1	Holocene carbon dynamics at the forest – steppe ecotone of southern Siberia
2	
3	Running head: Holocene carbon dynamics in southern Siberia
4	
5	¹ Mackay, A.W*., ² Seddon, A.W.R., ^{3,4} Leng, M.J., ⁵ Heumann, G., ¹ Morley, D.W.,
6	⁶ Piotrowska, N., ⁷ Rioual, P., ⁸ Roberts, S., ⁸ Swann, G.E.A.
7	
8	1: *Environmental Change Research Centre, Department of Geography, UCL, London
9	UK, WC1E 6BT.
10	Tel: +44 (0)20 7679 0558; Fax: +44 (0)20 7679 0565; email: a.mackay@ucl.ac.uk
11	
12	2: Department of Biology, University of Bergen, PO Box 7803, Bergen N-5020, Norway
13	
14	3: NERC Isotope Geosciences Facilities, British Geological Survey, Nottingham NG12
15	5GG, UK
16	
17	4: Centre for Environmental Geochemistry, University of Nottingham, NG7
18	2RD, UK
19	
20	5: University of Bonn, Steinmann Institute of Geology, Mineralogy and Paleontology,
21	Nussallee 8, 53115 Bonn, Germany
22	

23	6: Department of Radioisotopes, Institute of Physics - CSE, Silesian University of
24	Technology, Konarskiego 22B, 44-100 Gliwice, Poland
25	
26	7: Key Laboratory of Cenozoic Geology and Environment, Institute of Geology &
27	Geophysics, Chinese Academy of Sciences, P.O. box 9825, Beijing 100029, China
28	
29	8: School of Geography, University of Nottingham, University Park, Nottingham, NG7
30	2RD, UK
31	
32	
33	
34	Keywords: abrupt climate change, carbon, forest – steppe ecotone; Holocene, Lake
35	Baikal, palaeolimnology, permafrost
36	
37	Type of paper: Primary Research Article

38	
39	Abstract
40	
41	The forest – steppe ecotone in southern Siberia is highly sensitive to climate change;
42	global warming is expected to push the ecotone northwards, at the same time resulting in
43	degradation of the underlying permafrost. To gain a deeper understanding of long-term
44	forest – steppe carbon dynamics, we use a highly-resolved, multiproxy,
45	palaeolimnological approach, based on sediment records from Lake Baikal. We
46	reconstruct proxies that are relevant to understanding carbon dynamics including carbon
47	mass accumulation rates (CMAR; g C $m^{-2} yr^{-1}$) and isotope composition of organic matter
48	$(\delta^{13}C_{TOC})$. Forest – steppe dynamics were reconstructed using pollen, and diatom records
49	provided measures of primary production from near- and off-shore communities. We
50	used a Generalized Additive Model (GAM) to identify significant change points in
51	temporal series, and by applying generalised linear least-squares regression modelling to
52	components of the multiproxy data, we address: (1) what factors influence carbon
53	dynamics during early Holocene warming and late Holocene cooling?; (2) how did
54	carbon dynamics respond to abrupt sub-Milankovitch scale events?; and (3) what is the
55	Holocene carbon storage budget for Lake Baikal.

57 CMAR values range between 2.8 - 12.5 g C m⁻² yr⁻¹. Peak burial rates (and greatest 58 variability) occurred during the early Holocene, associated with melting permafrost and 59 retreating glaciers, while lowest burial rates occurred during the neoglacial. Significant 60 shifts in carbon dynamics at 10.3, 4.1 and 2.8 kyr BP, provide compelling evidence for

61	the sensitivity of	of the region to	sub-Milankovitch	drivers of o	climate change.	We estimate
----	--------------------	------------------	------------------	--------------	-----------------	-------------

- 62 that 1.03 Pg C were buried in Lake Baikal sediments during the Holocene, almost one
- 63 quarter of which was buried during the early Holocene alone. Combined, our results
- 64 highlight the importance of understanding the close linkages between carbon cycling and
- 65 hydrological processes, not just temperatures, in southern Siberian environments.

68 Introduction

69

70	Permafrost is highly vulnerable to global warming, and in recent decades has experienced
71	temperature increases of up to 3°C, with multiple, complex impacts on vegetation,
72	hydrology and the biogeochemical cycling of carbon (Vaughan et al., 2013). Sporadic -
73	isolated permafrost regions are especially at risk, including those in southern Siberia –
74	northern Mongolia, from degradation through warming, human impact and increased
75	wildfires (Sharkuu, 1998; Romanovsky et al., 2010; Zhao et al., 2010; Törnqvist et al.,
76	2014). Globally, permafrost contains one of the largest pools of organic carbon, and
77	warming ultimately results in the release of this carbon pool to the atmosphere via
78	microbial degradation (Schuur et al., 2008). Old organic carbon liberated from melting
79	permafrost may also be exported to headwater streams and rivers as dissolved organic
80	carbon (DOC) (Spencer et al., 2015). In central Siberia, large amounts of DOC are
81	transported from catchments into lakes, especially via rivers at more southerly latitudes
82	where sporadic and isolated permafrost is extensive (Prokushkin et al., 2011).
83	
84	Over long timescales, the nature of carbon release from permafrost soils is rather
85	uncertain (Schuur et al., 2008), but one potential, under-utilised tool for understanding
86	how climate change has influenced carbon dynamics is by lacustrine sediment records of
87	organic geochemistry. These records reflect long-term interactions between lakes and
88	their catchments (Anderson, 2014), especially regions underlain by permafrost (Vonk et
89	al., 2012). Lakes in general act as an important control on the global carbon cycle, despite
90	occupying only a small percentage of the surface of the earth. Carbon burial to the bottom

of lakes is substantial, especially considering the quantities of sediment that have

