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Abstract:		The	Anthropocene	concept	arose	within	the	Earth	System	science	

(ESS)	community,	albeit	explicitly	as	a	geological	(stratigraphical)	time	term.		Its	

current	analysis	by	the	stratigraphical	community,	as	a	potential	formal	addition	

to	the	Geological	Time	Scale,	necessitates	comparison	of	the	methodologies	and	

patterns	of	enquiry	of	these	two	communities.		One	means	of	comparison	is	to	

consider	some	of	the	most	widely	used	results	of	the	ESS,	the	‘planetary	

boundaries’	concept	of	Rockström	et	al.	(2009)	and	the		‘Great	Acceleration’	

graphs	of	Steffen	et	al.	(2004,	2007,	2015a),	in	terms	of	their	stratigraphical	

expression.	This	expression	varies	from	virtually	non‐existent	(stratospheric	

ozone	depletion)	to	pronounced	and	many‐faceted	(primary	energy	use)	while	in	

some	cases	stratigraphical	proxies	may	help	constrain	anthropogenic	process	

(atmospheric	aerosol	loading).	The	Anthopocene	concepts	of	the	ESS	and	

stratigraphy	emerge	as	complementary,	and	effective	stratigraphic	definition	

should	facilitate	wider	transdisciplinary	communication.		
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The	preservation	of	history	is,	we	know,	incomplete.		Many	events	have	taken	

place	on	this	planet	and	left	no	trace	of	their	passing.		Many	–	but	not	all,	for	what	

traces	remain	are	now	the	basis	of	the	science	of	stratigraphy,	the	reconstruction	

of	Earth	history	from	rock	strata.	Since	humans	invented	writing	and	drawing,	

the	scope	for	preservation	has	increased,	as	historical	archives	have	grown,	that	

largely	concerned	the	lives	of	our	ancestors.	In	the	last	few	decades,	the	scale	of	

this	preservation	has	grown	enormously,	and	democratized	extraordinarily,	as	

the	burgeoning	electronic	databases	have	come	to	capture	many	aspects	of	our	

lives..	

	

Over	these	decades,	too,	our	electronic	recorders	have	looked	beyond	the	

crowded	lives	of	our	own	species,	to	look	at	the	planet	itself.		At	many	thousands	

of	locations,	temperature,	pH,	wind	speed,	ocean	chemistry,	wave	height,	ice	

volume,	soil	activity	and	many	more	indicators	of	the	planetary	environment	are	

continuously	recorded	by	sensor	and	satellite.		This	is	now	the	basis	of	Earth	

System	science	(ESS),	a	holistic	discipline	based	on	considering	Earth	as	a	single	

planetary‐level	complex	system	(Schellnhuber	1999;	Lenton,	2016;	Steffen	et	al.,	

in	prep.).	The	emerging	narrative	of	this	discipline,	constructed	and	interrogated	

by	a	wide	community	of	scientists,	tells	us	that	Earth	is	changing.		It	was	the	scale	

and	speed	of	this	captured	planetary	evolution	that	led,	at	a	meeting	in	2000	in	

Mexico,	to	Paul	Crutzen’s	improvisation	of	the	Anthropocene	name	and	concept	

(Crutzen	&	Stoermer	2000,	Crutzen	2002).	

	

The	rest,	of	course,	is	history	–	itself	now	preserved	in	many	forms	for	whatever	

might	now	count	as	posterity.		This	phenomenon	is	itself	part	of	social	history,	

with	much	to	say	about	the	speed	of	cross‐disciplinary	transfer	of	a	new	concept.		

The	adoption	of	this	concept	by	the	social	sciences	and	humanities	reflects	its	

power	to	articulate	humanity’s	impact,	leaving	a	lasting	legacy	on	the	planet.	Its’	

holistic	approach	to	considering	diverse	vectors	of	environmental	change	may	

have	become	appropriated	as	a	symbolic	term	for	our	modification	of	the	

environment	around	us,	to	some	extent	diverging	from	the	purely	scientific	

definition	at	an	isochronous	boundary	at	a	point	where	conceptually	humans	

have	come	to	drive	planetary	systems.	But	the	history	that	was	implicit	in	the	
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new	term	was,	from	the	beginning,	of	a	much	different	scale	of	both	time	and	of	

recording	of	Earth	processes.		While	there	is	now	debate	about	whether	the	

Anthropocene	should	be	regarded	as	a	term	of	Earth	history	or	of	human	history	

(Gibbard	&	Walker	2014;	Finney	2014;	Finney	&	Edwards	2016),	there	is	no	

doubt	that	Crutzen	placed	it	within	geology	and	more	specifically	within	

stratigraphy.		The	Holocene,	he	said,	had	finished	and	a	new	interval	of	

geological	time	had	begun.	

	

This	concept	was	almost	immediately	adopted	within	the	ESS	community,	where	

it	was	soon	used	as	a	central	integrating	concept	(e.g.	Steffen	et	al.	2004).		The	

geological	community	responded	more	slowly,	first	with	an	initial	analysis	by	a	

national	commission,	of	the	Geological	Society	of	London	(Zalasiewicz	et	al.	

2008),	then	by	an	international	working	group	of	the	International	Commission	

on	Stratigraphy,	which	is	currently	considering	whether	the	Anthropocene	

should	be	formalized,	or	not,	within	the	Geological	Time	Scale.		It	has	no	power	of	

decision,	but	can	collect	and	analyse	the	evidence,	and	make	recommendations.	

	

There	is	quite	a	difference	between	the	research	styles	and	philosophies	of	the	

communities	that	deal	with	formal	stratigraphy	and	with	ESS.		The	former	have	a	

long	pedigree,	taken	back	centuries	to	Charles	Lyell,	William	Smith,	Baron	Cuvier	

and	even	earlier,	while	the	latter	is	a	relatively	new	discipline,	just	a	few	decades	

old.		The	former	are	focused	on	the	classification	of	rock	and	of	geological	time	

from	an	Earth	perspective,	based	upon	relative	superposition	of	strata	rather	

than	absolute	ages,	which	have	only	been	reliably	determined	in	recent	decades.	

The	latter	are	primarily	concerned	with	researching	the	modes	and	mechanisms	

of	Earth	System	change.		The	former	are	overwhelmingly	concerned	with	

ancient,	pre‐human	rock	and	time,	while	the	latter	have,	as	a	strong	central	

focus,	the	analysis	and	understanding	of	contemporary	global	change.			

