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ABSTRACT: 

 

Landslides are hazardous events with often disastrous consequences. Monitoring landslides with observations of high spatio-temporal 

resolution can help mitigate such hazards. Mini unmanned aerial vehicles (UAVs) complemented by structure-from-motion (SfM) 

photogrammetry and modern per-pixel image matching algorithms can deliver a time-series of landslide elevation models in an 

automated and inexpensive way. This research investigates the potential of a mini UAV, equipped with a Panasonic Lumix DMC-LX5 

compact camera, to provide surface deformations at acceptable levels of accuracy for landslide assessment. The study adopts a self-

calibrating bundle adjustment-SfM pipeline using ground control points (GCPs). It evaluates misalignment biases and unresolved 

systematic errors that are transferred through the SfM process into the derived elevation models. To cross-validate the research outputs, 

results are compared to benchmark observations obtained by standard surveying techniques. The data is collected with 6 cm ground 

sample distance (GSD) and is shown to achieve planimetric and vertical accuracy of a few centimetres at independent check points 

(ICPs). The co-registration error of the generated elevation models is also examined in areas of stable terrain. Through this error 

assessment, the study estimates that the vertical sensitivity to real terrain change of the tested landslide is equal to 9 cm.  

 

 

1. INTRODUCTION 

1.1 Background 

Landslides represent complex and dynamic phenomena that have 

the potential to impact disastrously on society. Reliable 

approaches to interpret, monitor and mitigate landslide hazards 

are therefore crucial. There are various categories of landslides 

relating to different material types, movement mechanisms and 

velocities (Cruden and Varnes, 1996). Selecting the most 

appropriate monitoring approach, and determining the necessary 

sensitivity for detecting failure is therefore an important 

consideration. 

 

Traditionally, ground-based geotechnical and geophysical 

investigations have been used to monitor the internal structure of 

landslides. However, because most geotechnical techniques 

provide observations at discrete locations, they yield low spatial 

resolution (Merritt et al., 2014). Some geophysical methods offer 

higher resolution, providing transect based observations (e.g. 

Electrical Resistivity Tomography). However, these methods 

often provide indirect information (e.g. physical property 

information) that requires cross-validation from benchmark 

observations obtained by other techniques (Chambers et al., 

2011; Merritt et al., 2014). Airborne laser scanning (ALS) and 

terrestrial laser scanning (TLS) provide high density point clouds 

enabling generation of high quality digital elevation models 

(DEMs) (Ackermann, 1999; Pirotti et al., 2013). Nevertheless, 

both techniques are relatively costly and, in the case of TLS, 

occlusions can occur due to oblique incidence angles (Eisenbeiß, 

2009). Mini UAVs fitted with off-the-shelf compact cameras 

have recently become attractive for many photogrammetric 

applications because they offer time-efficient and cost-effective 
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solutions compared to traditional aerial photogrammetric 

surveys, thereby enabling capture at high spatio-temporal 

resolution. Also, the recent development of per-pixel image 

matching algorithms (e.g. stereo semi-global matching algorithm 

Hirschmüller (2008)), utilised in SfM approaches (Snavely et al., 

2008), facilitate the automatic generation of dense point clouds 

from overlapping imagery (Remondino et al., 2014). Overall, 

UAV-derived multi-temporal observations based on a SfM 

workflow can complement contemporary ground-based 

investigations and enhance the interpretation of landslide 

activity. 

 

1.2 Suitability of UAVs for monitoring purposes 

Niethammer et al. (2012) monitored a landslide in the French 

Alps using a mini quad-rotor UAV, equipped with a Praktica 

Luxmedia digital camera, from approximately 200 m altitude. 

They generated a DEM of 6 cm GSD using a SfM approach, 

adequate to identify fine surface fissures of 10 cm width that 

could not be detected in conventional airborne imagery. In a 

similar study, d'Oleire-Oltmanns et al. (2012) extracted a DEM 

of 5 cm resolution using a mini fixed-wing UAV, flying at 85 m 

altitude with a Panasonic Lumix GF1 digital camera to monitor 

gully development in Morocco. They achieved a 3D accuracy of 

a few centimetres at ICPs. Both of these studies illustrated that 

mini-UAV systems equipped with off-the-shelf compact digital 

cameras, complemented by the SfM workflow, are capable of 

delivering DEMs with a resolution and accuracy comparable to 

TLS for monitoring applications (Eltner et al., 2015). 

