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Abstract 

Silver nanoparticles (Ag NPs) have been used in numerous consumer 

products and may enter the soil through the land application of biosolids. 

However, little is known about the relationship between Ag NP exposure and 

their bioavailability for soil organisms. This study aims at comparing the 

uptake and elimination kinetics of Ag upon exposures to different Ag forms 

(NPs and ionic Ag (as AgNO3)) in the isopod Porcellionides pruinosus. 

Isopods were exposed to contaminated Lufa 2.2 soil or alder leaves as food. 

Uptake and elimination rate constants for soil exposure did not significantly 

differ between Ag NPs and ionic Ag at 30 and 60 mg Ag/kg. For dietary 

exposure, the uptake rate constant was up to 5 times higher for Ag NPs than 

for AgNO3, but this was related to feeding activity and exposure 

concentrations, while no difference in the elimination rate constants was 

found. When comparing both routes, dietary exposure resulted in lower Ag 

uptake rate constants but elimination rate constants did not differ. A fast Ag 

uptake was observed from both routes and most of the Ag taken up seemed 

not to be eliminated. Synchrotron X-ray fluorescence showed Ag in the S-cells 

of the hepatopancreas, thus supporting the observations from the kinetic 

experiment (i.e. low elimination). In addition, our results show that isopods 

have an extremely high Ag accumulation capacity, suggesting the presence of 

an efficient Ag storage compartment. 

 

 

Keywords: Ag nanoparticles, bioaccumulation, exposure route, isopods, 

synchrotron  
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1. Introduction 

Silver nanoparticles (Ag NPs) have been used extensively in industry over 

the last decades, especially due to their bactericidal properties (Durán et al., 

2007). They are embedded in consumer products such as textiles, cosmetics, 

food packaging, and in materials and devices for medical purposes (Hendren 

et al., 2011).  

The application of Ag NPs may result in the release of Ag from the 

consumer products, ending up in the aquatic environment, including the 

wastewater (Benn et al., 2010; Kim et al., 2010). In wastewater treatment 

plants, Ag nanoparticles may be present in effluents and sewage sludge 

(Kaegi et al., 2011). In many countries, the treated sewage sludge or biosolids 

is used as an agricultural amendment (Keller et al., 2013), and as a 

consequence Ag nanoparticles (and other Ag species) may reach the soil 

compartment. The land application of biosolids is considered the main route of 

Ag NPs to the terrestrial environment (Gottschalk et al., 2009).  

To relate exposure of chemicals to bioavailability, uptake and elimination 

kinetic studies are useful. In a typical study, organisms are exposed to non-

toxic concentrations during an uptake phase, followed by a depuration or 

elimination phase in clean medium. Body concentration of the chemical is 

measured in the test organisms at several points in time and a kinetic model 

is fit to the data. Uptake and elimination kinetic parameters, bioaccumulation 

factor (BAF) and half-life of chemicals can be obtained from these kinetic 

models. In this way, not only can kinetic studies provide valuable information 

for risk assessment (Nahmani et al., 2007), but it can also be very useful for 

regulatory purposes (Gobas and Morrison, 2000).  

The bioaccumulation of Ag NPs and ionic Ag (from AgNO3) has been 

evaluated in the earthworm Eisenia fetida after 28 days of exposure (Schlich 

et al., 2013; Shoults-Wilson et al., 2011). Schlich et al. (2013) showed slightly 

higher bioaccumulation factors (BAF) in earthworms exposed to Ag NPs, 

although the free Ag ion concentration in the soil was comparable for both Ag 

forms. Shoults-Wilson et al. (2011) found a lower BAF for Ag NP exposure, 

however, Ag bioaccumulation was not related only to Ag ions released from 

the nanoparticles. Up-to-date, only one study on the kinetics of Ag NPs in the 

springtail Folsomia candida is available in the literature (Waalewijn-Kool et al., 
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2014). Ag NP bioaccumulation in the springtails was found to be lower than its 

ionic counterpart (as AgNO3), but dissolved Ag concentration in the pore 

water could not explain total Ag uptake from Ag NPs (Waalewijn-Kool et al., 

2014).  

As the bioaccumulation process may differ between organisms (Ardestani 

et al., 2014), assessing Ag NP bioaccumulation in different organisms is 

essential to get a complete picture of their potential threats to the 

environment. For this purpose, isopods are suitable indicators of metal 

bioavailability (Dallinger et al., 1992; Hopkin et al., 1986; Loureiro et al., 2002; 

Udovic et al., 2009). They are known to accumulate high levels of metal in 

their hepatopancreas, which can accumulate up to 90% of total body metal 

burden (Hopkin and Martin, 1982). Kinetic studies with isopods are 

considered a better indicator of bioavailability than body burden 

measurements, since the flux of the contaminants into the organisms is more 

important in determining toxicity than total body concentration (van Straalen et 

al., 2005). Even though there are no standard protocols or guidelines to test 

bioaccumulation in isopods, the species Porcellionides pruinosus has been 

previously used successfully to evaluate the uptake kinetics of the pesticide 

lindane (Sousa et al., 2000; Loureiro et al. 2002). This species is able to dig 

into the soil and therefore stay in more direct contact with soil particles when 

compared to other isopod species that mainly live on the top soil (litter) layer 

Moreover, the isopod Porcellionides pruinosus can easily be collected and 

cultured under lab conditions.  