	

The	extent	to	which	these	two	major	branches	of	study	do	or	do	not	concur	on	

the	question	of	the	Anthropocene	may	seem	at	first	glance	to	be	primarily	a	

matter	for	the	physical	sciences.		However,	given	the	degree	to	which	the	

Anthropocene	has	travelled	widely	across	disciplinary	boundaries	and	has	been	
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variously	interpreted,	it	seems	to	us	that	the	degree	of	convergence,	or	

alternatively	conflict,	of	view	between	the	two	disciplines	most	directly	involved	

with	the	physical	basis	for	the	Anthropocene	–	as	we	explore	below	‐	should	be	

of	significance	to	those	disciplines	concerned	with	wider	social	and	cultural	

aspects.		

	

The	distinction	between	ESS	and	stratigraphy	as	outlined	above	is	of	course	in	

part	a	caricature	–	increasingly,	stratigraphy	has	evolved	towards	understanding	

past	global	change	through	proxy	evidence,	and	indeed	ESS	at	least	partly	

originates	from	the	development	of	these	methodologies,	such	as	cyclic	

stratigraphy	or	sequence	stratigraphy,	which	are	derived	from	a	systemic	

approach	–	trying	to	decipher	sea‐level	change	from	patterns	of	ancient	marine	

and	coastal	sedimentary	deposits,	and	once	the	sea	level	curve	has	been	

established,	to	forecast	(or,	rather,	in	an	Earth	History	setting,	retrocast)	

sedimentation	patterns,	based	on	time‐	and	space‐bound	sedimentation	models.	

Interestingly,	such	a	fusion	of	system	analysis	and	stratigraphy	was	triggered	by	

an	economic,	hence,	societal	framing	–	the	search	for	fossil	hydrocarbons	using	

seismic	methods	(Haq	et	al.	1987,	Wilgus	et	al.	1988,	Catuneanu	2006).			

	

Nevertheless,	there	is	difference	between	the	two	communities,	that	may	be	

symbolized	by	the	rapid	adoption	of	the	Anthropocene	concept	by	the	ESS	

community	(e.g.	Steffen	et	al.	2004)	by	contrast	with	the	more	cautious	and	

skeptical	approach	shown	among	the	formal	stratigraphic	community	(e.g.	

Finney,	2014;	Finney	&	Edwards	2016;	Walker	et	al.	2015).	To	our	knowledge	

the	Anthropocene	Working	Group	is	the	first	such	body	tasked	with	investigating	

stratigraphic	boundary	definition	to	include	an	Earth	System	scientist	among	its	

membership,	thus	providing	the	potential	for	quantifying	the	scales	of	

environmental	change	which	should	ultimately	leave	their	signature	in	the	

geological	record.	

	

Therefore	to	square	this	particular	circle	–	that	is,	to	see	whether	the	

Anthropocene	might	formally	become	the	epoch	that	Crutzen	suggested,	there	is	

needed	analysis	of	its	material	character,	assessing	characteristic	‘fingerprints’	of	
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Anthropocene	strata	as	well	as	considering	trajectories	in	Earth	surface	

processes.		Such	analysis	has	been	a	central	focus	of	the	initial	study	by	the	

Stratigraphy	Commission	of	the	Geological	Society	of	London	(Zalasiewicz	et	al.	

2008)	and	subsequently	by	the	Anthropocene	Working	Group	and	its	

publications	(Williams	et	al.	2011;	Waters	et	al.	2014;	Waters	et	al.	2016),	where	

this	concept	is	not	just	potentially	a	time	unit	(an	Epoch)	but	a	material	‘time‐

rock’	unit	of	formal	chronostratigraphy	(that	would	be	an	Anthropocene	Series:	

Zalasiewicz	et	al.	2014a).	

	

So	far,	this	particular	exercise	has	mainly	been	rock‐focussed:		that	is,	looking	to	

see	what	kind	of	signals	are	captured	by	the	sedimentary	strata,	and	then	

assessing	their	significance	for	characterizing	and	correlating	these	strata	

around	the	world.		There	is	a	wide	array	of	these	(Waters	et	al.	2016),	including	

novel	minerals	and	materials,	geochemical	signals	reflecting	industrial	

development,	changing	atmospheric	composition	in	response	to	combustion	of	

fossil	fuels	and	evidence	of	biotic	change.	But	their	significance	for	stratigraphy	

has	more	to	do	with	this	geological	utility	than	it	has	for	gauging	the	importance	

of	change	to	the	Earth	System.		Hence,	the	artificial	radionuclides	scattered	

around	the	Earth	may	be	regarded	as	a	primary,	and	arguably	the	primary,	

marker	for	Anthropocene	strata	because	of	their	global	distribution,	relatively	

easy	detectability	and	near‐synchroneity	of	expression,	which	broadly	coincides	

with	multiple	signals	of	significant	environmental	change	during	the	mid‐20th	

century	(Zalasiewicz	et	al.	2014a;	Waters	et	al.	2015).		However,	by	comparison	

with	the	scale	of	some	other	kinds	of	anthropogenic	perturbation	they	may	be	

regarded	as	environmentally	trivial,	even	if	one	factors	in	the	two	devastating	

explosions	at	Hiroshima	and	Nagasaki.			

	

This	is	not	unusual	in	stratigraphy	–	many	key	chronostratigraphical	boundary	

markers	reflect	events	of	slight	environmental	impact	in	themselves,	although	

the	boundaries	themselves	commonly	reflect	more	profound	surrounding	

changes.	For	example,	the	Ordovician–Silurian	boundary	event	selected	is	

defined	by	the	appearance	and	wide	distribution	of	a	couple	of	distinctive	

graptolite	species,	an	environmentally	negligible	event	when	compared	with	the	
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major	Earth	System	changes	taking	place	around	this	level—	a	major	warming	

event,	marked	deglacial	sea	level	rise	associated	with	increased	marine	anoxia,	

and	mass	extinction	events	(e.g.	Zalasiewicz	&	Williams	2014).	

	

So,	one	might	use	this	essay	to	turn	this	approach	on	its	head.		Rather	than	take	

the	stratigraphic	signals	and	ask	if	they	correspond	to	environmentally	

significant	events,	one	may	take	the	environmental	trends	picked	out	as	of	major	

significance	to	contemporary	global	change	by	the	ESS	community	and	consider	

whether	or	not	they	will	leave	a	recognizable	signal	within	strata	that	may	then	

be	used	as	a	basis	to	create	chronostratigraphical	units.	Not	everything	can	be	

fossilized.		The	use	of	radio	waves	or	microwaves	for	television	and	radio	to	

connect	civilization	is	likely	to	leave	absolutely	no	physical	record	on	Earth,	

apart	from	the	TV	and	radio	receivers	(though	it	may	leave	a	kind	of	record	in	

space	indefinitely,	as	the	energy	of	the	various	waves	spreads	out).	