 

However, recent studies have revealed the presence of systematic 

errors in the automatic SfM workflow (Eltner and Schneider, 

2015; Harwin et al., 2015; James and Robson, 2014; Sieberth et 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B5, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B5-895-2016

 
895



al., 2014). These errors have been found to originate from various 

sources such as low overlap, blurry images, flight configuration, 

number and distribution of GCPs, as well as the various 

geometric camera models used in the different SfM software. For 

example, low overlap might yield mismatches during the initial 

image alignment step of the SfM pipeline and generate 

discontinuities in the reconstructed dense point cloud. This, in 

turn, can destabilise the bundle adjustment solution and errors 

can propagate into the DEMs (Harwin et al., 2015). The higher 

the image overlap the greater the number of optical rays that 

intersect an object point, thereby attaining increased redundancy 

in point determination (Haala and Rothermel, 2012). Blurred 

images are caused by wind, sudden turbulence and forward 

motion of the UAV (Sieberth et al., 2014). As Sieberth et al. 

(2014) noted, image blur deteriorates the image sharpness which 

might influence the camera calibration results when the 

automatic SfM pipeline is applied. James and Robson (2014) 

demonstrated that parallel flight lines can cause vertical 

systematic errors with a bowl-shape pattern, due to the poor 

imaging network geometry. According to their analysis, these 

errors can be significantly reduced when convergent images are 

acquired or flight lines are flown in opposing directions. The 

same study also highlighted that evenly distributed GCPs should 

be included into the bundle adjustment in order to reduce the 

aforementioned systematic patterns. Furthermore, Eltner and 

Schneider (2015) investigated Agisoft PhotoScan, a popular 

commercial SfM software, and demonstrated that the geometric 

camera model was unable to entirely resolve the lens distortion 

of a Panasonic Lumix DMC-LX3 camera. This was found to be 

particularly relevant in the case of low-cost cameras and in the 

absence of GCPs. The unresolved distortion might form bowl-

shape systematic patterns that were recognisable either in the 

undistorted images (Eltner and Schneider, 2015) or in the vertical 

error distributions at ICPs (James and Robson, 2014). 

 

Apart from systematic errors in the SfM workflow, other recent 

studies have investigated noise caused by vegetation (Javernick 

et al., 2014; Tonkin et al., 2014). Tonkin et al. (2014) reported 

that the elevation differences between observations obtained with 

SfM and a total station were higher in areas vegetated with 

heather than in short grassland. Javernick et al. (2014) identified 

regions with vegetation height higher than 0.40 m in a SfM-

derived DEM. They firstly generated a 0.50 m DEM resolution 

by calculating the minimum elevation of each pixel. Then, they 

degraded the original spatial resolution of the SfM-derived dense 

point cloud, to create different DEMs of coarser resolution and 

subtracted them from the initial DEM. In this way, they mapped 

the regions of vegetation noise. However this approach is likely 

to smooth regions of local surface variations.   

 

In the context of landslide monitoring, it is crucial to account for 

all error sources in order to reliably estimate the real terrain 

change. Therefore, the research presented in this paper addresses 

the aforementioned systematic errors that are propagated into the 

SfM-derived elevation differences through the self-calibrating 

bundle adjustment process. In addition, vegetation variations, 

which also influence elevation differences, are also considered. 

As a result of the analysis, vertical measurement sensitivity 

(accuracy) is quantified for a real-world landslide over a 

monitoring period of two years. 

 

2. SYSTEM CHARACTERISTICS AND STUDY AREA 

2.1 UAV system 

A Newcastle University-owned mini fixed-wing UAV (Quest 

UAV 300) was used for all data collection in this project. This 

UAV has a maximum payload of 5 kg and a flight duration of 

approximately 15 minutes utilising a Lithium polymer battery. 

The UAV platform is equipped with a compact digital camera (as 

detailed below), an on-board single-frequency Global Navigation 

Satellite System (GNSS) receiver and a consumer-grade Micro-

Electro Mechanical System-Inertial Measurement Unit (MEMS-

IMU). It also contains a micro-processor with autopilot software 

that interprets predefined flight mission parameters (a series of 

3D way-points that describe the flight path and the camera 

exposure time) enabling the UAV to fly autonomously. 

