustion was 
 

 

283 the main source of PAHs in the rivers in the north of the Bohai Region such as the Dagu 
 

 

284 Drainage River (He et al., 2011), Yongdingxinhe River (Wang et al., 2015a) and Daliao 
 

 

285 River (Zheng et al., 2016). But in the south of the Bohai Region, the main source of 
 

 

286 PAHs was petroleum and its combustion in the watersheds such as the Yellow River 
 

 

287 (Wang et al., 2015a) and the Tuhai-Majia River (Liu et al., 2012). Previous studies on 
 

 

288 PAHs in the Bohai Rim indicated that their origin was a mix of combustion and 



 

289 petroleum production (Zhang  et  al.,  2009;  Jiao,  2012;  Jiao  et  al.,  2013).  Rapid 
 

 

290 industrialization  and  urbanization  in  the  Bohai  Region  increased  the  fossil  fuel 
 

 

291 consumption due to power generation, heating supply, industrial and commercial 
 

 

292 activities and residents. In 2014, energy consumption in these four provinces was 932- 
 

 

293 million-ton standard coal equivalent including coal, petroleum and natural gas (Hebei 
 

 

294 Government, 2015; Liaoning Statistical Bureau, 2015; Shandong Statistical Bureau, 
 

 

295 2015; Tianjin Statistical Bureau, 2015), which amounted to 22% of the total energy 
 

 

296 consumption of China. In addition to biomass and coal combustion, the petroleum 
 

 

297 industry may also be a direct source of PAHs from oilfield operations such as in Shengli 
 

 

298 Oilfield, Jinzhou Oilfield and other oilfield drilling platforms in the Bohai Region. 
 

 
299 Local source of pesticides 

 

 
300 The compound p,p’-DDE is a degradation product of DDT, a pesticide which had 

 

 

301 been widely used globally. DDTs had been produced in China since the 1950s, and 
 

 

302 despite the the official ban in 1983 the use of DDTs in agriculture had not been 
 

 

303 stopped until 2000 due to the use of pesticide dicofol with high impurity of DDTs 
 

 

304 compounds (Tao et al., 2007; Liu et al., 2008). The ratios such as (DDE+DDD)/DDTs, 
 

 

305 o,p’-DDT/p,p’-DDT were usually used to distinguish the sources of DDTs. These ratios 
 

 

306 indicated that the DDTs in the rivers were the legacy from historical production and use 
 

 

307 (Li et al., 2013; Gao et al., 2015), especially the use of the technical DDT before 1987 
 

 

308 and the use of dicofol after 1987 in the Daling River (Wang et al., 2013) 



 

309 Two types of HCHs had been used in China as pesticides, technical HCHs and 
 

 

310 lindane. Technical HCHs (18% of  γ-HCH) was used from the 1950s to 1983, while 
 

 

311 lindane (99.9% of  γ -HCH) in the 1990s. The ratio  α -HCH/ γ -HCH indicated the 
 

 

312 historical use of both technical HCHs and lindane in the Haihe River and the Daling 
 

 

313 River (Li et al., 2013; Wang et al., 2013). 
 

 
314 Local sources of flame retardants and per-fluorinated compounds 

 

 
315 HBCDs are used as flame retardant in extruded/expanded polystyrene insulation 

 

 

316 boards, textile, and electric/electronic products. Due to the limited effect data for the 
 

 

317 individual isomers for α-, β- and γ-HBCD, they were considered as a whole technical 
 

 

318 mixture. PFOS and PFOA, known as PFASs are widely used in polymer, surfactants, 
 

 

319 lubricants for their surface activity and heat/acid resistance. The biggest HBCD and 
 

 

320 PFASs manufacturers in China are located in the Bohai Rim and support the whole 
 

 

321 industrial chain in this region. Spatial analysis of PFAAs levels in the samples taken 
 

 

322 from the rivers and producers indicated that the fluoropolymer industries along the 
 

 

323 Xiaoqing River and the Daling River were the major sources of PFOA and PFOS in the 
 

 

324 rivers in the Bohai Region (Wang et al., 2014; Meng et al., 2015; Zhu et al., 2015). The 
 

 

325 spatial analysis and isomer ratio of γ-HBCD/α-HBCD indicated that the manufacturing 
 

 

326 was the major source of HBCD in the environment (Li et al., 2012; Zhang et al., 2016). 
 

 

327 Extremely high levels of HBCD and PFASs in the world had been found in the 
 

 

328 environment in the Bohai Region due to their high production and use. 



 

329 Of the other chemicals examined, endrin, heptachlor and HCB presented much 
 

 

330 lower risks. Endrin has not been produced in China and the production of heptachlor 
 

 

331 
 
 

332 

and HCB and their application in agriculture were banned in 1983. 

 

 
333 3.4. Uncertainties and limitations of the study 

 

 
334 This study can only be as strong as the existing monitoring and ecotoxicity data 

 

 

335 allows it to be. It may be that some other POPs, so far not measured, may have a much 
 

 

336 higher risk ranking to the compounds studied here. Similarly, a wider, more systematic 
 

 

337 monitoring programme may reveal higher concentrations for some chemicals in the 
 

 

338 Bohai Region than reported so far. The ecotoxicity database is driven by water exposure 
 

 

339 studies, yet most POPs measurements are not from the water column but from the river 
 

 

340 bed-sediments. It is necessary to predict the water concentration and the method used 
 

 

341 is  most  likely  to  several  times  overestimate,  rather  than  underestimate,  this 
 

 

342 concentration. 
 

 
343 Finally, for some POPs the ecotoxicity database is still not as wide or complete as 

 

 

344 would be desirable. For traditional POPs such as γ-HCH and p,p’-DDE, abundant 
 

 

345 effects data could be found in EPA ECOTOX database. But for novel POPs such as 
 

 

346 HBCD and PFOS/PFOA, very limited ecotoxicity data was available, especially for 
 

 

347 individual HBCD isomers. 
 

 
348 Conclusions 



 

349 From this group of POPs, the PAHs congeners posed the greatest risk for aquatic 
 

 

350 wildlife in rivers around the Bohai Sea, followed by p,p’-DDE and γ-HCH. However, 
 

 

351 there was still more than 3-orders of magnitude distance between the median ecotox 
 

 

352 and median environmental concentrations suggesting the risks to wildlife through water 
 

 

353 exposure were not large, although the potential for these chemicals to bioconcentrate 
 

 

354 must be acknowledged. It was observed that there were locations where some water 
 

 

355 concentrations, for example for lindane, exceeded effect levels for some of the aquatic 
 

 

356 wildlife. The greatest impacts of POPs on wildlife would be expected in the Dagu 
 

 

357 Drainage River in Tianjin. The results suggest that regarding threats from POPs to the 
 

 

358 environment in the Bohai Region the greatest efforts should be in reducing fossil fuel 
 

 

359 combustion (to lower PAHs). The highly bioaccumulative metabolite of DDT, p,p’- 
 

 

360 DDE, was also flagged up as high risk but has now been controlled by the Government, 
 

 

361 so its environmental concentrations are expected to reduce in future. It was somewhat 
 

 

362 encouraging that some of the emerging POPs such as PFOS, PFOA and HBCD were 
 

 

363 not posing the highest risks. 
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