The aim of the present study was to evaluate the uptake and elimination 

kinetics of Ag in the terrestrial isopod Porcellionides pruinosus, considering 

two forms of Ag: ionic (with AgNO3) and nanoparticulate (Ag NPs). As 

different routes of exposure are essential to fully evaluate the bioavailability of 

contaminants in the environment (Ardestani et al., 2014; Loureiro et al., 2002; 

Sousa et al., 2000; Vijver et al., 2004; Vink et al., 1995), kinetic studies were 

conducted using soil and dietary exposures for comparison. In addition, and to 

understand and confirm results from uptake and elimination kinetics, µX-ray 

fluorescence mapping was carried out in isopods exposed to Ag NPs in soil. 
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2. Methodology 

 

2.1. Test species and test chemicals 

Specimens of the isopod Porcellionides pruinosus were collected in horse 

manure from an uncontaminated area in Coimbra (Portugal). The animals 

were kept in the laboratory at 20±2ºC and a 16/8h photoperiod for at least one 

month before the experiments. Adult males and non-gravid females (15-25 

mg) in which no molting process could be observed were used. 

Ag NPs and ionic Ag (as AgNO3) were used to spike soil and food. Ag NPs 

(AMEPOX) were supplied dispersed in water at 1 g/L. They had a diameter 

size of 3-8 nm, with an alkane coating. Particle characterization was 

performed using Dynamic Light Scattering (DLS) in a Zetasizer nano ZS 

(Malvern instruments Ltd, Worcestershire, UK) and Zetasizer software 6.20 

(Fig. S1). Also, Transmission Electron Microscopy (TEM) analyses were 

carried out on a JEOL JEM 2010 200 kV instrument (JEOL, Tokyo, Japan) 

(Fig. S2). For comparison to the ionic form, the soluble salt AgNO3 (Sigma-

Aldrich, 99% purity) was chosen.  

 

2.2. Experimental setup – soil exposure 

Lufa 2.2 soil (LUFA-Speyer 2.2, Sp 2121, LUFA Speyer, Speyer, Germany) 

was used in the kinetic tests and characterized as sandy loam with an organic 

carbon content of 2.3 ± 0.2%, pHCaCl2 of 5.6 ± 0.4, cation exchange capacity 

(CEC) of 10.0 meq/100 g and water-holding capacity (WHC) of 46.5%. Lufa 

2.2 soil was spiked with Ag NPs or AgNO3 as aqueous solution to reach two 

nominal concentrations of 30 and 60 mg Ag/kg dry soil. Concentrations were 

chosen based on results from a previous study (Tourinho et al., 2015) where 

the Ag NPs caused no toxicity at these concentrations. Therefore similar 

concentrations for Ag (as AgNO3) were chosen for comparison. After adding 

the Ag solutions, the soil was manually mixed with a spoon. Additional water 

was added to moisten the soil to 45% of its maximum WHC. Spiked soil was 

left one day for equilibration before the exposures started. Soil pHCaCl2 was 

measured at the beginning of the experiment by shaking 5 g of soil with 25 ml 

0.01 M CaCl2 solution for 2 hours and measuring pH in the solution after 

settling of the soil particles.  
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The kinetic experiment consisted of two phases. During the uptake phase 

the animals were exposed to Ag-spiked soil for 21 days. Then, the animals 

were transferred to unspiked soil for a 21-day elimination phase. The animals 

were kept individually in plastic boxes (⌀ 65 mm), containing ~20 g of soil and 

fed alder leaves ad libitum. For each concentration, a total of 42 animals were 

used. The test was conducted in a climate room at 20º C and a 16 h light/8 h 

dark cycle. At time points of 1, 2, 4, 7, 10, 14, and 21 days of each phase, 

three isopods were sacrificed for Ag body concentration measurements. 

Isopods and soil were stored at -20ºC until Ag analysis.  

 

2.3. Experimental setup – dietary exposure  

Alder (Alnus glutinosa) leaves were cut into disks (⌀ 10 mm) and separated 

in groups by dry weight (d.w.). Two groups, containing ~40 leaf disks each, 

were soaked into 400 ml of Ag NPs dispersed in water at 10 or 20 mg Ag/L 

and shaken (150 rpm) for 4 days. The same procedure was conducted with 

AgNO3 solutions to obtain ionic Ag dosed food. The leaves were left to dry at 

room temperature for one day before being offered as food. Isopods were 

placed individually in chambers containing a net and a plaster bottom (for 

details, see Loureiro et al. (2006)). For the uptake phase, Ag dosed alder 

leaves were offered ad libitum to the isopods for 21 days. After that, the Ag-

dosed leaves were replaced by undosed leaves during the 21-day elimination 

phase. After 1, 2, 4, 7, 10, 14, and 21 days of uptake and elimination, food 

was removed from the chambers and the isopods were left in the chamber to 

empty their gut for one day. Then, animals were weighted and stored at -20ºC 

until total Ag analysis. The remaining food and faeces were dried at 45ºC for 

at least two days and their weight was recorded.  

 

2.4. Total Ag analysis  

Total Ag concentrations in isopods, soil and food were measured by Atomic 

Absorption Spectrometry (AAS). Soil (~130 mg) and leaf (~30 mg) samples 

were dried at 50ºC and then digested for 7 h in a mixture of concentrated HCl 

(J.T. Baker. purity 37%) and HNO3 (J.T. Baker. purity 70%) (4:1. v/v) for 7 

hours in closed Teflon containers, in an oven (CEM MDS 81-D) at 140ºC. 

After digestion, the samples were taken up in 10 mL of demineralized water 
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and analyzed for Ag by flame atomic absorption spectrometry (AAS; Perkin-

Elmer AAnalyst 100). Soil samples, procedural blanks and reference material 

were analyzed in duplicates, while leaf samples were analyzed in one 

replicate due to the lack of material. Limit of detection (LOD) was 0.003 mg 

Ag/L, calculated as 3 times the standard deviation of the analytical standard 

blanks (n=20). Certified reference material (ISE sample 989 of River Clay 

from Wageningen, The Netherlands) was used to ensure the accuracy of the 

analytical procedure for soil samples. Recovery of Ag from the reference 

material was 100% (2.8 mg Ag/kg). 