 

The on-board camera is a Panasonic Lumix DMC-LX5 with a 5.1 

mm nominal focal length Leica lens for visible image acquisition. 

The camera has a 1/1.63" (8.07 x 5.56 mm) CCD sensor with 2 x 

2μm pixel size, creating an image of 3648 x 2736 pixels. It is 

mounted on gel, for vibration damping, and fitted in the UAV 

body. A simple gimbal, attached to the UAV body, compensates 

for the aircraft's movements along the roll axis enabling the 

camera to capture nadir images. 

 

2.2 Study area 

The landslide study area is located at Hollin Hill (54º 6' 38.90'' 

N, 0º 57' 36.84'' W), North Yorkshire, UK (Figure 1), and is a 

British Geological Survey (BGS) landslide observatory site. The 

site occupies farmland used for rough grazing and is mainly 

vegetated with short grass, and occasional trees and shrubs. The 

study area extends approximately 290 m E-W and 230 m N-S. It 

has an average slope of 12º and a 50 m elevation difference from 

N-S. 

 

 

Figure 1. Geomorphological map of Hollin Hill landslide. Inset 

map locates the site within the UK (Merritt et al., 2014).  

Chambers et al. (2011) characterised the Hollin Hill landslide as 

a very slow moving multiple earth slide-earth flow with an 

average displacement rate of 2 m/yr. Investigations by the BGS 

identified shallow rotational movements of weak materials at the 

upper parts of the slope and translational movements at the lower 

parts of the slope. Many scarps and cracks have emerged at the 

top, while the sliding material towards the bottom of the slope 

has formed four pro-grading lobes, as illustrated in Figure 1. 

 

Figure 1 presents an overview of geomorphological landslide 

features, such as convex and concave breaks of slope, as well as 

the back scarp at the top of the landslide. These features were 

delineated by Merritt et al. (2014) from an ALS DEM acquired 

in 2011. The shaded relief of the ALS DEM is displayed in the 

background of the geomorphological map. Surface and 
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subsurface movements have been monitored by BGS with 

multiple geophysical, geotechnical and ground-based RTK-

GNSS observations (Chambers et al., 2011; Gunn et al., 2013). 

This active landslide provides an ideal study area to investigate 

the potential of the UAV approach for assessing multi-temporal 

landslide deformations. 

 

3. METHODOLOGY AND DATA ANALYSIS 

3.1 Fieldwork and image acquisition  

Six field campaigns were carried out spanning a period of almost 

two years, as listed in Table 1. During the fieldwork the following 

tasks were performed: (1) GNSS base station was established on 

stable terrain in an adjacent field and observed in GNSS static 

mode for at least six hours, which delivered 1 cm planimetric and 

2 cm vertical absolute accuracy; (2) circular targets of 0.40 m 

diameter were evenly distributed over the landslide and were 

surveyed in GNSS rapid static mode (three-minute observations), 

which delivered 3D accuracy at mm-level relative to the GNSS 

base station; (3) visible UAV imagery was collected at the 

specification described below; and (4) spot heights of 

characteristic concave/convex landslide features were 

topographically surveyed using total station and/or rapid static 

GNSS for validation purposes. Due to time limitations, 

topographic surveying in (4) was only performed at four epochs, 

in December 2014, March 2015, June 2015 and February 2016. 

 

The flight configuration and error statistics, as calculated in 

PhotoScan, are reported in Table 1 for the six epochs.  
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05/2014 116 15 2 3.8 109 0.5 1.9 2.3 

12/2014 197 5 5 3.4 108 0.7 1.4 1.9 

03/2015 315 5 6 3.0 87 0.7 1.3 1.6 

06/2015 382 5 13 3.1 87 0.4 1.9 3.1 

09/2015 396 5 15 2.8 83 0.4 3.8 2.4 

02/2016 466 5 15 2.8 90 0.7 1.2 1.9 

Table 1. Flight parameters and data processing details for six 

field campaigns at the Hollin Hill landslide. 