Page 6 of 71

71	of faces is substantial, espectantly considering the quantities of seament that have
92	accumulated since the end of the last glaciation, which likely represents more than two-
93	fifths (42 Tg C yr ⁻¹) of the amount of organic carbon buried in ocean sediments (c. 100
94	Tg C yr ⁻¹) (Dean and Gorham 1998).
95	
96	Within lake sediments, a number of different indicators can be used to record the
97	responses of carbon cycling to extrinsic drivers such as climate. For example,
98	sedimentary total organic carbon (TOC) provides a first order estimate of the amount of
99	bulk organic matter that escapes remineralization during sedimentation (Meyers &
100	Lallier-Verges, 1999). However, TOC is sensitive to changes in sediment accumulation
101	rates, and so arguably a better estimate of organic carbon burial is achieved through the
102	calculation of carbon burial (or mass accumulation) rates (CMAR; g C m ⁻² yr ⁻¹) (Meyers
103	& Teranes, 2001) which are closely associated with the delivery of allochthonous carbon
104	to lakes (e.g. Watanabe et al., 2009; Hyodo & Longstaffe, 2011; Moy et al., 2011).
105	Sources of organic carbon sequestered into lake sediments may be further discriminated
106	through their carbon isotope composition ($\delta^{13}C_{TOC}$) and TOC/total nitrogen (C/N) ratios
107	(Leng & Marshall, 2004). Lake sediment records can also reveal major vegetation
108	changes in the forest - steppe ecotone (through pollen analysis, e.g. Bezrukova et al.,
109	2010; Iglesias et al., 2014), as well as shifts between primary producers (e.g. diatoms),
110	linked to climate variability (Weckström et al., 2014). Multiproxy palaeolimnology is a
111	powerful approach to gain deep insight into ecosystem dynamics in permafrost regions
112	over long timescales.

113

91

114	One of the most important ecosystems in southern Siberia is Lake Baikal and its
115	catchment. It is the world's largest lake by volume, but it is also the deepest and oldest
116	lake, with sedimentary records spanning at least 20 million years. Its catchment spans
117	almost 450,000 km^2 , from the southern limit of the boreal forest into the steppe regions of
118	northern Mongolia. About 80% of Baikal's catchment belongs to its largest tributary, the
119	Selenga River, which alone accounts for over half of all river input into the lake.
120	Catchment permafrost is extensive - continuous and discontinuous permafrost dominate
121	the east and west portions of the basin (ca. 30%), while sporadic and isolated permafrost
122	dominate the south (Sharku, 1998; Törnqvist et al., 2014). Annual air temperature trend
123	maps for the past 50 years show southern Siberia to be experiencing some of the largest
124	increases globally (Jones et al. 2012), threatening vulnerable carbon pools including
125	permafrost (Schuur et al., 2008; Romanovsky et al., 2010) and the hemi-boreal forests
126	(Wu et al., 2012; DeLuca & Boisvenue, 2012). Lake Baikal itself is also responding to
127	regional warming; surface water temperatures and summer stratification have increased
128	in recent decades (Hampton et al. 2014) while ice cover duration and thickness have
129	declined (Todd and Mackay 2003). Its long sedimentary record contains an estimated
130	4,500 Pg of organic carbon, more than 400 times that contained in its catchment soils
131	(Alin & Johnson 2007), which is essentially locked away permanently. More relevant for
132	understanding contemporary lake-catchment interactions is the amount of organic carbon
133	sequestered since the last deglaciation, which is currently unknown, and the role that
134	climate may have played in this process. Understanding how climate change influenced
135	carbon dynamics in the past has the potential to provide important insights for

understanding how global warming may influence lake-catchment carbon dynamics intothe future.

138

139	Here, we apply a palaeolimnological, multiproxy approach to understand Holocene
140	carbon dynamics in the Baikal-Selenga catchment at a multidecadal resolution. Global
141	temperatures during the early Holocene were at least as warm as today (Marcott et al.
142	2013), and rates of permafrost warming during the early Holocene were also comparable
143	to rates estimated for present day (Anisimov et al., 2002). Therefore, comparisons
144	between early and late Holocene periods may provide useful insights into understanding
145	long-term carbon dynamics at the forest – steppe ecotone. The Holocene also experienced
146	several centennial-scale abrupt events (Mayewski et al., 2004; Wanner et al., 2014), such
147	as the 8.2 kyr cold event (Kleiven et al., 2008) and the 4.1 kyr arid event (Cullen et al.,
148	2000) but the extent to which these can influence Holocene carbon dynamics in
149	permafrost regions remains unknown. The multi-decadal, multi-proxy dataset offered in
150	this study has potential to provide several key insights into carbon dynamics in a climate-
151	sensitive, permafrost region. To analyse these data, we use a Generalised Additive
152	Modelling version of a SiZer analysis (Chaudhuri & Marron, 1999; Korhola et al. 2000)
153	for pinpointing significant points of change in the different temporal series, and use
154	generalised least squares regression to investigate how key components of carbon cycling
155	in the lake respond to long-term changes in climate variability. The dataset and methods
156	we have developed and applied in this study presents a unique opportunity to address
157	three principal questions:

158

159	(1) what are the factors influencing carbon dynamics during early Holocene warming,
160	and how do they compare to the late- Holocene?
161	(2) how did carbon dynamics respond to abrupt sub-Milankovitch scale (e.g. 8.2 and
162	4.1 kyr) events?
163	(3) what is the carbon storage budget for Lake Baikal during the Holocene, and how
164	does this compare with other lakes?
165	
166	
167	Materials and methods
168	
169	Study site
170	
171	The Lake Baikal basin is situated in one of the world's most continental regions;
172	summers are short, warm and wet while winters are long, dry and cold. Summer rainfall
173	stems from the progression of cyclones moving in from west Siberia. In autumn, cold
174	Arctic air intrudes from the Kara Sea to central Asia, which leads to the growth of the
175	Siberian High, a high pressure cell which intensifies during winter, and leads to cold air
176	passing into Asia (Gong & Ho, 2002) influencing the intensity of the East Asian Winter
177	Monsoon (EAWM) (Wu & Wang, 2002).
178	
179	The Vydrino Shoulder (51.58°N, 104.85°E) is an isolated high in the south basin of Lake
180	Baikal (Fig. 1). It forms an upper- to mid-slope, underwater terrace of mostly fine-
181	grained sediments, free from turbidites and unaffected by bottom-water currents which