Isopods were freeze-dried, individually weighed and digested with a 

mixture of concentrated HNO3:HClO4 (7:1. v/v; J.T. Baker. ultrapure). The 

samples were evaporated to dryness and the residues were taken up in 1 mL 

1M HCl. Ag content was determined by graphite furnace AAS (Perkin-Elmer 

5100 PC). Procedural blanks were analyzed in triplicates. LOD was found to 

be 0.039 μg Ag/L (n=20).   

 

2.5. µX-ray fluorescence mapping 

Bio-imaging was undertaken at the Diamond Light Source (UK) I18 beamline 

(Mosselmans et al., 2009). Hepatopancreas samples were collected from 

isopods exposed to Ag NP-spiked food for 7 days. Food was spiked as 

described in the dietary experiment section, but using a solution concentration 

of 100 mg Ag/L. Freshly dissected hepatopancreas tubules were fixed 

overnight in 70% alcohol, embedded in low viscosity, hydrophilic, hard-grade 

LR White resin (Agar Scientific, Essex UK). The heat-polymerized blocks 

were sectioned at 0.5 μm with floatation on a diamond knife in an LKB 

Ultratome III. Sections were mounted on 50x25 mm fused quartz Vitreosil 

077® slides (UQG Optics Ltd., Milton, Cambridge) in order to minimize the Si 

signal associated with conventional glass substrates, and were not stained in 

order to minimize interference with analytical signals. Slides were inserted into 

the standard I18 sample holder, and imaged ‘externally’ under brightfield 

conditions (Zeiss AxioVision optical microscope) for orientation purposes.  

µX-ray fluorescence (XRF) data were collected using a Si(111) double crystal 

monochromator and the Kirkpatrick-Baez focusing mirrors, which provided a 3 
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µm spot size, were also used to remove harmonic contamination. The sample 

holder was positioned at 45° to the incident beam. The Ag K-edge at 25,531 

eV is above the energy range of the I18 beamline and Ag L(III) edge Lα line 

(2,980 eV) is very close to the Argon Kα line (2,956 eV) hence the Ag L(II)-

edge at 3,540 eV was used for mapping. However this provides a relatively 

insensitive signal as the Ag L edges have low fluorescence yield, with the Ag 

L(II) yield being lower than the Ag L(III) yield (Krause, 1979). Data were 

recorded using a 4-element Si drifts detector (Hitachi Inc.) positioned close to 

the specimen, whilst the Ar signal (from ambient air) was reduced but not 

eliminated by enclosing the specimen and detector inside a plastic bag under 

flowing He. Two XRF maps over the same region of the sample were 

collected using an incident energy below the Ag L(II) edge at 3,500 eV and 

one above the edge at 3,580 eV. The maps were then analyzed in PyMca 

4.1.1 (Solé et al., 2007). The signal in the Ag Lβ energy window in the lower 

energy map was removed from the signal in the higher energy map, a 

procedure designed to remove the influence of the Ar Kβ peak at 3,190 eV 

from the Ag Lβ peak at 3,150 eV. Only the higher Ag regions are likely to be 

reflective of Ag, while the variations in the low levels are attributable to the 

noise in the subtraction method. This has been shown in our previous use of 

this methodology by recording Ag L(II) XANES spectra at high and low points 

(Diez-Ortiz et al., 2015). The S K-edge signal (2,308 eV) was measured at the 

same time. The samples were also mapped with an incident beam energy of 

11,000 keV to produce element distribution maps for Cu (Kα = 8,046 eV).  

 

2.6. Toxicokinetic models  

Two kinetic models were tested to describe the uptake and elimination 

rates in isopods, named here as models 1 and 2. Model 1 is a classic first-

order one-compartment model, in which the animals are considered as one 

unique compartment. Model 2 is also a first-order one-compartment model 

adapted from Vijver et al. (2006). In this model, an inert fraction is considered 

in the organism in which metals are stored and not eliminated during the 

elimination phase (Vijver et al., 2006).  
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In both models, uptake and elimination equations were fitted 

simultaneously. As metals naturally occur in the environment, the use of a 

background body concentration (C0) is recommended (Skip et al., 2014). 

Therefore, C0 was fixed by calculating the mean measured Ag body 

concentration at t=0.  

For the uptake phase, the following equation was used in both models 1 

and 2: 

 (1) 

 

where Q(t) = Ag internal concentration at t days (μg Ag/ganimal); C0 = 

background internal concentration (μg Ag/ganimal); k1 = uptake rate constant 

(gsoil/food / ganimal / day); k2 = elimination rate constant (day-1); Cexp = Ag 

exposure concentration (mg Ag/kgsoil/food); and t = time (days). 

For the elimination phase, two different equations were used in model 1 

(Eq.2) and model 2 (Eq.3 – adapted from Vijver et al. (2006)), as follows: 

 

 (2) 

 

 
(3) 

 

where tc = time the animals are transferred to clean medium (days) and Fi = 

inert fraction (ranging from 0 to 1). 

For Ag NP exposure at 30 mg Ag/kg, it was necessary to constraint the 

parameter Fi to be <1.00, since Fi ranges from 0 to 1 (Vijver et al., 2006). 

 

2.7. Statistical analysis 

Uptake and elimination equations were fitted to the data and kinetics 

parameters were estimated using non-linear regression in SPSS (version 20). 