 

For the first three campaigns listed in Table 1, the camera was set 

in shutter priority mode with a shutter speed of 1/800 s, at ISO 

400 and varying aperture. An exposure interval of 2.5 seconds 

enabled image capture with a standard 60% fore/aft and 40% 

lateral overlap, assuming a constant UAV speed of 20 m/s. After 

gaining a better understanding of the UAV’s operational 

capabilities under different wind conditions, the settings for the 

last three campaigns were changed. In particular, the exposure 

interval was set to 2 seconds and the lateral overlap increased to 

70% to enable better overlapping coverage. The camera was set 

up with a fixed shutter speed of 1/800 s to decrease image 

blurring, ISO 100 to ensure that images were captured with low 

noise (Sieberth et al., 2014) and a fixed aperture of f/2 to ensure 

that sufficient light reached the sensor. Further, in the final three 

campaigns, flight lines in opposing directions were also added, 

according to the recommendations of James and Robson (2014), 

in order to achieve a better flight configuration and minimise 

systematic errors.  

3.2 DEM generation and elevation difference determination 

3.2.1 Image alignment: Firstly, blurred and oblique images 

were manually excluded from processing. Corresponding points 

were detected across the remaining images to enable multiple 

stereo-pair reconstruction. Bundle adjustment solved for (a) the 

interior orientation camera parameters (IOP), i.e. focal length, 

sensor size, radial and tangential distortion coefficients for the 

entire photogrammetric block, and (b) the relative orientation and 

translation of each image (Eltner and Schneider, 2015; 

Remondino et al., 2014). The image alignment step was 

undertaken in Agisoft PhotoScan (version 1.2.3) (PhotoScan, 

2016).  

Typically, in PhotoScan, an initial value for the focal length is 

automatically extracted from the exchangeable image file format 

(EXIF) information of the acquired images. For this study, a 

separate indoor calibration was performed in September 2015 

prior to that month’s flight. An indoor calibration test field was 

established using calibration targets at several depths over a 6 m 

range, the positions of which were precisely surveyed using a 

total station. Three images at 0º and ±90º roll angles were 

captured from four different positions. The camera calibration 

was performed in PhotoScan and the determined parameters are 

shown in Table 2. The indoor calibration provided approximate 

values for the camera's IOP that were more relevant than the 

values extracted from the EXIF information. These values were 

then refined through self-calibration in the SfM pipeline. 

 

 Determined 

IOP  

f [mm] 5.101 

Sensor size [mm] 7.18 x 5.38 

k1 2.46 x 10-3 

k2 -5.74 x 10-5 

k3 1.61 x 10-6 

p1 2.95 x 10-4 

p2 1.07 x 10-4 

Table 2. Parameters of indoor camera calibration.  

 

3.2.2 Georeferencing: GCPs were utilised to scale and 

orientate the corresponding points (tie points) into a fixed 

reference frame (Ordnance Survey Great Britain 1936 

(OSGB36)) in PhotoScan. The GCPs were used as external 

constraints, in combination with the inner constraints (i.e. 

detected corresponding points), thereby allowing the self-

calibrating bundle adjustment to converge to a stable solution that 

minimises the reprojection errors (Nex and Remondino, 2014). 

These quantify the pixel differences between the initially 

detected corresponding points and those estimated and back-

projected into the images through the SfM pipeline (Haala and 

Rothermel, 2012). Corresponding points with reprojection errors 

greater than 1.5 pixels were automatically removed to optimise 

the solution. Image alignment and georeferencing resulted in sub-

pixel mean reprojection errors for all epochs, as summarised in 

Table 1. 

 

3.2.3.   Dense point cloud reconstruction: Disparity per image 

pair was computed based on the known epipolar geometry of the 

UAV photogrammetric block. The disparity corresponds to the 

object's height perception from overlapping stereo pairs 

(Remondino et al., 2014). In a stereo pair, neighbouring pixels 

are expected to have similar disparities (Haala and Rothermel, 

2012). According to Remondino et al. (2014), PhotoScan 

implements a method which is similar to the stereo semi-global 

matching algorithm (Hirschmüller, 2008). This searches for 

every single pixel along the epipolar line to find its potential 
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correspondent disparity, by recursively assigning costs based on 

pixel value differences of its nearest neighbours (Remondino et 

al., 2014). The matched pixels are then triangulated to form the 

resulting 3D dense point cloud. The assigned cost serves as a 

smoothing filter for the surface representation. PhotoScan offers 

different filtering options such as mild, moderate and aggressive. 