182	can cause sediment focussing (Charlet et al. 2005). The Shoulder sits off-shore from
183	several major south basins tributaries (including the Snezhnaya and Vydrinaya rivers,
184	which have their source in the neighbouring Khamar-Daban mountain range) and is
185	approximately 130 km from where the Selenga River enters Lake Baikal. Sidescan sonar
186	mosaics and seismic data (Charlet et al., 2005) show the upper terrace sediments to be
187	relatively undisturbed by tectonic activity and reworking and are therefore suitable for
188	Holocene reconstructions. In the summer of 2001, a suite of cores was extracted from an
189	off-shore ridge crest location of continuous sedimentation (>600 m water depth)
190	including a box core (CON01-605-5) and a piston core (CON01-605-3). During retrieval,
191	the upper 12.5 cm of surface sediment were lost from the box core, representing the past
192	c. 800 years. To provide context for carbon dynamics related to recent regional warming,
193	carbon mass accumulation rates were calculated for the past 50 years from a UWITEC
194	gravity core (BAIK13-7) taken in 2013 to the west of CON01-605 cores. Full details of
195	the various core codes, their locations and relevant analyses are given in Table 1.
196	
197	Dating
198	
199	Radiocarbon dates were obtained by accelerated mass spectrometry (AMS) from pollen
200	and spore concentrates from twelve box core (CON01-605-5) samples (Piotrowska et al.,
201	2004) (Table S1). All radiocarbon dates were calibrated using IntCal13 radiocarbon
202	calibration curve (Reimer et al., 2013). Age-depth modelling was done using 'Bacon2.2',
203	allowing for variable sediment accumulation rates (Blaauw & Christen, 2011; see Fig. 2).
204	The core was divided in 38 five-cm sections, and prior parameters used for calculations

205	were: 50 years per cm for accumulation rate with gamma distribution shape 1.5, and
206	default settings for memory (see Fig. 2). The results of Markov Chain Monte Carlo
207	iterations plotted in the upper left corner of Fig. 2 indicate good performance of the
208	model. Sediment samples from BAIK13-7 were dated using ²¹⁰ Pb analyses by non-
209	destructive gamma spectrometry. Chronologies were calculated using the CRS (constant
210	rate of ²¹⁰ Pb supply) dating model, after corrections were made for the effect of self-
211	absorption of low energy gamma rays within samples (Appleby, 2001).
212	
213	Palaeoecology
214	
215	Pollen and diatom analyses were undertaken on two different cores extracted from the
216	Vydrino Shoulder (Table 1). Pollen data were analysed at 10 mm intervals from the box
217	core CON01-605-5 and were used to represent long-term vegetation changes in the
218	surrounding landscape. Pollen were counted at magnifications of 400 to 600x, with
219	critical identifications made at 1000x (see Demske et al., 2005 for full details). Here we
220	report on total arboreal pollen (AP) and <i>Pinus sylvestris</i> pollen (PynSylv) (Scots Pine) as
221	indicators of forest dynamics. A steppe – boreal forest index was also calculated:
222	[(Artemisia+chenopods+Ephedra)/AP]*100 (Traverse, 1998 in Bezrukova et al., 2005).
223	
224	We used a principal components analysis (PCA) on the pollen data to summarise long-
225	term vegetation trends in around the lake (Fig SI). The pollen percentage data were
226	Hellinger transformed prior to analysis. For all subsequent analyses, we multiplied PC1
227	by -1 so that increases in the values of PC1 reflect expansion of boreal forest.

228	
229	Diatoms were analysed at 5 mm resolution from the piston core (CON01-605-3) and
230	represent a proxy for the main contributions of primary productivity within the lake. For
231	each sample at least 300 valves were counted using oil immersion phase-contrast light
232	microscopy at x1000 magnification. Diatom cell fluxes (total and benthic) (cm ⁻² yr ⁻¹
233	$x10^{6}$) were estimated by the addition of divinylbenzene microspheres (Battarbee &
234	Kneen, 1982), together with calculated sedimentation rates (cm yr ⁻¹).
235	
236	Isotope geochemistry
237	
238	Isotope geochemistry was undertaken on the box core (CON01-605-5) on contiguous 5
239	mm samples and was used to understand different components of carbon cycling (Leng &
240	Marshall, 2004). Sediments were placed in 5% HCl to remove any CaCO ₃ (assumed
241	negligible), then washed over Whatman 41 filter papers with deionised water and dried at
242	40°C in a drying cabinet. When dry, samples were ground to a fine powder and stored in
243	glass vials. Carbon isotope ratios ($\delta^{13}C_{TOC}$), percentage total organic carbon (%TOC) and
244	percentage total nitrogen (%TN) (used to calculate C/N) were analysed during
245	combustion in a Carlo Erba 1500 on-line to a VG Triple Trap and dual-inlet mass
246	spectrometer. $\delta^{13}C_{\text{TOC}}$ values were converted to the V-PDB scale using a within-run
247	laboratory standard calibrated against NBS-19 and NBS-22, with C/N ratios calibrated
248	against an Acetanilide standard. Replicate analysis of sample material indicated a
249	precision of ±0.1‰ for $\delta^{13}C_{TOC}$ and ±0.1 for C/N. %TOC was also calculated for the past
250	50 years on BAIK13-7 sediments, using the methods outlined above.