An F test was run to determine which of the two non-linear models with 

different number of parameters gave the best fit (Motulsky and Ransnas, 
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1987). Differences in k1 and k2 were tested by a Generalized Likelihood Ratio 

test and overlap of 95% confidence intervals, respectively. Half-life for 

elimination of Ag from the isopods after exposure to both test compounds was 

calculated as ln(2)/k2, and Ag bioaccumulation factor (BAF) as k1/k2.  

In the dietary exposure, feeding activity expressed as: 

Cr = (WLi-WLf)/Wisop 

Ar = ((WLi-WLf)-F)/Wisop 

Ae = ((WLi-WLf)-F)/(WLi-WLf)*100 

where Cr = consumption ratio (mg d.w. leaf/mg f.w. isopod); WLi = initial leaf 

weight (mg d.w.); WLf = final leaf weight (mg d.w.); W isop = initial isopod weight 

(mg f.w.); Ar = assimilation ratio (mg d.w. leaf/mg f.w. isopod); F = mass of 

faeces produced (mg d.w.); Ae = assimilation efficiency (%). 

Feeding parameters were correlated to Ag body concentration in the 

isopods measured during the uptake phase using non-parametric Spearman 

correlation analysis in SPSS (version 20).  

 

 

3. Results  

 

3.1.  Soil properties and Ag measurements 

Soil pHCaCl2 in Ag spiked soils ranged from 5.47 to 5.50 (Table S1 – 

supporting information) and did not change in comparison to unspiked Lufa 

2.2 soil (pH 5.49). Good recovery was obtained for Ag measurements in all 

soil samples, ranging from 81 to 124% (Table S1 – supporting information). 

Nominal concentrations of 30 and 60 mg Ag/kg resulted in measured 

concentrations of 37 and 48 mg Ag/kg for Ag NPs, and 27 and 70 mg Ag/kg 

for ionic Ag, respectively.  

Ag concentration in alder leaves spiked with Ag NPs was found to be lower 

in comparison to leaves spiked with AgNO3. For Ag NPs, concentrations were 

534 and 832 mg Ag/kgfood, while for ionic Ag concentrations were 4499 and 

4717 mg Ag/kgfood.  

All toxicokinetic calculations in this paper are based on measured 

concentrations in soil and food. 
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The background of Ag concentration found in isopods (T0) was 2.30±1.32 

μg Ag/g (mean±SD, n=3).  

 

3.2.  Uptake and elimination kinetics – soil exposure 

No isopod mortality and weight change was observed during the 42-day 

experimental period (data not shown). After 21 days of uptake, mean Ag body 

concentration reached 90 and 136 μg Ag/g in isopods exposed to Ag NPs at 

37 and 48 mg Ag/kg in soil, respectively. For ionic Ag, mean body 

concentration was 84 and 164 μg Ag/g at 27 and 70 mg Ag/kg, respectively. 

According to model 1, steady state body concentration was not reached in 

isopods exposed for 21 days to both Ag forms in soil during the uptake phase, 

although model 2 does suggest that steady state was reached (Fig. 1). 

Ag kinetics parameters obtained by fitting model 1 (one-compartment 

model) and model 2 (one-compartment model with an inert fraction) are 

provided in Table 1. Best fit was obtained by model 2 for Ag NPs at 37 

(F1,39=19.99, p<0.05) and 48 mg Ag/kg (F1,39=20.37, p<0.05), and for AgNO3 

at 27 (F1,40=6.99, p<0.05) and 70 mg Ag/kg (F1,38=13.87, p<0.05). For that 

reason, model 2 was chosen to describe the uptake and elimination kinetics of 

Ag in soil exposures. The fit of the models to Ag body concentration over time 

can be found in Fig. 1 (model 2) and Fig. S3 (model 1). 

Values of k1 did not differ between the two exposure concentrations for Ag 

NPs (X2
(1)= 0.75; n.s.) and ionic Ag (X2

(1)< 0.01; n.s.). Moreover, no significant 

difference in k1 was found between both Ag forms at the two lower exposure 

concentrations (37 and 27 mg Ag/kg for Ag NPs and AgNO3, respectively) 

(X2
(1)= 1.30; n.s.) and the two higher concentrations (48 and 70 mg Ag/kg for 

Ag NPs and AgNO3, respectively) (X2
(1)= 0.45; n.s.). 

No significant difference in k2 values was found between concentrations 

and Ag forms, based on overlap of the 95% of confidence intervals (Table 1).  

Although it is suggested by model 1 that steady state Ag body 

concentrations were not reached, bioaccumulation factors (BAF) were 

calculated. BAF values were 3.0 for Ag NPs at both exposure concentrations, 

while BAF was 3.1 and 2.2 for ionic Ag at 27 and 70 mg Ag/kg, respectively.  

 

3.3. Uptake and elimination kinetics – dietary exposure 
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Some mortality was observed in isopods during the food-exposure 

experiment, ranging from 11 to 16%. Possibly the moisture maintenance 

provided by the plaster bottom of the experimental chambers was not efficient 

enough and caused this mortality. Still, the fresh weight of surviving animals 

did not significantly change after the 42 days of experiment, indicating good 

health of the test animals (data not shown). 

Mean Ag body concentration ranged from 370 to 414 μg Ag/g in isopods 

exposed to Ag NPs and from 435 to 658 μg Ag/g in isopods exposed to ionic 

Ag after 21 days of uptake. Model 2 failed to fit the data, so model 1 was used 

to describe Ag kinetics upon dietary exposure (Fig. 2).  