According to the PhotoScan instruction manual, the mild option 

maintains minor surface details, the aggressive option filters out 

these details and the moderate option offers an intermediate 

smoothing result. Figure 2 illustrates a section through a 

reconstructed dense point cloud located across a shrub with 

height lower than 0.50 m. The aggressive filter option was 

adopted because it was seen (as evidenced in Figure 2) to remove 

points from such low vegetated areas. However, points that 

represented higher vegetation and various objects (such as 

monitoring sensors, fences, sheep, people and cars) were not 

entirely filtered out. Consequently, the ground classification 

algorithm in TerraSolid TerraScan (TerraScan, 2016) was also 

utilised to further clean the reconstructed dense point cloud.  

 

 

Figure 2. Profile of a dense point cloud reconstructed with three 

different filtering options; mild, moderate and aggressive. Inset 
orthoimage locates the profile within the study area. 

3.2.4.   Interpolation and elevation difference 

determination: The cleaned dense point cloud was imported to 

the Orientation and Processing of Airborne Laser Scanning data 

(OPALS) software (Pfeifer et al., 2014), to generate a raster 

elevation model. This used the moving planes approach, which 

fits the best tilted plane to 15 nearest neighbouring points, by 

minimising the vertical distance in a least-squares sense. In this 

manner, the elevation of a grid point with a 6 cm spatial 

resolution was calculated. This interpolation technique was 

adopted because it best accounts for the relatively extreme local 

surface variations. Also, the 6 cm DEM resolution was calculated 

at approximately 2xGSD (see Table 1) to ensure that a continuous 

surface without pixel voids could be generated for all epochs. 

Each DEM-epoch was subsequently subtracted from the 

February 2016 DEM on a pixel-by pixel basis in order to 

determine elevation differences.  

3.3 Accuracy assessment and vertical sensitivity 

It is important to check the stability of the self-calibrating bundle 

adjustment solution across epochs. To achieve this, radial 

distortion curves were computed for all epochs using the Brown 

(1971) model. The curves were derived using the adjusted 

distortion coefficients determined through the SfM pipeline. The 

distortion curves were compared to one another and also against 

the distortion curve derived from the indoor calibration. 

 

After computing the DEM differences as described in Section 

3.2.4, errors from various sources (as described in Section 1) may 

mask real topographic change. An accuracy assessment was 

performed to determine how these errors influenced the outputs. 

PhotoScan was used to compute residuals at all ICPs, which 

expresses the differences in coordinates between GNSS-

surveyed and SfM derived positions. The planimetric vectors at 

ICPs were also calculated. For May 2014, December 2014 and 

March 2015 epochs the RMSEs were calculated for both GCPs 

and ICPs due to the limited number of available ICPs. 

Furthermore, to ensure that the generated DEMs were correctly 

registered vertically with each other, the elevations of the 

interpolated grid points within areas of stable and flat terrain were 

compared for each epoch against the February 2016 DEM. A 162 

m2 area was extracted from the vehicle track near the toe of the 

slope where only bare ground exists (see Figure 1). The 

elevations of the interpolated grid points from this area were 

extracted from the SfM-derived DEMs. The elevation differences 

per pair, in terms of the mean, standard deviation and RMSE 

statistics, were calculated using Cloud Compare (CloudCompare, 

2016). 

 

The vertical accuracy was also assessed for each epoch using an 

independent set of observations. These observations were 

obtained using GNSS and total station instruments to measure 

spot heights. Vertical coordinates for each XY spot height 

location were extracted from the generated DEMs through 

bilinear interpolation of adjacent cells. Least-squares linear 

regression was applied to inspect the relationship between the 

observed and estimated elevations at the spot heights.  

 

The vertical sensitivity indicates the threshold of detectable 

elevation change that is possible given the adopted methodology 

and associated errors propagated into the generated DEMs. In 

order to derive the threshold, a classical error propagation 

approach was applied to the elevation differences (Wolf and 

Ghilani, 1997) and a 99% confidence level applied, as described 

in Equation 1. 