	

Nevertheless,	sedimentary	strata	(including	snow	and	ice	layers)	are	sensitive	

recorders	of	many	environmental	processes.	In	sediments	this	may	be	through	

their	inorganic	mineral	composition,	or	their	biological	content,	or	in	ice	through	

the	preservation	of	ancient	atmospheric	chemistry	and	particulates,	and	so	the	

range	of	proxy	environmental	indicators	recognized	is	very	large	(IPCC	2013;	

Zalasiewicz	&	Williams	2016),	and	growing.		Hence,	it	is	commonly	feasible	to	

compare	the	history	captured	by	human	observations	with	the	history	recorded	

in	sediment	layers	(e.g.	Haywood	et	al.	2013).		One	must,	though,	have	good	age	

constraint,	and	one	must	allow	for	the	biases	present	in	the	stratigraphical	

record:	for	instance,	hard‐shelled	organisms	are	better	represented	in	strata	

than	soft‐bodied	ones,	and	marine	organisms	have	on	the	whole	a	better	

preservation	potential	than	terrestrial	ones.	More	subtly,	one	may	relate	

patterns	of	the	dispersal	of	marine	waste	materials	to	the	sedimentary	record	of	

plastics	and	other	materials,	though	the	evolution	of	different	controlling	factors	

(e.g.	changes	from	disposal	in	landfill	to	burning,	or	new	recycling	strategies)	

may	be	very	difficult	to	glean	from	the	stratigraphical	record.	
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Behind	this	relation	stand	the	hypotheses	as	originally	expressed	or	implied	by	

Crutzen	(2002),	that	humans	have	become	a	geological	factor	by	their	activities,	

and	that	these	activities	change	the	Earth	System	state	and	functioning.		The	

resulting	geological	implications	are	that	these	changes	are	expressed	as	

geological	signals	in	the	sediments	now	accumulating,	and	that	these	signals	will	

persist	throughout	geologically	significant	time	intervals,	so	there	is	no	way	back	

to	the	Holocene.	

	

To	examine	these	hypotheses	and	their	implications,	one	might	consider	two	

major	syntheses	of	ESS	process:		the	nine	‘planetary	boundaries’	proposed	by	

Rockström	et	al.	(2009),	which	represent	thresholds	in	major	planetary	

processes	used	to	help	define	a	‘safe	operating	space	for	humanity’,	and	the	

trends	represented	in	the	now‐iconic	graphs	of	the	post‐WWII	‘Great	

Acceleration’	of	Steffen	et	al.	(2004;	2007;	2015a).			The	former	are	recorded	as	

key	indicators	of	long‐term	planetary	habitability	–	by	humans,	at	least,	while	the	

latter	collectively	build	a	picture	of	rapid	and	profound	change	to	Earth	surface	

processes,	or,	in	from	the	perspective	of	ESS,	to	the	structure	and	functioning	of	

the	Earth	System.	In	the	following	section,	these	two	syntheses	are	discussed,	in	

particular	in	the	context	of	the	potential	alignment	of	the	modifications	to	the	

Earth	System	to	the	multiple	environmental	signals	proposed	to	indicate	the	

transition	to	an	“Anthropocene	state”.	

	

Rockström	et	al.	(2009)		

	

Climate	change:		this	parameter	is	regarded	as	already	beyond	a	‘safe	operating	

space’	(Rockström	et	al.	2009,	Fig.	1;	updated	in	Steffen	et	al.	2015b,	Fig.	3).		

Given	the	importance	of	climate	to	geological	process,	it	is	small	wonder	that	

sophisticated	methods	to	measure	a	range	of	components	of	climate	change,	

including	local	temperature,	ice	volume	(itself	a	proxy	for	global	temperature),	

atmospheric	carbon	dioxide	levels,	humidity	and	sea	level,	from	stratal	

properties	have	been	devised	(IPCC	2013;	Zalasiewicz	&	Williams	2016).		

Applied	to	the	Anthropocene,	these	suggest	that	climate	drivers	such	as	

atmospheric	carbon	dioxide	and	methane	levels	are	now	outside	not	only	
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Holocene	but	also	Quaternary	norms,	with	concomitant	increase	of	radiative	

forcing.	However,	global	temperatures,	though	rising,	are	not	yet	in	equilibrium	

and	have	yet	to	exceed	peak	interglacial	temperatures,	although	they	are	now	

outside	of	the	natural	envelope	of	variability	expected	from	astronomical	forcing	

at	this	point	in	the	current	interglacial	interval	(Waters	et	al.	2016	and	

references	therein).		

	

Ocean	acidification:		the	importance	of	this	phenomenon	in	contemporary	

global	change	was	recognized	surprisingly	late	(Caldeira	&	Wickett	2003),	and	

this	spurred	considerable	research	into	both	modern	and	ancient	acidification	

processes.	Considerable	progress	has	been	made	in	understanding	‘fossil’	

examples	of	ocean	acidification	such	as	the	Paleocene‐Eocene	Thermal	Maximum	

that	occurred	55	million	years	ago.		This	was	associated	with	the	release	of	a	

large	amount	of	carbon	(as	some	combination	of	carbon	dioxide	and	methane)	

from	stores	in	the	ground	into	the	ocean/atmosphere	system.		It	caused	

dissolution	of	deep	sea	carbonate	floors	evident	in	sedimentary	successions	that	

helped	buffer	the	extra	acidity	(e.g.	Zeebe	and	Zachos	2007).		As	with	global	

climate,	the	main	effects	of	ongoing	change	in	this	parameter	still	lie	in	the	future	

–	probably	within	decades	rather	than	centuries	at	current	rates	of	carbon	

emissions	(Orr	et	al.	2005),	although	coral	reefs	and	calcareous	nannoplankton	

already	seem	to	suffer	in	certain	areas	(cf.	Hoegh‐Guldberg	et	al.	2008,	Doney	et	

al.	2009).	These	hence	would	become	“petrified”	as	leached	skeletons	already	in	

the	lowermost	strata	of	the	Anthropocene.	

	

Stratospheric	ozone	depletion:	This,	the	major	anthropogenic	change	most	

closely	associated	with	Paul	Crutzen,	the	destruction	of	the	polar	ozone	layer	by	

chlorofluorocarbons	(CFCs),	seems	not	to	have	left	any	detectable	signal	in	

strata.	