Uptake and elimination rate constant (k1 and k2) for Ag NPs and AgNO3 

are shown in Table 2. It was observed that k1 did not significantly differ 

between the two exposure concentrations for Ag NPs (X2
(1)=2.74; n.s.) and 

ionic Ag (X2
(1)=2.91; n.s.). The 95% confidence intervals for the k2 values for 

the different treatments overlapped, suggesting no difference between 

treatments. However, k2 values were slightly lower for Ag NPs, resulting in 

higher BAF and half-life values compared to the ionic Ag exposures. 

Food consumption ratio reached up to 0.21 and 0.28 mg food/mg isopod 

after 21-d of exposure to Ag NPs at 534 and 832 mg Ag/kgfood, respectively 

(Fig. S4). For AgNO3, maximum food consumption ratio was 0.09 and 0.11 

mg d.w. food/mg f.w. isopod after 21 days of exposure at 4499 and 4717 mg 

Ag/kgfood, respectively. Higher assimilation ratios were also observed in the Ag 

NP treatments, while assimilation efficiency was comparable between Ag NP 

and AgNO3 treatments (Fig. S4). Egestion ratio was also found to be higher in 

isopods exposed to Ag NPs (data not shown) and was strongly influenced by 

consumption ratio (i.e., fecal production increased with increasing food 

consumption).  

Ag NP and ionic Ag treatments showed similar patterns when relating 

feeding parameters with Ag body concentrations (Table 3; Fig. S4). A positive 

significant relationship was found between food consumption ratio and Ag 

body concentrations for all treatments (Spearman test, p<0.05). No significant 

relationship was found between assimilation ratio and Ag body concentrations 

(Spearman test, p>0.05), and a weak negative significant relationship was 



 

 13 

found between assimilation efficiency and Ag body concentrations in all 

treatments (Spearman test, p<0.05). 

 

3.4. Synchrotron-based mapping of Ag in the hepatopancreas 

Micro-focus X-ray fluorescence element mapping of anhydrously-prepared 

thin sections of the hepatopancreas of a woodlouse exposed to Ag-NP spiked 

leaves indicated that Ag was focally co-distributed with Cu and S specifically 

within the small ‘S’-cells (Fig. 3). Mapping in the high-brightness synchrotron 

beam did not reveal Ag signals within the adjacent large ‘B’-cells.  

 

4. Discussion 

In this study, the toxicokinetics of Ag NPs and ionic Ag (as AgNO3) in the 

isopod Porcellionides pruinosus is described. This was combined with 

synchrotron µX-ray fluorescence (XRF) imaging technique to map the co-

distribution of Ag and other elements in thin sections of the hepatopancreas of 

isopods exposed to Ag NPs. 

 

4.1. Soil exposure 

Upon soil exposure, Ag concentrations in the isopods increased with time 

for both Ag NPs and ionic Ag. This probably is due to the fact that the animals 

were hardly able to eliminate Ag, as little or no decrease in Ag body 

concentration was observed in the elimination phase (Fig. 1).  

Uptake and elimination rate constants showed no significant differences 

between the two Ag forms. This could be a result of the route of exposure in 

hard-bodied organisms like isopods, which may be less exposed to the 

soluble fractions present in pore water (van Gestel and van Straalen, 1994). 

Uncoated Ag NPs and ionic Ag were found to have different time-dependent 

behavior in soils (Coutris et al., 2012). The Ag water-extractable and ion-

exchangeable fractions were found to increase with time in soils spiked with 

Ag NPs, while they decreased in soils spiked with AgNO3 (Coutris et al., 

2012). Nevertheless, low porewater Ag concentrations (1.5% of total Ag in 

soil) were observed in Lufa 2.2 soil freshly spiked with Ag NPs and AgNO3 

(Waalenwijn-Kool et al. 2014). Since the authors have also used Lufa 2.2 soil 
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and the same Ag NPs, it is expected that low Ag porewater concentrations 

were present in soil samples. 

Ag kinetics from both Ag NPs and AgNO3 were best described by a one-

compartment-model with an inert fraction (model 2). The inert fraction 

represents the metal storage fraction from which no metal elimination occurs 

during the elimination phase (Vijver et al., 2006). The high inert fraction (Fi) 

observed in the isopods confirms this hypothesis. Fi values were found to be 

0.99 and 0.90 for Ag NPs and 0.87 and 0.82 for ionic Ag upon exposure to 

nominal concentrations of 30 and 60 mg Ag/kg dry soil, respectively. These 

values are well in agreement with other studies that have shown that up to 

90% of total metal accumulated in isopods is detected in the hepatopancreas 

(Hopkin, 1990b). The isopod Porcellio laevis exposed to Cd-spiked food had 

>90% of the total Cd in the hepatopancreas (Odendaal and Reinecke, 1999; 

Odendaal and Reinecke, 2004). And when exposed to Zn-spiked food, the 

isopod Porcellio scaber had up to 70% (Donker et al., 1996) and 99% 

(Odendaal and Reinecke, 2004) of total Zn accumulated in the 

hepatopancreas. Van Straalen et al. (2005) showed that the amount of Zn in 

the hepatopancreas is dependent on exposure concentration, with between 

40-60% and 80-90% of Zn in the hepatopancreas at exposure concentrations 

of 200 and 1,500 mg/kg dry food, respectively. Vijver et al. (2006) found 

relatively low Fi values of 0.43 and 0.55 for Cd and Zn in Porcellio scaber 

upon soil exposure, respectively.  

The elimination rate constants for Ag found in this study were independent 

of the exposure route or of Ag exposure levels or Ag form. Interestingly, the 

Ag elimination rate constants were also in close agreement with the k2 values 

for Cd and Zn in the isopod Porcellio scaber reported by Vijver et al. (2006). 