1	•	

252 <u>Carbon mass accumulation rates</u>

253

254	Only sediment samples from the piston core (CON01-605-3) were routinely analysed for
255	wet densities and % dry weight at 105 °C, from which dry bulk density (DBD) values
256	could be calculated (Table 1). Therefore, mean piston-core DBD values for 100-year
257	intervals during the Holocene were calculated for the piston core. These were used
258	alongside mean %TOC values for 100-year intervals of the Holocene box core (CON01-
259	605-5) to derive organic matter densities (g cm ^{-3}). Using the Box core calibrated age
260	model (cm yr ⁻¹), organic carbon mass accumulation rates (CMAR; g C m ⁻² yr ⁻¹) were
261	calculated on the centennial-scale averages of %TOC and DBDs. CMAR were also
262	calculated for the past 50 years using %TOC, DBD and sediment accumulation rates
263	calculated for BAIK13-7.
264	
264 265	Statistical modelling of the Vydrino datasets
	Statistical modelling of the Vydrino datasets
265	Statistical modelling of the Vydrino datasets Ecological dynamics are subject to modes of variability across a variety of temporal
265 266	
265 266 267	Ecological dynamics are subject to modes of variability across a variety of temporal
265 266 267 268	Ecological dynamics are subject to modes of variability across a variety of temporal scales (Jackson & Overpeck, 2000), and so one curve may not be sufficient to capture the
265 266 267 268 269	Ecological dynamics are subject to modes of variability across a variety of temporal scales (Jackson & Overpeck, 2000), and so one curve may not be sufficient to capture the complete components of variability within a temporal series. Therefore, for a full
265 266 267 268 269 270	Ecological dynamics are subject to modes of variability across a variety of temporal scales (Jackson & Overpeck, 2000), and so one curve may not be sufficient to capture the complete components of variability within a temporal series. Therefore, for a full appreciation of the long-term dynamics of carbon cycling in Lake Baikal over the
265 266 267 268 269 270 271	Ecological dynamics are subject to modes of variability across a variety of temporal scales (Jackson & Overpeck, 2000), and so one curve may not be sufficient to capture the complete components of variability within a temporal series. Therefore, for a full appreciation of the long-term dynamics of carbon cycling in Lake Baikal over the Holocene approaches that can take multiple temporal dynamics into account are needed.

274	our own v	version of a SiZer analysis and applied it to each of the variables using
275	Generaliz	ed Additive Modelling (GAM) (Wood 2006). Our method allows temporal
276	autocorre	lation to be fitted within each model, which should result in more conservative
277	tests when	n testing for significant trends (e.g. Park et al. 2004).
278		
279	To develo	op our GAM SiZer method, we used the following procedure combining
280	functions	within the package mgcv (Wood 2006), and a script developed by Simpson
281	(2014) in	R (R Development Core Team, 2016) on each of the variables:
282	i)	fix the smoothing parameter k to a given value using the option in the
283		<pre>smoothing term 'fx = TRUE';</pre>
284	ii)	test for temporal autocorrelation in the residuals in the model assuming an
285		exponential decay function (e.g. Seddon et al. 2014);
286	iii)	re-fit the GAM model with an appropriate variance-covariance matrix
287		reflected by the temporal autocorrelation using the stable multiple smoothing
288		parameter estimation method (Wood 2004);
289	iv)	test for the significance of the slope of the GAM spline using a simultaneous
290		confidence interval method described by Simpson (2014);
291	v)	identify which periods contain significantly increasing/ decreasing trends;
292	vi)	repeat for different values of k ($k = 5, 10,, k_{max}$);
293	vii)	map the time periods of significantly increasing or decreasing trends in a
294		SiZer plot, with positive trends identified in red and negative trends identified
295		in blue.
296		

297 The value k_{max} is dependent on sample size, and the different sample resolution and 298 temporal structures of our datasets mean that overfitting may be an issue at higher values 299 of k. Therefore, to estimate the maximum value of k we used the 'gam.check ()' 300 function in the mcgv package to test whether the smoothing basis dimension for a GAM 301 spline was too high. This command employs a test to compare the residual variance of a 302 model fit with the difference of residuals between neighbours, and then randomly 303 reshuffles the residuals 1000 times to find a null distribution of variance differences (see 304 help file for gam.check() function in mgcv, Wood 2006). For each dataset, our value 305 k_{max} was selected according to when the variance differences moved above p = 0.05 from 306 the null distribution. Information on the data transformations used (to enable our models 307 to be run using Gaussian error distributions, the k_{max} values and the mean and median 308 sample resolutions for the different datasets) are provided in Table S2.

309

310 The GAM SiZer methodology presented here is useful for identifying periods of major 311 change within individual temporal series, but our multiproxy study design also means that 312 we were able to use statistical modelling to investigate whether longer term changes in 313 organic geochemistry were linked to changes in climate. A piecewise linear regression 314 revealed a breakpoint in PC1 axis representing long-term forest-climate responses at c. 315 6051 ± 241 cal yr BP (Fig S2). Therefore, we split the data into early Holocene (EH, 11.6) 316 -6.1 kyr) and late Holocene (LH, 6.1 - 0.8 kyr) periods, and ran linear regressions to 317 check for relationships between long-term landscape/ climate changes and organic 318 geochemistry. Since the CMAR dataset had a different age model to the pollen data, the 319 pollen data were linearly interpolated to the sample ages of the CMAR dataset. We then

320	used a generalised-least squares regression to test for relationships between climate and
321	the different within-lake proxies for the two time periods. We checked for the presence of
322	temporal autocorrelation in the residuals, and then fitted a new model assuming
323	exponential decay function to describe the degree of association between samples if
324	required (e.g. Seddon et al. 2014). The models including autocorrelation were compared
325	using the Akaike Information Criterion (AIC) and the best model (lowest AIC) was used
326	to interpret drivers of the changes of carbon cycling over time.
327	
328	
329	Results
330	
331	Sediment sample ages calculated on modelled weighted means shows that the box core
332	sediments were deposited between c. 11.6 – 0.8 cal kyr BP (Fig. 2). Sediment
333	accumulation rates (SAR) range between $30.9 - 9.8$ cm kyr ⁻¹ (mean 16.3 cm kyr ⁻¹), with
334	peak values calculated at 9.8 kyr BP. Thereafter, SAR decline to a low between $4.5 - 4.4$
335	kyr BP.
336	
337	The stratigraphic data are presented in Fig. 3 and the individual SiZer plots in Fig. 4.
338	Assessment of the SiZer plots help to identify key events and trends in the different proxy
339	profiles. Steppe communities were prevalent in the watershed of Lake Baikal during the
340	early Holocene but declined abruptly at c. 10 kyr BP, before gradually declining to very
341	low values at c. 6.1 kyr BP (Fig. 3d). Pollen from steppe vegetation remained a small but
342	persistent feature of the record for the remainder of the Holocene. Pinus sylvestris (Scots