	

Nitrogen	and	phosphorus	cycle	perturbations:		In	both	these	cases,	there	has	

been	a	rough	doubling	of	the	amount	of	the	reactive	element	at	the	terrestrial	

surface,	in	the	case	of	nitrogen	via	fixing	from	the	air	by	the	Haber‐Bosch	

process,	and	in	the	case	of	phosphorus	by	extraction	from	fossil‐based	
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concentrations	in	the	ground	(Filippelli	2002).		Rockström	et	al.	suggest	that,	by	

comparison	with	long‐term	background	levels,	the	nitrogen	cycle	is	already	

outside	its	planetary	boundary,	while	that	of	phosphorus	is	just	within.	The	

Steffen	et	al.	2015b	update	assesses	that	phosphorus,	too,	is	now	outside	of	its	

boundary.	Geological	comparison	via	proxy	evidence	is	more	difficult,	as	

elemental	concentrations	of	N	and	P	in	strata	tend	to	reflect	local	conditions.		

However,	the	analysis	of	Canfield	et	al.	(2010)	suggested	that	the	Anthropocene	

perturbation	to	the	nitrogen	cycle	is	the	greatest	since	the	early	Proterozoic,	

~2.5	billion	years	ago,	while	clear	changes	to	patterns	of	nitrogen	isotopes	in	

strata	laid	down	in	northern	lakes,	far	distant	from	centres	of	population,	have	

been	used	to	identify	an	Anthropocene	beginning	at	~1950	AD	(Holtgrieve	et	al.	

2011;	Wolfe	et	al.	2013).		More	indirectly,	over‐fertilization	of	coastal	seas	is	

creating	extensive	‘dead	zones’	(Diaz	&	Rosenberg	2004)	through	seasonal	

anoxia	and	mass	die‐off	of	macrobenthos.		The	sedimentary	layers	so	created	

resemble	those	in	the	ancient	geological	record	associated	with	reduced	oxygen	

levels	at	the	sea	floor;	however,	the	interpretation	of	such	ancient	strata	is	

commonly	ambiguous	as	to	whether	the	low	oxygen	levels	are	the	result	of	

raised	primary	productivity	of	plankton	(as	in	the	modern	dead	zones)	or	

reduced	marine	circulation.		

	

Global	freshwater	use:		this	parameter	(still	within	the	planetary	boundary	

according	to	Rockström	et	al.)	is	more	difficult	to	gauge	from	the	fossil	record.		In	

truth,	with	a	few	exceptions	such	as	dam‐building	beavers	(Kramer	et	al.	2012),	

no	other	organism	has	re‐engineered	major	waterways	or	pumped	large	

volumes	of	water	from	out	of	the	ground	(that	is,	from	below	the	level	where	

plant	roots	draw	out	water	through	transpiration).		Nevertheless,	in	general	

terms	human	engineering	of	waterways	has	been	described	as	a	‘third	major	

phase’	of	fluvial	evolution	in	Earth	history	(Williams	et	al.	2014),	following	the	

transition	from	Archean	fluvial	sediments	with	‘reduced	detrital’	minerals	by	2.4	

billion	years	ago	to	the	evolution	of	an	oxygenated	atmosphere	and	the	

development	of	a	distinct	mineralogical	assemblage	in	subsequent	river	deposits	

in	the	early	Proterozoic	Eon,	and	the	changes	in	river	patterns	associated	with	
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the	spread	of	terrestrial	vegetation	in	the	Devonian	and	Carboniferous	periods,	

~400	to	~350	million	years	ago.	

	

Change	in	land	use:		The	tracking	of	change	in	land	use	during	the	Holocene	and	

into	the	(putative)	Anthropocene	has	been	a	major	research	area	involving	a	

variety	of	disciplines,	notably	archaeology	and	environmental	geography,	using	a	

multitude	of	proxies	(e.g.	soil	type,	pollen,	artefacts,	bones)	and	augmented	by	

modeling.	The	diachronous	spread	of	anthropogenic	land‐use	change	over	

millennia	has	been	increasingly	well	constrained	(e.g.	Ellis	2011,	Ellis	et	al.	2012)	

and	used	in	discussion	of	both	possible	wider	impacts	such	as	on	climate	and	of	

the	‘early’	beginnings	of	the	Anthropocene	(Ruddiman	2003;	Ruddiman	et	al.	

2015).		But	it	is	this	gradual	nature	of	land‐use	change,	notably	through	the	

migration	of	new	agricultural	technologies,	that	makes	this	such	a	poor	potential	

indicator	for	the	commencement	of	an	isochronous	Anthropocene	epoch.	

Comparison	with	pre‐Holocene	terrestrial	strata	has	been	made	as	regards	the	

progressive	extinction	of	many	megafaunal	species	(Koch	&	Barnosky	2007)	–	

probably	mostly	by	hunting	‘overkill’	by	humans	–	with	consequent	impact	on	

vegetation	and	perhaps	even	on	regional	climate	(e.g.	Doughty	2013).		In	earlier,	

pre‐human	geology,	there	are	few	direct	analogues	for	human	land	use	changes,	

though	some	proxies	(e.g	charcoal	for	forest	fires	(Scott	&	Glasspool	2006;	fungal	

spore	‘spikes’	for	more	extensive	terrestrial	devastation:	Vajda	&	McLoughlin	

2004)	may	be	regarded	as	comparisons.		The	biological	element	associated	with	

land	use	changes,	in	creating	engineered	monocultures	to	sustain	a	single	

species,	has	no	analogue	in	past	geology	and	has	been	suggested	to	represent	a	

major	step	change	in	biospheric	evolution	(Williams	et	al.	2015).					

	

Biodiversity	loss	(now	changed	to	“Change	in	biosphere	integrity”,	Steffen	

et	al.	2015b):		This	planetary	boundary,	regarded	by	Rockström	et	al.	as	already	

exceeded,	has	inspired	a	good	deal	of	effort	to	gain	meaningful	comparison	with	

past	extinction	events.		There	are	considerable	difficulties	involved,	not	least	the	

uncertainties	regarding	current	species	numbers	(Mora	et	al.	2011)	and	inherent	

biases	involved	in	fossilization	towards	hard‐shelled	or	otherwise	skeletonized	

marine	organisms.		Nevertheless,	at	least	within	certain	categories,	comparisons	
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may	sensibly	be	made	(Kidwell	2015),	and	the	kind	of	large‐scale	syntheses	

made	by	Barnosky	et	al.	(2011,	2014;	see	also	Ceballos	et	al.	2015,	Pimm	et	al.	

2014)	suggest	considerable	elevation	of	extinction	rates	that,	with	current	

trajectories	suggest	a	geologically	imminent	(2‐3	centuries)	mass	extinction	

event	on	a	par	with	the	‘Big	Five’	extinction	events	of	the	Phanerozoic	Eon.	