 

                𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑡√𝜎𝐷𝑇𝑀𝑖
2 + 𝜎𝐷𝑇𝑀𝐹𝑒𝑏16

2     (1) 

 

where  t = 2.96, critical value for 99% confidence level; 

 σDEMi is the standard deviation of DEM at epoch i; 

 σDEMFeb16 is the standard deviation of February 2016 DEM. 

 

The standard deviations for DEMs at each epoch were computed 

in OPALS. The moving planes approach allowed the calculation 

of standard deviation for each grid point of the SfM-derived 

DEM, according to the residuals of the best fit plane through the 

neighbouring points. The error propagation was then applied for 

each grid point and the standard deviation of each elevation 

difference was computed creating one raster per pair. The 

maximum value of this raster was chosen as the standard 

deviation of the elevation differences between two epochs. 

 

 

4. RESULTS AND DISCUSSION 

4.1  Adjusted calibration 

The camera’s radial distortion curves for each epoch, calculated 

as described in Section 3.3, are plotted in Figures 3 and 4. The 

February 2016 curve was chosen as the reference for comparison. 

The confidence level was set at ± 3σ from the February 2016 

curve, as depicted in the grey zone in Figures 3 and 4. The ± 3σ 

was calculated as ± 3x the pixel size, i.e. ± 6 μm. The radial 

distortion curves of in-flight calibration do not exceed these 

limits, showing a general consistency across epochs.  
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The May 2014 and December 2014 curves produced the highest 

difference (approximately 11 μm) to the Feb 2016 reference 

curve at the outer corners of the image. This corresponds to 5.5 

pixels or 33 cm ground distance for a DEM of 6 cm resolution. 

The May 2014 curve starts to deviate from the reference with 

approximately 1 pixel difference, at a radial distance smaller than 

2 mm. 

 

 

Figure 3. Radial distortion curves. The grey zone indicates the 

confidence level of ± 3σ. 

Even though the same software was used for both indoor and in-

flight calibration, the radial distortion curves for all epochs 

significantly deviate from the indoor radial distortion curve after 

4.3 mm radial distance (Figure 4). This is mainly because the 

indoor calibration was carried out under a different scenario with 

different camera settings. 

 

 

Figure 4. Detail of the radial distortion curves at the outer corner 

of the image. 

As a result of this assessment, there is clear evidence that for the 

first three campaigns (all performed for imaging networks with 

low percentage overlap) the distortion curves deviate more from 

the reference than for the remaining curves of flights with a better 

overlapping network of images. Apart from the different imaging 

networks, the different camera settings (as described in Section 

3.1) also influences these results.  

 

4.2 Planimetric and vertical error assessment 

Planimetric and vertical RMSEs per epoch, shown in Table 1, 

vary from 1.2 cm to 3.8 cm. The vertical RMSEs were 

interpolated with a bi-cubic interpolation to form a continuous 

error surface, as illustrated in Figure 5. This shows the vertical 

error distribution across the study area. It is expected that the 

error should be close to zero creating a randomly distributed 

pattern of errors. Due to the different error sources mentioned in 

Section 1, vertical errors were observed particularly for the first 

campaign (see Figure 5a), most notably over regions of low 

overlap in the north-east corner of the site. For the remaining 

campaigns the magnitude of the vertical error was relatively 

small by comparison, although June 2015 (Figure 5d) displayed 

higher errors across the north of the site. This is likely to have 

originated from strong gusts of wind which destabilised the UAV 

while it was turning from east to south creating blurred images 

over that region. As mentioned in Section 1, the use of such 

blurred images might yield vertical deformations (James and 

Robson, 2014; Sieberth et al., 2014). 

 

Planimetric error vectors at ICPs are also included in Figure 5. 

As illustrated, no general systematic directional pattern was 

observed at ICPs. This indicates that a reliable solution was 

achieved in the horizontal plane for all epochs. There are, 

however, a few planimetric vectors of comparatively higher 

magnitude, for example an 8.8 cm planimetric error in September 

2015 at ICP 6 (Figure 5e). This error might have originated from 

a few blurred images acquired over that region which degraded 

the image resolution (Sieberth et al., 2014). Even though the 

extremely blurred images were excluded at the beginning of the 

workflow, a few still remained and could not be removed as this 

would have resulted in insufficient overlapping images. There is 

also an 11.5 cm planimetric error in May 2014 at ICP 9 (Figure 

5a). This ICP is visible only from two images due to poor 

imaging network over that region. The position of ICP 9 was 

estimated with low redundancy and this caused the high 

planimetric error.  