The k2 values for Porcellio scaber were 0.19 and 0.18 day-1 for Cd and Zn 

exposures, respectively (Vijver et al., 2006), while k2 values for Ag in 

Porcellionides pruinosus varied from 0.15 to 0.26 day-1 for both the 

nanoparticulate and ionic Ag forms.  

Waalewijn-Kool et al. (2014) performed a toxicokinetic study on Ag in the 

springtail Folsomia candida. Lower Ag elimination from AgNO3 was observed 

in the springtails, resulting in higher BAF and half-life values in comparison to 

Ag NPs (Waalewijn-Kool et al., 2014). The same was not observed in our 
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study, where k2 values did not differ between Ag NPs and AgNO3. It may 

suggest that isopods and springtails have different bioaccumulation kinetics 

for Ag NPs and AgNO3. While isopods showed comparable accumulation and 

elimination capacity between Ag NPs and AgNO3, springtails showed lower 

elimination for ionic Ag than for Ag NPs. In fact, in our study, a slightly higher 

inert fraction of Ag was found in isopods exposed to Ag NPs (0.90-0.99) when 

compared to isopods exposed to AgNO3 (0.82-0.87). This might suggest a 

slightly different mechanism of accumulating both Ag forms.  

 

4.2. Dietary exposure 

Silver uptake and elimination kinetics for Ag NPs and AgNO3 from 

contaminated food was described by a one-compartment model (model 1). 

Due to the spiking procedure (i.e. leaves soaked in Ag solution), final Ag 

concentrations were ~8.5 and 5.5 higher in food spiked with AgNO3 than with 

Ag NPs, when soaked into solutions containing 10 and 20 mg Ag/L, 

respectively.  

Higher uptake rate constants for Ag were found in isopods exposed to Ag 

NPs. However, these differences could be explained by the food consumption 

ratio. Isopods can avoid highly contaminated food by decreasing food 

consumption (Drobne and Hopkin, 1995; Loureiro et al., 2006; Zidar et al., 

2012). Thus, the higher Ag concentration in AgNO3-spiked food could be 

related to their lower food consumption (see Fig. S4).  

The food assimilation ratio (mg assimilated food/ mg isopod) was not 

related with Ag body concentration. During food digestion, fluids and fine 

particles are separated from coarse particles in the primary and secondary 

filters in the proventriculus, going to the hepatopancreas afterwards. The 

coarse particles are voided and eliminated as fecal pellets after the digestive 

process (Hames and Hopkin, 1989). It is known that metals taken up with food 

may enter the body and reach the hepatopancreas without reaching other 

parts of the body (Vijver et al., 2006). This may explain the lack of a 

relationship between food assimilation and Ag assimilation (assessed as body 

concentration) in this study, considering that food and metals will show 

different assimilation pathways during the digestive processes.  
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Assimilation efficiency (percentage of assimilated food from ingested food) 

had a significant negative relationship with Ag body concentration for all 

treatments (Table 3). Higher assimilation efficiency indicates that the animal 

improved the nutritional gain from the ingested food. In this way, they avoided 

Ag uptake by consuming less contaminated food, and being less exposed to 

Ag.  

No difference in the elimination rate constant was found between Ag NPs 

and AgNO3. This is not surprising since k2 will be rather dependent on the 

organism (Crommentuijn et al., 1994; Díez-Ortiz et al., 2010), while k1 will 

depend on the exposure conditions, like the available metal concentration and 

the medium characteristics (Crommentuijn et al., 1994). 

Usually, low elimination rate constants for metals in isopods exposed via 

food are found. Elimination rate constant for Cd was found to be zero in the 

isopods Porcellio scaber and Oniscus asellus (Crommentuijn et al., 1994), 

and low elimination capacity of Cd and Zn was observed in the isopod 

Porcellio scaber (Vijver et al., 2006). Also for Ag in the isopod Porcellionides 

pruinosus used in our study, elimination rates were low. This may result in a 

continuous increase of Ag accumulation in the isopods over time. The metal 

accumulation strategy in isopods is very efficient, nevertheless when storage 

limit is reached, it is very likely that toxicity will take place (Hopkin, 1990a; van 

Straalen et al., 2005).  

 

4.3. Comparison between soil and dietary exposures 

Oral uptake of contaminated soil and food is the main route of exposure in 

isopods (Koster et al., 2005; van Gestel and van Straalen, 1994; Vijver et al., 

2006). Comparing the results obtained from model 1, uptake rate constants 

for Ag NPs and ionic Ag were lower upon dietary exposures than for soil 

exposures. Ag dietary uptake was controlled not only by exposure 

concentration, but also by the feeding activity (i.e., food consumption). It 

suggests that the avoidance of contaminated food, a typical behavior found in 

isopods, may have a great influence on Ag uptake. In soil, exposure 

concentration and ingestion of contaminated soil was probably the main factor 

affecting Ag uptake. However, it is not possible to determine whether the 

isopods were capable of avoiding the ingestion of contaminated soil or not. 
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Not much is known about the reason why isopods ingest soil particles, but it 

seems to be important for the digestive process in these organisms (Zimmer, 

2002). 

After ingestion of contaminated soil or food, the assimilation of pollutants in 

the body will be dependent on their bioavailability (i.e., desorption or 

dissolution from the medium inside the body). Organic matter content is an 

important factor that determines the bioavailability of metals when comparing 

soil and dietary exposures. Due to strong sorption of metals to organic matter, 

the high organic matter content in leaf material leads to greater sorption of 

metals when compared to soil (Sousa et al., 2000; Vink et al., 1995), 

especially of the loosely bound or free fractions of metal (Vijver et al., 2006). It 

may result in lower bioavailability of metals when exposed via food.  