Currently,	the	geologically	unprecedented	level	of	species	invasions	is	arguably	

producing	a	larger	biostratigraphical	signal	than	are	extinctions	per	se,	and	both	

together	are	in	effect	redirecting	the	course	of	Earth’s	biological	(and	hence	

future	palaeontological)	evolution.	There	are	also	striking	changes	in	the	

composition	of	biological	assemblages.	Smil	(2011)	estimated	that	humans	now	

make	up	of	the	order	of	one‐third	by	mass	of	large	land	vertebrates,	with	most	of	

the	other	two‐thirds	being	the	vertebrates	that	we	keep	to	eat	(cows,	pigs,	sheep	

and	so	on).		Wild	vertebrates	likely	now	make	up	something	less	than	5%	of	the	

present‐day	total.		This	might	be	compared	with	the	situation	before	human	

impact,	when	biomass	was	divided	among	~350	large	land	vertebrate	species	

(Barnosky	2008),	a	species	number	that	was	roughly	halved	during	the	

megafaunal	extinctions	in	late	Pleistocene	to	Holocene	times	(Koch	&	Barnosky	

2006)	and	continues	to	decline	today	(Ceballos	et	al.	2015).		A	more	subtle,	but	

equally	striking	signal	is	the	estimated	order‐of‐magnitude	increase	of	large	

vertebrate	biomass	from	an	inferred	pre‐human	baseline	to	the	present	day	

(Barnosky	2008).	This	is	largely	a	function	of	the	directed	increase	in	primary	

productivity	through	the	‘extra’	N,	P	and	other	nutrients	that	supply	fodder	and	

forage	(with	energy	input	from	fossil	fuels),	and	then	the	feeding	of	this	to	the	

domestic	animals	that	we	in	turn	then	eat.		These	are	major	signals.	However,	the	

inherent	diachroneity	in	species	changes	through	extinction,	invasive	spread	or	

assemblage	change	across	the	planet	makes	biostratigraphy,	the	preferred	

choice	for	definition	of	most	deep‐time	geological	units,	largely	unsuitable	for	

such	a	geologically	young	unit	as	the	Anthropocene.	

	

Atmospheric	aerosol	loading:		This	is	one	of	two	parameters	(see	also	below)	

that	to	Rockström	et	al.	are	currently	‘not	quantified’,	although	the	2015	update	

has	assessed	that	aerosol	loading	in	the	South	Asian	monsoon	region	is	now	

beyond	its	regional	boundary	and	is	approaching	a	high	risk	zone.		One	aspect	of	
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this	that	is	amenable	to	stratigraphical	analysis	is	the	dissemination	and	

subsequent	sedimentation	of	fly	ash	particles	from	the	high‐temperature	

combustion	of	hydrocarbons,	both	as	inorganic	particles	(measurable	in	

sediments	such	as	peats	by	magnetic	analysis)	and	as	spherical	carbonaceous	

particles	(that	may	be	recovered	by	means	akin	to	those	used	by	

palaeontologists	studying	fossil	pollen).		Analogous	naturally‐formed	particles	

have	been	used	to,	for	instance,	help	characterise	the	Cretaceous‐Tertiary	

boundary	level	(Harvey	et	al.	2008).	Studies	carried	out	to	date	on	recent	

sediments	(Oldfield	2015;	Rose	2015;	Swindles	et	al.	2015)	have	been	used	to	

help	suggest	a	mid‐20th	century	boundary	for	the	Anthropocene	(see	also	Waters	

et	al.	2016).		Sulfate	aerosols	derived	from	fossil	fuel	combustion	show	a	

prominent	rise	and	peak	in	glacial	ice	during	the	second	half	of	the	20th	century,	

but	are	less	distinctive	of	the	Anthropocene,	in	that	comparable	sulfate	spikes	

can	be	caused	by	volcanic	eruptions.	

	

Chemical	pollution	(now	“Novel	entities”,	Steffen	et	al.	2015b):		This	other	

‘unquantified’	parameter	represents	a	wide	spectrum	of	chemicals,	many	novel,	

that	have	been	disseminated	in	the	environment	by	human	action.		While	

comprehensive	stratigraphic	assessment	is	also	premature,	a	number	of	signals	

may	be	discerned	and	compared	with	signals	in	older	strata.		There	are	chemical	

novelties,	specifically	long‐lasting	persistent	organic	pollutants	(POPs)	that	

include	a	number	of	pesticides,	that	have	been	shown	to	be	characterize	post‐

mid‐20th	century	strata	(Muir	and	Rose,	2007;	Paull	et	al.	2006)	and	that	might	

prove	to	be	as	persistent	as	the	long‐chain	haptophyte	algal‐derived	alkanes	

used	as	palaeotemperature	proxies	in	strata	millions	of	years	old	(Lawrence	et	

al.	2007).		Radioactive	pollution,	too,	represents	a	specific	marker	(Waters	et	al.	

2015)	though	one	that	will	decay	away	in	~100,	000	years	(with	respect	to	

plutonium‐235,	the	longest‐lived	of	the	common	artificial	radionuclides);	the	

resultant	pattern	of	daughter	isotopes,	though	more	subtle,	may	in	the	far	future	

betray	the	mark	of	atomic	fission.	As	mentioned	earlier,	atmospheric	fallout	from	

nuclear	testing	has	considerable	advantages	as	a	potential	tool	for	marking	the	

start	of	the	Anthropocene.	This	has	led	to	the	proposal	that	this	putative	time	

interval	could	coincide	with	the	start	of	the	atomic	age	with	the	first	detonation	
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of	the	Trinity	nuclear	device	in	New	Mexico,	at	the	specific	date	of	16	July	1945	

(Zalasiewicz	et	al.,	2015).	But	it	was	not	until	1952,	with	the	much	larger	

thermonuclear	detonations,	that	the	fallout	became	globally	dispersed	on	land,	in	

oceans	and	in	glacial	ice	(Waters	et	al.,	2015).	

	

Other	forms	of	pollution	include	metals,	particularly	toxic	heavy	metals	such	as	

cadmium,	lead	and	mercury.		These	are	in	effect	selectively	eroded	and	brought	

to	the	surface	by	humans,	often	from	great	depths	in	the	crust,	with	a	fraction	

lost	in	the	extraction	and	manufacturing	process	and	disseminated	as	metal‐rich	

plumes	through	soils	and	river	sediments,	often	ultimately	enriching	lacustrine	

and	coastal	sediments	downstream.		The	recognition	and	assessment	of	such	

enhanced	metal	contents	needs	rigorous	analysis	of	the	range	of	‘natural’	

background	levels,	but	reveals	widespread	significant	enrichments	around	

mining	and	industrial	centres	(e.g.	Gałuszka	et	al.	2014).	One	might	here	make	

analogies	with	ancient	examples	of	metal	enrichment	in	surface	sediments	

during	some	ore‐forming	processes,	particularly	in	weathering‐enriched	

‘gossans’	and,	more	intriguingly,	with	rare,	ancient	metal‐enriched	marine	strata	

such	as	the	Kupferschiefer,	a	naturally	metal‐rich	stratum	of	late	Permian	age	

still	worked	as	a	major	ore	in	central	Europe.		It	is	still	a	matter	of	speculation	

whether	humans	are	now	creating	modern	Kupferschiefers	in	some	parts	of	the	

world.			