343	pine) was virtually absent, but became dominant (i.e. over 50% total land pollen; TLP) by
344	7.0 kyr BP (Fig. 3b). For the remainder of the record tree pollen was above 80% TLP.
345	The first principal component (PC1) of the pollen data explained 73.3 % of the total
346	variance of the dataset (significant by comparison to the broken stick model, Line &
347	Birks 1996) and was dominated by a gradient between cold-adapted species such as
348	dwarf birch and the eurythermic Scots Pine (Fig. S1). In general, there was a significant
349	long term increasing trend in PC1 from the start of the Holocene to become more stable
350	during the late Holocene at lower values of k (Fig. 3c, 4g).
351	
352	Total diatom cell fluxes (DCF) ranged from c. 0.04 to 2.03 million cells cm ⁻² yr ⁻¹ (Fig.
353	3i). Fluxes were especially significant before 10 kyr BP (Fig. 4e). A final significant
354	decline in DCF was observed at 7.5 kyr BP (Fig. 4e), with no further significant
355	variability for the remainder of the Holocene. In contrast, the fluxes of benthic diatom
356	cells showed more significant variability, particularly at higher frequencies (i.e. higher
357	values of k) for much of the Holocene (Fig. 4f). For example, whilst there were large
358	oscillations in benthic diatom fluxes before c. 10 kyr BP, we also observed significant
359	flux declines at c. 7.5 and 5.5 kyr BP (Fig. 3j, 4f). Mean benthic flux rates for the
360	complete Holocene was 56,000 cells cm ⁻² yr ⁻¹ , or c. 10% of mean diatom cell fluxes,
361	highlighting the overall dominance of the planktonic contribution to diatom productivity
362	in this core.
363	

TOC values were very low during the initial stages of the early Holocene (11.6 – 10.1 kyr
BP; mean 1.2%), followed by a significant increase in %TOC values at 10.0 kyr (Fig. 3e;

366	Fig. 4a), reflecting a step-like shift into increasingly higher Holocene values. In general,
367	three other major periods of change were identified by SiZer analysis: an increase in
368	%TOC at 6.8 kyr BP, and declines in %TOC at 4.1 kyr BP and 2.8 kyr BP (Fig. 4a),
369	reflecting local minima (Fig 3e). In BAIK13-7, TOC in the uppermost sediments
370	deposited during the past 50 years reached 2.5% (Roberts 2016), the highest values since
371	4.7 kyr BP, and some of highest values for the whole Holocene. Sedimentary $\delta^{13}C_{TOC}$ and
372	C/N ratios were also highly variable and show similar patterns to %TOC. For example,
373	sedimentary $\delta^{13}C_{TOC}$ ranges between -30.7 to -27.0‰ (mean -29.03 ‰), with high
374	frequency oscillations found throughout the record (Fig. 3g), and significant periods of
375	change around 9.4, 7.4, 4.1, 3.6, 2.8 and 2.4 kyr BP (Fig. 4c). C/N ratios fluctuate
376	between 9.9 and 13.8 (mean = 11.6) (Fig. 3f). Abrupt and significant declines are
377	observed at 7.8, 4.1 and 2.8 kyr BP (Figs. 3f, 4b).
378	
379	Organic carbon mass accumulation rates were highest during the early Holocene (11.6 –

380 9.0 kyr BP) (Fig. 3h). The SiZer analysis revealed this was also a major period of

381 variability, particularly at higher frequencies (Fig. 4d). For example, peak values of 12.5

 $g C m^{-2} yr^{-1}$ were observed at 10.4 kyr BP before they declined rapidly to c. 4.8 g C m⁻²

383 yr⁻¹ at 10.1 kyr BP. A further significant decline was observed between 9.5 - 9.3 kyr BP.

Between c. 4.5 - 4.0 kyr CMAR exhibited a significant decline from 7.9 g C m⁻² yr⁻¹ to

385 3.1 g C m⁻² yr⁻¹. For much of the late Holocene, CMAR remained low < 5 g m⁻² yr⁻¹ with

a distinct minimum at 2.8 kyr BP. Mean Holocene CMAR was 5.9 g C m⁻² yr⁻¹. During

387 the past 5 decades, mean CMAR in BAIK13-7 were only c. 3 g C m^{-2} yr⁻¹ (Fig. 3h).

389	Modelled PC1 (i.e. the cold-adapted/ eurythermic gradient in the pollen data)
390	relationships with organic geochemistry highlight stronger responses during the early
391	Holocene (Fig. 5a-d) than late- Holocene (Fig. 5e-h). Although the most significant
392	(positive) relationship was between %TOC and PC1 during the early Holocene (Fig. 5b),
393	when expressed as burial rates, the strength of the relationship between PC1 and C
394	declined and was negative (Fig. 5d). A significant negative relationship between PC1 and
395	$\delta^{13}C_{TOC}$ was also observed (Fig. 5a), although these relationships were not significant
396	following a sequential Bonferroni correction. In contrast, the only significant relationship
397	found during the late Holocene was between PC1 and C/N values which was also
398	removed once a a sequential Bonferroni correction was applied (Fig. 5g). Given that the
399	sequential Bonferroni corrections can be overly conservative and make it difficult to
400	observe multiple significant relationships in noisy (e.g. ecological) data (Moran 2003),
401	we attempt to ascribe a physical basis to patterns of variability related to uncorrected
402	significant models in the discussion where possible.
403	
404	
405 406	Discussion
407	Overall concentrations of sedimentary organic carbon in Lake Baikal are low due to high
408	remineralisation rates in the water column (Müller et al., 2005) and poor burial efficiency
409	(Maerki et al., 2006; Sobek et al., 2009, 2014). Burial efficiency is as poor in Lake
410	Baikal as it is in the oceans because of low sediment accumulation rates leading to very

411 high oxygen exposure times (between 10 to over 1000 years, Sobek *et al.* 2009).