Elimination rate constants were found to be very low and comparable 

between both routes. It is suggested that elimination capacity in isopods is low 

and independent of the route of exposure. As uptake rate constants were 

higher upon soil exposure, higher BAF values for Ag were found in isopods 

exposed via soil.  

Due to the low elimination capacity, Ag body concentrations remained 

almost constant during the elimination phase, and a significant part of the Ag 

seemed to be stored in an inert fraction. For soil exposures, it was possible to 

quantify this fraction using model 2, while for food exposures model 2 could 

not be fitted to the data. Nevertheless, it is clear from the data that elimination 

is slow also upon food exposure, and this may again be attributed to storage 

of the Ag. The storage of non-essential metals (with no elimination) is a main 

detoxification strategy in soil organisms, including isopods (Vijver et al., 2004). 

Our results suggest that Ag from both the Ag NPs and AgNO3 was stored by 

the isopods rather than being eliminated. Interestingly, Ag storage and 

elimination from Ag NPs and ionic Ag were quite similar, suggesting that Ag 

NPs were also taken up as ionic Ag. In agreement with our finding, 

assimilation of dissolved Ag from ingested NPs was observed in the isopod 

Porcellio scaber exposed via food (Pipan-Tkalec et al., 2011). 

 

4.4 Synchrotron µX-ray fluorescence mapping 
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Woodlice are acknowledged metal macro-accumulators (Udovic et al., 2009) 

with the midgut tubules, referred to as the hepatopancreas, serving as the 

main metal depository (Köhler et al., 1996). The tubules are comprised of two 

distinct types of epithelial cells: small pyramidal ‘S’-cells containing Cu and 

sulphur-rich organelles, referred to as ‘cuprosomes’, with lysosome-like 

properties (Prosi and Dallinger, 1988); large binuclear ‘B’-cells often 

containing copious lipid droplets and floccular Fe (and phosphate)-rich 

inclusions. ‘S’-cells tend to accumulate soft Lewis acid metals with a high 

affinity for soft base S-donating ligands, whereas metals with hard acid 

properties tend to gravitate toward the hard base O-donating ligands within 

‘B’-cells (see Nieboer and Richardson, 1980, for definitions). Thus, it was 

unsurprising that micro-fluorescence mapping in a synchrotron beam located 

Ag, a weak Lewis acid like Cu, within the S-rich matrix of ‘S’-cell cuprosomes 

of Porcellionides pruinosus. Similar observations were reported by Pipan-

Tkalec et al. (2011) using a proton microprobe to map Ag in another terrestrial 

woodlouse species, Porcellio scaber, also fed a diet spiked with Ag NPs. 

Moreover, these authors deployed transmission electron microscopy to 

examine the hepatopancreas and corroborated our findings that aggregates of 

intact nanoparticles are absent within the epithelia. This indicates that the 

bound Ag within the cuprosomes derives from Ag+ ion dissolution from 

nanoparticles. Whether the dissolution occurs within a region of the alimentary 

canal or within the presumably acidic matrix of the lysosome-like cuprosomes 

is at present unknown. Given the relatively long half-life of cuprosomes 

(Dallinger and Prosi, 1988), combined with the insolubility of metal-sulphur 

complexes (Allen et al., 1993), the Ag pool sequestered within isopod 

cuprosomes is unlikely to pose a significant toxicological challenge to the host 

organism or to its predators.   

 

 

5. Conclusions 

High accumulation capacity of Ag from Ag NPs was observed in isopods 

exposed via soil and food. Our results suggest that Ag is accumulated in a 

storage compartment (i.e., hepatopancreas), as shown by the very low 

elimination rate constants. The elimination of Ag was independent of 
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exposure route and Ag form, showing that the storage strategy in isopods is a 

prevailing factor in Ag bioaccumulation. Due to slow elimination, Ag may be 

accumulated until it reaches toxic levels, and may pose a threat to terrestrial 

isopods in case of long-term exposure. Furthermore, because of the high 

levels accumulated in isopods, Ag might be transferred to possible predators. 

Biomagnification of Ag in the terrestrial environment therefore cannot be ruled 

out and should be further investigated. 
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Table list 

 

Table 1: Uptake and elimination kinetic parameters for Ag nanoparticles 

(NPs) and ionic Ag in isopods (Porcellionides pruinosus) exposed to Lufa 2.2 

soil at nominal concentrations of 30 and 60 mg Ag/kg. 95% confidence 

intervals are given in between brackets 

 

Table 2: Uptake and elimination kinetic parameters for Ag nanoparticles 

(NPs) and ionic Ag (as AgNO3) in isopods (Porcellionides pruinosus) exposed 

to Ag-spiked alder leaves. Parameters were calculated using a one-

compartment model (Equations 1 and 2). 95% confidence intervals are in 

brackets 

 

Table 3: Spearman correlation coefficients (r2) for the relation between 

feeding parameters (consumption ratio, assimilation ratio, assimilation 

efficiency) and Ag body concentrations in isopods (Porcellionides pruinosus) 

exposed to Ag NPs and ionic Ag contaminated food. Food concentration was 

534 and 834 mg Ag/kg dry food for Ag NPs and 4499 and 4717 mg Ag/kg dry 

food for ionic Ag. Asterisks indicate significant correlation (p<0.05) 
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Table 1: Uptake and elimination kinetic parameters for Ag nanoparticles (NPs) and ionic Ag in isopods (Porcellionides pruinosus) 

exposed to Lufa 2.2 soil at nominal concentrations of 30 and 60 mg Ag/kg. 95% confidence intervals are given in between brackets 

Model 
 

Ag form 
 

Nominal 
concentration 

(mg/kg) 

Measured 
concentration 

(mg/kg) 

k1 
(gsoil/ganimal/ day) 

k2 
(day-1) 