	

	

The	‘Great	Acceleration’	graphs			

	

These	graphs	were	first	published	by	Steffen	et	al.	in	2004,	and	subsequently	

republished	in	2007	as	supporting	evidence	for	the	‘Great	Acceleration’,	and	

revised,	modified	and	updated	in	2015a.	The	aim	“was	to	record	the	trajectory	of	

the	‘human	enterprise’	through	a	number	of	indicators	and,	over	the	same	time	

frame,	track	the	trajectory	of	key	indicators	of	the	structure	and	functioning	of	

the	Earth	System”	(Steffen	et	al.,	2015a).	They	compiled	data	from	diverse	

sources	and	examined	global	trends	dating	back	to	the	mid‐18th	century	in	24	
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parameters,	divided	equally	into	‘socio‐economic	trends’	and	‘Earth	System	

trends’.	Most	of	these	clearly	showed	the	marked	upswing	that,	beginning	~1950	

CE,	collectively	makes	up	the	‘Great	Acceleration’.		By	and	large,	they	are	more	

detailed	in	scope	than	the	‘planetary	boundaries’	of	Rockström	et	al.	(2009),	

although	a	few,	such	as	water	use,	are	in	effect	identical.	

	

Socio‐economic	trends	in	Steffen	et	al	(2015a):		

	

•	 Population	(there	is	also	Urban	population	as	a	separate	graph,	

showing	a	similar	but	steeper	upwards	trend).		Rapid	growth	of	human	

population,	closely	linked	with	increased	consumption	of	resources,	along	with	

accelerated	technological	development,	represent	the	three	driving	forces	for	

many	of	the	anthropogenic	signatures	that	are	considered	indicative	of	the	

Anthropocene	(Waters	et	al.	2016).	But	it	is	also	a	fundamental	driver	for	most,	if	

not	all,	of	the	socio‐economic	and	Earth	System	trends.		

	

However,	tracking	the	growth	in	human	numbers	from	their	preserved	remains	

as	a	direct	biostratigraphic	signal,	and	comparing	it	with	that	of	other	large	

vertebrates	present	and	past,	presents	a	unique	palaeontological	challenge	(from	

a	far	future	perspective),	given	that	we	are	the	only	species	with	such	

sophisticated	and	varied	means	of	disposing	of	our	own	remains,	notably	with	

various	forms	of	burial	and	cremation.	The	biases	of	preservation	involved	are	

different	from	the	factors	(termed	taphonomic	factors)	that	affect	the	

preservation	of	modern	and	fossil	animal	carcasses	in	more	or	less	natural	

circumstances	(e.g.	Behrensmeyer	2001)	and	are	different	from	those	of	the	

animals	that	we	eat	(the	butchered	bones	of	which	turn	up	in	large	amounts	in	

landfill	sites).	

	

Two	financial	trends	(Real	GDP	and	Foreign	Direct	Investment)	are	not	in	any	

meaningful	sense	directly	preservable	stratigraphically	(other	than	in	the	

sporadic	preservation	of	coins,	that	would	not	offer	meaningful	information	on	

trends,	but	is	of	importance	geologically	as	a	technofossil	with	imprinted	age	of	

manufacture),	nor	do	they	have	any	sensible	analogue	in	animal	communities	
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prior	to	those	of	culturally	modern	humans.		Money	is	clearly	a	hugely	significant	

driver,	amplifier	and	modulator	of	geological	process	today	and	deserves	study	

in	that	light.	But,	its	activity	–	particularly	now	that	much	finance	is	‘virtual’	and	

created	and	transferred	electronically	–	will	not	leave	direct	stratal	traces.	

	

Primary	energy	use,	being	currently	largely	hydrocarbon‐based,	leaves	a	clear,	

permanent	stratigraphic	trace	through	such	proxies	as	changes	in	carbon	

isotopes,	fly	ash	and	black	carbon	residues	and	in	increased	atmospheric	carbon	

dioxide,	directly	measurable	in	ice	cores	and,	with	more	difficulty,	using	proxies	

such	as	Ca/Mg	ratios	and	fossilized	plant	stomata	in	older	successions	(Waters	et	

al.	2016,	Zalasiewicz	&	Williams	2016,	and	references	therein).		Other	energy	

sources	(e.g.	hydropower	‐	which	in	the	Steffen	et	al.	schemes	has	a	separate	

trend	of	Large	Dams	‐	solar	and	tidal	power)	may	locally	leave	preservable	

infrastructure,	some	accompanied	by	modified	sediment	patterns	such	as	

sediment	accumulating	behind	dams),	but	will	be	much	less	easily	interpretable	

into	any	kind	of	global	picture.		Nuclear	power	leaves	long‐lasting	residues	with	

geological	antecedents	(the	Oklo	natural	reactors,	see	above)	though	globally	

these	are	mostly	overprinted	by	bomb‐produced	radionuclides,	which	may	not	

fit	all	definitions	of	energy	production.				

	

Water	use	is	effectively	the	same	parameter	as	that	used	by	Rockström	et	al.,	

and	considered	above.	

	

Paper	production	is	an	intriguing	parameter.		The	amounts	noted	–	rising	from	

~50	million	tons	annually	in	the	mid‐20th	century	to	~400	million	tons	annually	

today,	is	broadly	comparable	to	that	for	plastics	(Waters	et	al.	2016;	Zalasiewicz	

et	al.	2016)	–	hence,	about	enough	has	been	produced	to	wrap	the	whole	world	

in	a	sheet	of	paper.		While	paper	is	much	less	inert	than	plastic,	especially	in	the	

aqueous	realm,	and	can	decompose,	and	be	burnt	or	recycled,	its	preservation	

potential	when	buried	in	landfill	sites	is	surprisingly	high,	perhaps	in	part	due	to	

the	chemical	processes	associated	with	bleaching,	fillers,	coating	and	printing	

(Rathje	&	Murphy	1992).	In	general,	paper	may	be	expected	to	fossilize,	in	
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appropriate	geological	settings,	about	as	well	as	delicate	plant	fossils	such	as	

leaves	–	and	fossil	leaves	are	not	uncommon	in	the	stratigraphic	record.		