 

To alleviate bowl-shape deformations, James and Robson (2014) 

recommended improvements to the imaging network by 

including convergent-off-nadir imagery and utilising overlapping 

flight strips flown in opposing directions. In this study, the first 

recommendation cannot be applied because of the fixed-wing 

UAV design – unlike multi-rotor platforms the camera pointing 

direction cannot be adjusted to collect oblique imagery. 

However, by including flight strips in opposing directions, it was 

possible to externally control the bundle adjustment with only 

five GCPs and still produce DEMs with relatively low vertical 

deformations, as evidenced by the final three campaigns (Figure 

5d, 5e and 5f). 

 

4.3 Co-registration evaluation and cross-validation 

Statistical measures of elevation differences over stable terrain, 

(the vehicle track) are described in Table 3.  

 

 

 

Epoch pair 

 

Mean 

difference  

[cm] 

 

Standard 

Deviation 

[cm] 

 

RMSE  

[cm] 

February 2016-May 2014 4.6 3.0 5.5 
February 2016-December 2014 2.7 2.1 3.4 

February 2016-March 2015 2.8 1.2 3.0 

February 2016-June 2015 5.4 1.8 5.7 

February 2016-September 2015 3.6 1.4 3.8 

Table 3. Statistical measures to evaluate DEM pair co-

registration over 162 m2 area of stable terrain.  

The results of Table 3 demonstrate that the DEMs were 

reasonably well co-registered to one another, with overall RMSE 

values lower than 6 cm. This error also agrees with the relative 

errors reported in the recent study by Turner et al. (2015) which 

monitored a landslide using the SfM approach. The cross-

validation, performed with independent observations at spot 

heights for four of the six campaigns, is summarised in Table 4. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B5, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B5-895-2016

 
899



 
Figure 5. Planimetric and vertical RMSE errors at ICPs in (a) May 2014, (b) December 2014, (c) March 2015, (d) June 2015, (e) 

September 2015 and (f) February 2016 campaigns. For (a), (b) and (c) the errors are calculated for both GCPs and ICPs due to a 

relatively limited number of ICPs (see Table 1).  
 

RMSE vertical errors in the range of 10 to 13 cm were achieved, 

which is approximately double the GSD. The statistical values of 

the first two campaigns were slightly poorer than the final two. 

This is most likely due to inferior image network configurations. 

 

 
Campaign 

Number of 
points 

Mean  
[cm] 

Standard 

Deviation 

[cm] 

RMSE 
[cm] 

December 2014 48 4.7 10.0 11.0 

March 2015 52 -11.1 7.9 13.1 

June 2015 98 -5.0 9.0 10.2 

February 2016 65 5.8 8.7 10.4 

Table 4. Comparison of the SfM derived elevations against 

independently observed elevations at sample points.  

The regression analysis (Figure 6) demonstrated that there were 

no major outliers present, and no systematic offset between the 

reference and SfM validation observations for the February 2016 

campaign. The analysis of the three remaining campaigns also 

provided a similar pattern, with close to 1:1 linear relationship.  

 

 

Figure 6. Regression analysis between SfM derived and observed 

elevations at validation points for Feb16 image acquisition. 

 

4.4 Vertical sensitivity and elevation differences 

The vertical sensitivity was calculated using Equation (1) for 

each elevation difference pair. The standard deviation for all pairs 

varied between ± 0.1 cm and ± 3.0 cm. By applying the 99% 

confidence level, the maximum value of vertical sensitivity is ± 

9.0 cm. As a result, elevation changes less than ± 9.0 cm cannot 

be assumed to represent real surface deformations, being below 

the noise level of co-registration and other errors, as discussed 

throughout the paper. 

 

The elevation differences per pair are illustrated in Figure 7. The 

eastern and western lobes, as well as the back scarp, constitute 

the most active parts of the landslide, as depicted in Figure 8b. 