Fi 
 

BAF 
 

half-life 
(days) 

model 1 Ag NPs 30 37 0.19 0.01 
 

16.2 59.6 

    (0.12-0.25) (0.00–0.33)    

  
60 48 0.21 0.03 

 
8.4 27.2 

    (0.15-0.27) (0.00-0.04)    

 
Ionic Ag 30 27 0.21 0.02 

 
9.7 31.7 

    (0.13-0.29) (0.00-0.04)    

  
60 70 0.17 0.03 

 
5.3 22.2 

    (0.11-0.22) (0.00-0.05)    

model 2 Ag NPs 30 37 0.79 0.26 0.99 3.0 
 

    (0.028-1.30) (0.06-0.46)    

  
60 48 0.57 0.19 0.91 3.0 

 
    (0.12-1.01) (0.05-0.32)    

 
Ionic Ag 30 27 0.46 0.15 0.87 3.1 

 
    (0.07-0.85) (0.03-0.27)    

  
60 70 0.48 0.22 0.82 2.2 

 
    (0.19-0.78) (0.06-0.39)    

k1-uptake rate constant; k2-elimination rate constant; Fi-inert fraction; BAF-bioaccumulation factor; model 1- Equations 1 and 2; 

model 2 – Equations 1 and 3.  
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Table 2: Uptake and elimination kinetic parameters for Ag nanoparticles (NPs) and ionic Ag (as AgNO3) in isopods 

(Porcellionides pruinosus) exposed to Ag-spiked alder leaves. Parameters were calculated using a one-compartment model 

(Equations 1 and 2). 95% confidence intervals are in brackets 

 Concentration 

(mg Ag/kgfood) 

k1 

(gfood / ganimal / day) 

k2 

(day-1) 

a BAF Half-life 

(days) 

Ag NPs 534 0.028a  

(0.016 - 0.40) 

0.004 

(0.00– 0.025) 

14.9 6.5 161 

 832 0.019a  

(0.009 - 0.29) 

0.011 

(0.00 - 0.039) 

15.8 1.7 61.9 

Ionic Ag 4499 0.005b 

(0.004 - 0.007) 

0.015  

(0.001 - 0.028) 

22.4 0.37 47.0 

 4717 0.008b 

(0.00 - 0.012) 

0.018 

(0.00 - 0.044) 

37.7 0.41 38.2 

k1-uptake rate constant; k2-elimination rate constant; a – assimilation rate as Cexp * k1; BAF-bioaccumulation factor. Different 

letters (a,b) indicate significant differences between treatments. 
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Table 3: Spearman correlation coefficients (r2) for the relation between 

feeding parameters (consumption ratio, assimilation ratio, assimilation 

efficiency) and Ag body concentrations in isopods (Porcellionides pruinosus) 

exposed to Ag NPs and ionic Ag contaminated food. Food concentration was 

534 and 834 mg Ag/kg dry food for Ag NPs and 4499 and 4717 mg Ag/kg dry 

food for ionic Ag. Asterisks indicate significant correlation (p<0.05) 

 

Ag form mg Ag/kg Feeding activity 

  Consumption ratio Assimilation ratio Assimilation efficiency 

Ag NPs 534 0.83* 0.46 -0.66* 

 832 0.79* 0.32 -0.60* 

Ionic Ag 4499 0.84* 0.20 -0.67* 

 4717 0.85* 0.16 -0.57* 
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Figure list 

 

Fig. 1 Uptake and elimination kinetics of Ag from Ag NPs (circles) and ionic 

Ag as AgNO3 (diamonds) in the isopod Porcellionides pruinosus exposed to 

nominal concentrations of 30 and 60 mg Ag/kg in Lufa 2.2 soil. Uptake and 

elimination phases lasted for 21 days each. Lines represent the modeled Ag 

body concentration, using model 2 (equations 1 and 3) 

 

Fig. 2 Uptake and elimination kinetics of Ag NPs (circles) and ionic Ag as 

AgNO3 (diamonds) in the isopod Porcellionides pruinosus exposed to Ag 

spiked alder leaves as food. Uptake and elimination phases lasted for 21 days 

each. Lines represent the modeled Ag body concentration, using model 1 

(equations 1 and 2) 

 

Fig. 3 µXRF maps of element distributions in an unstained LR White-

embedded thin mid-tubule section of woodlouse (Porcellionides pruinosus) 

hepatopancreas exposed to dietary Ag NPs. (a) Light micrograph of a 

transverse section. Note that the morphology of the section is unclear due to a 

lack of differential contrast in the unstained sections. The outlines of some of 

the constituent ‘S’-cells (S) and ‘B’-cells (B) surrounding the lumen (Lu) are 

approximately delineated with dotted lines. Sulphur (b), Copper (c), and Silver 

(d) µXRF maps acquired across the entire section depicted in the micrograph. 

Note the relatively strong co-distributed Cu, S and Ag signals in ‘S’-cells 

(arrow heads) but not in ‘B’-cells 
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Fig. 1 Uptake and elimination kinetics of Ag from Ag NPs (circles) and ionic 

Ag as AgNO3 (diamonds) in the isopod Porcellionides pruinosus exposed to 

nominal concentrations of 30 and 60 mg Ag/kg in Lufa 2.2 soil. Uptake and 

elimination phases lasted for 21 days each. Lines represent the modeled Ag 

body concentration, using model 2 (equations 1 and 3) 
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lack of differential contrast in the unstained sections. The outlines of some of 

the constituent ‘S’-cells (S) and ‘B’-cells (B) surrounding the lumen (Lu) are 

approximately delineated with dotted lines. Sulphur (b), Copper (c), and Silver 
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