	

Transportation	and	International	tourism,	like	finance,	are	very	important	

agents	of	geological	change,	directly	and	indirectly,	but	the	stratigraphic	

evidence	left	is	likely	to	be	fragmentary.		Direct	evidence	may	take	the	form	of	

the	transporting	hardware	–	cars,	trains,	ships,	aeroplanes	–	though,	shipwrecks	

apart,	these	are	among	the	more	consistently	recycled	of	the	technofossils	that	

humans	make.		On	land,	roads	may	locally	be	preservable,	though	long‐term	

these	will	typically	appear	as	very	short	disconnected	segments,	and	will	be	hard	

to	reconstruct	into	anything	like	the	original	networks	(see	discussion	in	

Zalasiewicz,	2008,	pp.	231‐2),	although	underground	lines	of	communication	

such	as	tunnels	have	greater	preservation	potential	(Zalasiewicz	et	al.	2014b).		

For	air	transport,	almost	no	trace	will	remain	of	the	pathways	taken.		Shipping,	

though,	is	leaving	a	trace	beyond	that	of	occasional	wrecks.		The	coal‐fired	

steamers	of	the	nineteenth	century	left	underwater	‘trackways’	of	the	clinker	

from	coal‐burning,	tossed	overboard	(Ramirez‐Llodra	et	al.	2011)	while	major	

shipping	lines	of	all	ages	will	show	concentrations	of	rubbish	in	the	sea	floor	

sediments;	these	commonly	have	good	preservation	potential.		More	generally,	

transportation	has	carried	distinctive	solid	materials	(e.g.	ornamental	rocks	for	

buildings),	the	patterns	of	transport	of	which	can	sometimes	be	gleaned	where	

these	have	identifiable	source	areas,	akin	(though	more	complex)	to	the	way	that	

glacial	transport	paths	can	be	reconstructed	from	trains	of	glacial	erratics.		

Transportation	has	carried	animals	and	plants	too;	the	patterns	of	the	very	many	

invasive	species	constitute	a	striking,	if	complex,	proxy	record	both	on	land	and	

(especially	from	the	use	of	ballast	water)	in	the	sea.								

	

	

Earth	System	trends	of	Steffen	et	al.	(2015a)	

	

Several	of	these	are	trends	in	atmospheric	gases;	of	those	only	stratospheric	

ozone	(discussed	above)	leaves	no	discernable	stratigraphic	trace.		Carbon	

dioxide,	methane	and	nitrous	oxide	have	all	been	recorded	from	polar	ice	
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(Waters	et	al.	2016	and	references	therein)	and	so	the	scale	of	Anthropocene	

perturbation	from	a	Quaternary	baseline	(of	the	last	800,000	years,	as	far	back	

as	the	records	go)	is	clear.		With	CO2,	some	proxy	evidence	from	earlier	strata	is	

present	(see	above),	as	for	ocean	acidification	(also	discussed	above).	This	is	

not	the	case	for	the	other	two	trace	gases,	though	inferences	have	been	made,	

say,	of	how	methane	levels	might	have	related	to	the	oxygenation	of	the	

atmosphere	around	the	Archean/Proterozoic	boundary	(Zalasiewicz	&	Williams	

2012,	pp.	28‐30).			

	

Of	the	marine	trends,	nitrogen	to	the	coastal	zone	has	already	been	discussed	

above.		The	stratigraphic	impact	of	the	substantial	marine	fish	capture	trend	

includes	the	physical	reorganization	of	large	parts	of	the	continental	shelf	sea	

floor	by	trawling	(Gattuso	et	al.	2009)	a	process	moving	into	deeper	water	to	

affect	parts	of	the	continental	slope	and	submarine	canyons	(Puig	et	al.	2012;	

Martin	et	al.	2015).		The	transformation	of	the	trophic	webs	of	the	oceans	will	

undoubtedly	leave	stratigraphic	traces,	but	to	our	knowledge	there	has	been	

little	investigation	of	these	as	yet;	fish	fossils	are	not	commonly	used	as	routine	

stratigraphic	indicators	and	so	ancillary	effects	on	smaller	plankton	will	need	to	

be	considered.		Shrimp	aquaculture	is	associated	with	widespread	removal	of	

coastal	mangrove	swamps	that	in	turn	has	considerable	effects	on	coastal	

sedimentation	patterns.		Again,	systematic	study	as	regards	the	resultant	

stratigraphic	patterns	have	not	yet	been	undertaken,	to	our	knowledge.	

	

	

Discussion	

	

It	is	clear,	from	this	brief	general	comparison,	that	there	is	a	strong,	but	often	

indirect	relationship	between	the	kind	of	parameters	analysed	in	studies	of	the	

contemporary	Earth	System,	and	the	kind	of	signals,	imprinted	into	layers	of	

accumulating	sediment,	that	are	used	in	characterising	and	defining	geological	

time	units.	
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A	general	relationship	may	be	suspected	from	the	outset,	because	fundamental	

changes	to	the	Earth	System	will	have	pervasive	effects	upon	the	physical	

structure	and	chemical	and	biotic	composition	of	our	planet’s	surface,	and	that	

will	lead	to	a	greater	chance	of	producing	recognizable	and	correlatable	

stratigraphic	signals.	

	

Nevertheless,	there	are	differences	in	scale	and	expression	that	may	be	explored.		

For	instance,	within	the	biological	realm,	there	is	some	focus	in	Earth	System	

studies	on	the	higher	trophic	levels	(as	in	the	studies	on	marine	fisheries)	and	on	

the	fundamental	structure	of	the	changes.		For	stratigraphy,	it	is	the	small,	

ubiquitous	organisms	(foraminifera,	molluscs,	dinoflagellates,	nannoplankton)	

that	are	more	important,	and	within	that	specific	events	are	sought	–	such	as	the	

appearance	or	extinction	of	a	particularly	widespread	and	distinctive	species	–	

that	can	then	be	exploited	as	a	time	marker.		Hence	the	accent	in	biostratigraphy	

in	general,	that	in	theory	has	many	millions	of	fossil	species	at	its	disposal,	for	a	

small	selected	subset	of	these	that	form	indicators	of	the	fossil	zones	(‘biozones’)	

used	by	palaeontologists	as	time	markers	of	strata.		

	

Such	specificity	may	have	its	advantages	that	might	indeed	be	of	wider	use.		For	

instance,	in	the	two	‘unquantified’	parameters	of	Rockström	et	al.,	chemical	

pollution	and	atmospheric	loading,	it	may	be	that	the	‘stratigraphic	proxy’	

approach	may	help	provide	some	means	of	quantification.		Conversely,	there	

would	be	merit	in	considering	some	of	the	Earth	System	trends,	particularly	

novel	ones	such	as	aquaculture,	and	establishing	not	only	the	environmental	

effects	of	these	practices,	but	also	the	stratigraphic	ones.		Such	analysis	may	

provide	a	different,	and	longer‐term,	perspective	that	may	have	its	own	value	in	

informing	policy.	