412 Moreover, organic carbon is dominated by autochthonous production (phytoplankton

413	contribute approximately 90% of organic matter in Lake Baikal, with less than 10%
414	delivered from the catchment (Votintsev et al., 1975)) which makes it less resistant to
415	oxidation (Sobek et al. 2009). Recently buried organic carbon is also subject to
416	substantial post-depositional degradation, and while this may impact the very recent
417	measurements from BAIK13-7 (discussed below) the impact on our older sediments of >
418	800 years will likely be very minor (Sobek et al. 2014). Previous multiple-lake studies
419	are usually based on single cores taken from central, deep locations, regions that are also
420	subject to sediment focussing, which can result in carbon burial rates higher than
421	expected. While some studies have made corrections for sediment focussing (e.g.
422	Anderson et al. 2014; Heathcote et al. 2015) others have not (e.g. Dong et al. 2012). Crest
423	environments on isolated and inter-basin highs (i.e. the Vydrino Shoulder and the
424	Academician Ridge), are not subject to sediment focussing, so no corrections were
425	needed in this study.
426	
427	What are the factors influencing carbon dynamics during early Holocene warming and

428 how do they compare to the late Holocene?

429

430 Early Holocene

431 Orbital configurations during the early Holocene resulted in very strong seasonality in

central Asia (Bush 2005); summers were warm and wet, while intensely cold winters 432

contributed to low mean northern hemisphere temperatures (Marcott et al., 2013; Wanner 433

et al., 2014) (Fig. 3m). High early Holocene summer insolation (Fig. 3n) led to rapid 434

435 melting of mountain glaciers and permafrost in southern Siberia (Groisman et al., 2013),

436	and increased river flow into Lake Baikal (Mackay et al., 2011), resulting in lake levels
437	rising by approximately 15 m (Urabe et al., 2004). High CMAR during the early
438	Holocene (Fig. 3h) most likely represents allochthonous sources from melting
439	permafrost, during summer months of high fluvial input (Fig 6g); higher than average
440	C/N (Fig. 6d) and δ^{13} C (Fig. 6e) values at this time are also indicative of increased
441	allochthonous carbon to Lake Baikal sediments (Table 2).
442	
443	PC1 generally reflects vegetation responses to insolation driven changes in climate over
444	the Holocene (Tarasov et al. 2007) (Fig. 3m). Forest expansion mirrors the early
445	Holocene decline in global CO ₂ concentrations (Fig. 3k) and an increase in ice core $\delta^{13}C$
446	(Fig. 31) is indicative of the contribution made by expanding boreal forests to the global
447	increase in terrestrial biomass (Elsig et al., 2009). Forest expansion will have led to
448	stabilization of catchment soils which likely accounts for the significant negative
449	relationship between PC1 and carbon burial rates after 9.6 kyr BP. Lower CMAR values
450	may also be linked to lower Selenga River discharge at this time (Fig. 6g) (Prokushkin et
451	al. 2011).
452	
453	Late Holocene

455 Scots Pine is a eurythermic and drought resistant conifer, and its maximum expansion

456 between 7 – 4 kyr BP (Fig 3b) is linked to regional summer temperature maxima and

457 gradually increasing aridity in southern Siberia (Bush 2005; Tarasov *et al.*, 2007) caused

458 by surface albedo feedbacks amplifying the climate system (Ganopolski *et al.*, (1998).

Page 22 of 71

459	$\delta^{13}C_{TOC}$ values are lowest during this period, probably because pelagic diatoms dominate
460	primary production at this time, as well as a potential contribution of respired carbon
461	delivered to the lake from mature forest soils (Table 2). Increased CMAR at c. $5 - 4.5$ kyr
462	BP is coincident with a small peak in modelled summer relative humidity (Bush, 2005),
463	and may be related to organic carbon from melting permafrost being delivered to the lake.
464	
465	Declining late Holocene annual average air temperatures (Fig. 3m) are implicated in a
466	renewed phase of Siberian permafrost formation on previously thawed surfaces, leading
467	to characteristic two-layered frozen structures (Anisimov et al., 2002). Renewed
468	permafrost formation was likely responsible for persistent low carbon burial rates after 4
469	kyr BP (Fig. 6f). Persistent low CMAR observed here is in contrast to (i) mean CMAR
470	for lakes in SW Greenland, which showed no difference between mid and late Holocene
471	periods (Anderson et al., 2009), and (ii) to mean CMAR for Chinese lakes which peaked
472	between 3 – 1 kyr BP, linked to intensified human impact (Wang et al. 2015). These
473	comparisons highlight the importance of regional activities when trying to understand
474	delivery of allochthonous matter to lakes, although the potential influence of sediment
475	focussing was not considered in either study.
476	
477	How do carbon dynamics respond to abrupt, sub-Milankovitch scale events?