The surface changes occurred predominantly along the convex 

and concave geomorphological features (see Figures 1 and 7 for 

comparison). Part of the western lobe has collapsed (24m2 in 

extent), sliding downwards, and created a dramatic change of -

0.70 m maximum ground loss and a + 0.50 m maximum ground 

accumulation within the last two years. The failure appears to 

have occurred between the September 2015 and February 2016 

epochs. As far as the eastern lobe is concerned, ground material 

has continuously accumulated at the toe of the eastern lobe, 

which appears to have surged forward post-May 2014. Here, the 

maximum observed positive elevation change was + 0.70 m, 

between February 2016 and May 2014. Over the duration of the 

final three campaigns the surface of the eastern lobe’s toe has not 

significantly changed compared to other epochs. At the back 

scarp a maximum ground subsidence of approximately - 0.20 m 

was observed at the top of the slope, whereas material sliding 

down-slope created a maximum elevation increase of 

approximately + 0.30 m over the observation period.  

 

Among all pairs, February 2016-December 2014 (Figure 7b) 

produced the clearest picture of landslide elevation differences 

due to minimal seasonal variations during winter. Even though a 

filtering process for removing vegetation influences was 

performed, elevation differences are apparent around the trees 

and hedgerows.   
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Figure 7. Elevation differences between epoch pairs; (a) February 2016-May 2014, (b) February 2016-December 2014, (c) February 

2016-March 2015, (d) February 2016-June 2015, (e) February 2016-September 2015. The orthomosaic of the February 2016 epoch, 
constructed in PhotoScan, is displayed as the background.  

 

Grass growth in May 2014 and September 2015 are observed as 

negative change in Figures 7a and 7e. 

 

Apart from vegetation differences, there are also other artefacts 

apparent in the results. For instance, in Figure 7a sudden 

elevation differences forming linear artefacts were observed in 

the north-east of the site. These linear artefacts can also be seen 

in Figure 8, which illustrates the standard deviation of the 

elevation differences for the February 2016-May 2014 pair. Such 

artefacts originated from sharp discontinuities that occurred in 

the generated point cloud due to mismatches (see Section 1). 

Harwin et al. (2015) explained that it is difficult to remove such 

discontinuities, especially in grassy terrain, as a photogrammetric 

approach records the vegetation surface, and is unable to capture 

underlying terrain, as in the case for ALS for example.  

 

 

 

Figure 8. Standard deviation of the elevation differences for the 

February 2016 – May 2014 pair. 

5. CONCLUSIONS AND FUTURE WORK 

This paper has presented an investigation of errors associated 

with SfM-derived elevation differences generated through a 

UAV landslide monitoring approach. The analysis includes the 

estimation of the vertical sensitivity by applying the law of error 

propagation to the generated elevation differences. 

 

Results have shown that RMSE vertical accuracies of 

approximately 10 cm can be achieved with the use of GCPs and 

highly overlapping imagery, when SfM-derived elevations are 

compared against independently observed elevations at sample 

points. Even though GCPs have been utilised, the derived-DEMs 

have been shown to still contain vertical systematic errors, due to 

low overlap flight configurations. When opposing flight strips 

were added these errors were significantly reduced. The standard 

deviation of the elevation differences has been shown to provide 

additional context for error assessment, since this allows spatial 

illustration of misalignment biases propagated through the 

processing chain (i.e. Figure 8). Seasonal vegetation changes can, 

unfortunately, become an obstacle in landslide monitoring, as 

vegetation cannot be entirely filtered out from the dense point 

cloud. This research derived a value of ± 9 cm vertical sensitivity 

for the SfM-derived change measurement, and this appears 

appropriate for the Hollin Hill landslide site, since the most active 

parts of the landslide exceeds ± 9 cm elevation change over the 

revisit period.  

 

The establishment of GCPs is labour intensive and can be 

hazardous in steep and unstable terrain, or even impossible for 

inaccessible areas. Future research will investigate the level of 

both planimetric and vertical sensitivity for the Hollin Hill 

landslide when using the SfM pipeline in the absence of 

physically established GCPs. That research will address the 

problem of optimal co-registration of the SfM-derived DEMs by 

a direct registration workflow that applies morphological 
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measures in combination with the scale-invariant feature 

transform (SIFT) algorithm.  
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