	

Other	trends,	such	as	those	associated	with	finance	and	patterns	of	economic	

practice,	even	though	they	likely	produce	little	that	may	be	regarded	as	a	direct	

stratigraphic	signal,	are	eminently	worth	investigating	for	their	impact	on	Earth	

System	processes,	as	variations	in	their	operation	certainly	act	to	strongly	
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amplify,	diminish	or	otherwise	modulate	key	Earth	System	characters	such	as	

carbon	emissions	and	forest	cover.	

	

It	is	clear	that	comparison	of	these	different	perspectives	on	global	change	helps	

in	understanding	–	as	far	as	that	is	possible	–	of	the	whole.		The	Earth,	we	know,	

is	complex	–	almost	certainly	the	most	complex	planet	in	this	solar	system.		The	

human	factor	in	the	Anthropocene	is	undoubtedly	increasing	its	complexity	in	

many	ways	but	decreasing	it	in	others,	and	the	pattern	and	speed	of	its	evolution.		

Such	combined	approaches	to	study	give	us	the	best	chance	of	understanding	

what	is	currently	happening	on	Earth.				

	

	

Outlook	

	

The	Anthropocene	concept	sensu	lato	is	still	novel	and	fluid	in	the	sense	that	it	is	

attracting	a	very	wide	array	of	different	approaches	from	scholars	of	both	

sciences	and	humanities,	who	are	using	it	as	a	springboard	to	explore	new	

metaphorical,	philosophical,	didactic,	narrative	and	artistic	approaches.	Much	of	

this	discourse	on	the	Anthropocene	–	in	part	expressed	as	controversy	‐	derives	

from	this	open	and	“adoptive”	character	of	the	concept.	It	has	been	variously	

adopted	or	rejected	for	a	range	of	purposes	that	include	the	idealistic	and	

ideological.		In	order	to	minimise	misunderstanding	of	what	we	regard	as	the	

core	of	the	concept,	which	is	rooted	in	Earth	process	and	history,	we	here	briefly	

attempt	to	deconstruct,	and	reassemble,	a	few	different	aspects	of	the	

Anthropocene:	

	

Thus,	the	Anthropocene	concept	in	effect	emerged	‐	at	least	in	its	reappearance	

at	the	beginning	of	the	21st	century	(see	Hamilton	&	Grinevald	2015)		from	the	

analysis	of	the	many,	mutually	interacting	changes	in	state	of	the	present	Earth	

System	components:	hence,	from	the	Earth	System	sciences.		

	

Geologists	were	challenged	to	test	whether	such	system	changes	have	significant	

geological	expression	in	the	stratigraphic	record,	in	part	via	an	invitation	to	
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establish	the	Anthropocene	Working	group	by	the	Subcommission	of	Quaternary	

Stratigraphy,	part	of	the	International	Commission	on	Stratigraphy.	The	Science	

paper	by	Waters	et	al.	(2016),	in	collating	and	reviewing	all	available	studies,	

identified	seven	types	of	signature	and	concluded	that	formal	

chronostratigraphical	and	geochronological	establishment	of	a	new	geological	

series/epoch	is	not	only	defensible,	but	would	also	be	appropriate	and	

geologically	useful.	The	term	enables	wide	and	effective	communication	of	the	

Anthropocene	concept	and	of	its	material	expression	in	sediments	and	ice,	but	

currently	suffers	from	a	wide	interpretation	of	its	meaning.	By	providing	a	

precise	definition	of	the	term,	it	would	allow	a	consistency	in	its	usage,	and	by	

becoming	part	of	the	International	Chronostratigraphic	Chart	would	stabilize	its	

meaning	both	within	and	outside	the	geoscience	community.		

	

	

The	direct	scientific	outcomes	of	characterising	the	Anthropocene	include	the	

recognition	of	geological	signals	as	additional	data	and	proxies	for	ESS,	especially	

for	testing	models	and	forecasting	future	scenarios.	Geologists	in	turn	benefit	

from	this	mutual	exchange	with	the	ESS,	as	it	enables	better	process	models	of	

the	stratigraphical	data.	Further,	scholars	of	the	humanities	(including	

historians,	philosophers,	anthropologists,	archaeologists,	political	scientists	and	

artists)	are	able	to	correlate	their	findings	and	insights	with	the	Earth	history	

timescale.	Hence,	not	only	space,	but	also	time	is	better	scalable,	correlateable,	

measurable	–	and	indeed	disputable.	In	wider	society,	geological	timescales	are	

often	used	as	reasons	for	non‐action	on	societal,	intragenerational	and	individual	

timescales	(„climate	has	always	changed“,	„coral	reefs	became	extinct	several	

times,	but	reappeared“,	and	so	on:	cf.	Leinfelder	2013,	2015).		The	Anthropocene	

helps	examine	whether	such	quoted	reasons	are	justifiable	by	placing	ongoing	

global	change	within	a	deep	time	context.	

	

In	addition,	a	clearly	defined	Anthropocene	concept	enables	truly	novel	

approaches	to	transdisciplinary		thinking	in	general.	In	challenging	well	

established	dualistic	boundaries	such	as	nature	and	culture	or	good	and	bad,	it	

can	clearly	help	new	integrative	views	and	forms	of	problem‐solving	to	emerge.	



	 21

There	may	even	be	practical	benefit	in	helping	steer	towards	a	change	from	the	

current	dysfunctionality	of	the	combined	human/planetary	system	to	something	

more	closely	resembling	a	functioning	and	stable	Anthropocene	state.	

	

In	this,	the	Anthropocene	used	as	metaphor	might	help	trigger	new	normative	

and	ethical	thinking.	If	humanity	now	has	the	power	of	being	a	„geological	force“,	

then	it	follows	that	such	power	should	be	used	carefully	and	sparingly.		

Furthermore,	it	suggests	that	for	human	wellbeing	–	and	survival	–		the	whole	

Earth	System	has	to	be	functional	not	just	for	humans,	but	sufficiently	to	

maintain	a	biological	diversity	of	which	humans	are	simply	part.		This	might	be	

held	to	represent	an	anthropocenic	imperative.	Such	ethical	implications	then	

may	stimulate	transformational	thinking,	to	enable	us	to	better	integrate	into	the	

Earth	System.	That,	at	least,	might	enable	the	Anthropocene	to	symbolize	hope	

rather	than	despair,	and	enable	a	practical	and	reflective	response	to	the	

geological	transformations	under	way,	as	the	Earth	evolves	towards	a	novel	state	

with	no	precedent	on	this,	or	any	other	planet	that	we	are	aware	of.	
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