478

479 *(i) Early Holocene abrupt events*

480 When ice sheets were still an important feature of North American and Eurasian

481 landmasses, early Holocene climate was punctuated by pervasive millennial-scale

482	variability (e.g. Bond et al., 1997, 2001; Fisher et al., 2002; Mayewski et al., 2004;
483	Wanner et al., 2008; Wanner & Bütikofer, 2008). Variability was associated with strong
484	meltwater pulses flowing into the north Atlantic from melting Northern Hemisphere ice
485	sheets (e.g. Bond et al., 1997; Carlson et al., 2008). These pulses resulted in atmospheric
486	cooling (Rasmussen et al., 2006) which influenced terrestrial, freshwater and marine
487	ecosystems worldwide through teleconnection processes (Björck et al., 1997; Mayewski
488	et al., 2004; Berner et al., 2010; Smith et al. 2016). Modelling studies show that
489	reductions in Atlantic Meridional Overturning Circulation (AMOC) lead to northern
490	surface wind anomalies in central Asia (Zhang & Delworth, 2005). The potassium (K^+)
491	record from the GISP2 ice core is a proxy for the strength of the Siberian High (SH). $K^{\!+}$
492	records show that the SH was exceptionally intense at c. 10.8, 10.3, 9.2 and 8.2 kyr BP
493	(Fig. 6b) (Mayewski et al., 1997), periods coincident with reductions in AMOC. In east
494	Asia, these events (together with changes in solar variability and ENSO) have been
495	implicated in periods of weak Asian summer monsoon, (e.g. D'Arrigo et al., 2005;
496	Dykoski et al., 2005; Wang et al., 2005; Cai et al., 2008; Chen et al., 2015), and
497	widespread aridity e.g. on the Tibetan Plateau (Thompson et al., 1997). Very little is
498	known as to how these events impacted ecosystems in southern Siberia. During such
499	events, a cooler northern hemisphere led to a strengthening of the Asian winter monsoon
500	(Sun et al. 2012). We hypothesize that a more intense Siberian High resulted in a halt to
501	the expansion of taiga forest and a reduction in active permafrost layers, and caused a
502	decline in pelagic productivity in the lake itself, linked to extended periods of ice and
503	snow cover (Mackay et al. 2005).
504	

504

505	Our data show that although significant changes in vegetation were occurring along the
506	forest – steppe transition zone during the early Holocene (Fig. 4g), the direction of
507	change (i.e. expansion of taiga forest) was unaltered, despite abrupt climate change
508	events (Fig. 3a, c; Fig. 6d). However, a small increase in steppe – forest index at 10.3 kyr
509	BP (Fig. 3d), is concurrent with increases in steppe vegetation in the eastern Sayan
510	Mountain range to the west of Lake Baikal (Mackay et al., 2012), and to the east of
511	Baikal from Lake Kotokel (Bezrukova et al., 2010). We conclude therefore that
512	insolation-driven changes driving taiga forest expansion were stronger than sub-
513	Milankovitch forcings, although the latter did appear to result in temporary increases in
514	steppe vegetation. The K^+ peak at 10.3 kyr BP (Fig. 6b) was coincident with a significant
515	decline in CMAR (Fig. 3h; 4d) likely linked to both less permafrost melting and reduced
516	river flow (less glacier melt) into the lake because of increased cold and aridity (Mackay
517	et al., 2011; Fig. 6g). At this time total diatom fluxes were highly variable (DCF) (Fig. 3i,
518	Fig. 4e) with a significant increase in benthic diatom flux (Fig. 3j; Fig. 4f), in line with
519	impacts expected from changes in ice cover associated with a more intense Siberian
520	High. These simultaneous, significant changes in both Lake Baikal and its catchment
521	(Fig. 4, 6) highlights the importance of our analyses in unambiguously identifying the
522	impacts of sub-Milankovitch forcings on ecosystems remote from oceanic influences.
523	
524	Although the 8.2 kyr event is one of most studied cold events linked to freshening of the
525	North Atlantic, few, if any, high resolution records exist for its impact anywhere in

526 Siberia (see Fig. 1 in Morrill *et al.* 2013). In general, temperatures around the Europe and

527 the North Atlantic cooled by approximately 1 °C, especially during wintertime (Alley &

Page 25 of 71

Global Change Biology

528	Ágústsdóttir 2005; Rohling & Pälike 2005), while there is strong evidence of increased
529	aridity, especially in regions affected by the Asian monsoon (Morrill et al. 2013). A fall
530	in Vydrino $\delta^{18}O_{diatom}$ values are indicative of reduced Selenga River flow (Fig. 6g), in
531	line with increased aridity caused by a stronger Siberian High (Mackay et al., 2011),
532	albeit a Siberian High not as strong as that which developed at 10.3 kyr BP (Fig. 6b).
533	Even though we are able to reconstruct carbon dynamics at a resolution comparable to
534	that required by Morrill et al. (2013) of under 50 years, any impact of increased cooling /
535	aridity on regional ecosystems was minimal (Fig. 4). There is a small increase in the flux
536	of benthic diatoms (Fig. 3j) but this is unlikely to be significant (Fig. 4f). Tentatively,
537	therefore, our proxy data suggest that the 8.2 kyr event resulted in a small, temporary
538	shift in the composition of primary producers in Lake Baikal, although overall carbon
539	burial to the bottom sediments remained largely unchanged. Changes in vegetation
540	composition in the southern Siberian catchment did not change either. That we observed
541	no significant change in any of our analyses, suggests that climatic impacts in southern
542	Siberia were not as strong as experienced in regions around the e.g. North Atlantic.
543	Perhaps this is due to greater wintertime than summertime impacts (Alley & Ágústsdóttir
544	2005), promoting aridity through a more prolonged Siberian High, but little change to
545	summertime impacts such diatom growth and permafrost melting.
546	

546

547 (ii) Mid- to late- Holocene abrupt events

548 Unlike early and late Holocene periods, it is not clear what caused mid Holocene cold

549 events (Wanner *et al.*, 2014). Nevertheless, the most striking change in all our

550 geochemical indicators since the demise of northern hemisphere ice-sheets, occurs

551 between 4.4 - 4.0 kyr BP (Fig. 3, 6). After this event, none of these indicators return to 552 earlier Holocene values (Fig. 3), suggesting that a step-change occurred with respect to 553 carbon dynamics at the forest-steppe ecotone in southern Siberia. 554 555 The shift in carbon dynamics is coeval with abrupt hydrological changes reconstructed 556 elsewhere in the world, linked to major shifts in large-scale ocean-atmosphere tropical 557 dynamics, including a weakening of the El Niño Southern Oscillation (ENSO) 558 (McGregor et al., 2013; Dixit et al., 2014), and a weakening of the Asian summer 559 monsoon (Dykoski et al., 2005; Wang et al., 2005; Berkelhammer et al. 2012). Increased 560 aridity has also been reconstructed in Western Europe (Smith et al. 2016), the Middle 561 East (e.g. Cullen et al. 2000; Arz et al. 2006; continental North America (Booth et al., 562 2005; Newby et al., 2014), and in northern Africa (Gasse, 2000). Kilimanjaro ice cover 563 also declined at this time, and a 3cm thick dust layer at c. 4 kyr BP is indicative of 564 extremely dry conditions (Thompson *et al.*, 2002; Fig. 6j). Dust records from ice cores on the Tibetan Plateau (Thompson et al., 1997) and tropical South America (Thompson et 565 566 al. 2000) provide further evidence of widespread aridity at this time, (Fig. 6i, k). It is 567 likely therefore, that the 4.1 kyr BP event in the Lake Baikal watershed may be due to a 568 complex set of interactions between atmosphere and tropical ocean dynamics causing 569 aridity in southern Siberia. In contrast, changes in diatom fluxes (Fig. 3i, j) were well 570 within existing variability. Indeed, there were no significant changes observed in total 571 diatom cell fluxes for the past 6 kyr in Lake Baikal (Fig. 4e), which suggests that factors 572 that caused major fluxes in diatoms during the early Holocene had little influence during 573 the second half of the interglacial.

574

575	Late Holocene cold events were caused by several "overlapping" factors (such as
576	volcanic eruptions and solar minima) against a backdrop of low NH summer insolation
577	(e.g. Wanner et al., 2008; 2014) and amplified by centennial-scale oceanic variability
578	(Renssen et al., 2006). The event dated at c. 2.8 kyr BP is concurrent with a deep, abrupt
579	reduction in solar activity (Fig. 6a) (Grand Solar Minimum) which led to a decline in
580	surface water temperatures in the North Atlantic (Andersson et al., 2003) and weaker
581	meridional overturning circulation (Hall et al., 2004). A small increase in GISP2 K ⁺
582	concentrations (Fig. 6b) indicates a strengthened Siberian High, concomitant with glacier
583	advances in central Asia (Mayewski et al., 2004), a weaker Asian summer monsoon
584	(Dykoski et al., 2005) and dust-inferred aridity over the Tibetan plateau (Thompson et
585	<i>al.</i> , 1997) (Fig. 6i). In the Lake Baikal region, the low resolution of $\delta^{18}O_{diatom}$ values at
586	this time precludes robust interpretation of Selenga flow into Lake Baikal, except to say
587	that it was likely low ((Fig. 6g). SiZer analyses reveals highly significant changes in
588	carbon dynamics at this time (Fig. 4a-d), likely linked to a cooler, more arid climate. The
589	increase in sedimentary $\delta^{13}C_{TOC}$ values (Fig. 3c) is concomitant with a small increase in
590	benthic diatom fluxes, perhaps indicative of a relative shift in the balance between near
591	and off-shore primary producers at this time.
500	

592

593 How much carbon is stored in Lake Baikal sediments deposited during the Holocene?

594

595 Mean carbon burial rates for BAIK13-7 for the past 50 years are 2.70 g C m⁻² yr⁻¹, similar 596 to previous estimated rates in the south basin of 2.62 g C m⁻² yr⁻¹ (Müller *et al.* 2005) and

597	2.7 g C m ⁻² yr ⁻¹ (Alin & Johnson 2007). Because of very high oxygen exposure times and
598	the dominance of autochthonous sources (Sobek et al. 2009), these values are very much
599	at the lower end of burial rates for lakes in general (Alin & Johnson, 2007) and northern,
600	mid-latitude (Heathcote et al. 2015) and culturally eutrophic (Anderson et al. 2014) lakes
601	in particular. Values are similar however, to long-term mean rates for European
602	(Kortelainen et al., 2004; Kastowski et al., 2011), high latitude (Anderson et al., 2009,
603	Chinese (Wang et al., 2015) and other large oligotrophic lakes (Dean & Gorham, 1998;
604	Einsele et al., 2001). The surface area of Lake Baikal covers 31,722 km ² (de Batist et al.
605	2006). Upscaling to the rate of organic carbon burial across the whole lake suggests that
606	at least c. 8.56 x 10^{-5} Pg organic carbon are buried each year (similar to a previous
607	estimate by Alin & Johnson (2007; 8.47 10 ⁻⁵ Pg C yr ⁻¹) but higher than that estimated by
608	Einsele <i>et al.</i> (2001; 6.3 x 10^{-5} Pg C yr ⁻¹)). These rates suggest that 0.1% - 0.3% of
609	estimated global annual storage of carbon into lake sediments $(0.03 - 0.07 \text{ Pg C yr}^{-1}; \text{ Cole}$
610	et al. 2007) occurs in Lake Baikal alone. In Europe, lakes are estimated to cover 240,000
611	km ² , and sequester 1.25 Mt C yr ⁻¹ (Kastowski et al. 2011). Lake Baikal sequesters only
612	about 7% of this amount, despite its area alone approximating to 15% of the surface area
613	of all European lakes. That carbon burial rates in Lake Baikal are less than might be
614	expected, is almost certainly down to its low burial efficiency.
615	

Burial rates calculated for Lake Baikal were mainly obtained from the bottom sediments
from the south basin. However, sedimentation is not continuous in these regions because
large turbidite systems converge on the basin floors (Colman *et al.* 2003). The majority of
palaeoenvironmental studies from Lake Baikal are undertaken in regions of continuous

620	sedimentation such as inter-basin or isolated highs, including the Academician Ridge and
621	the Vydrino Shoulder (Fig. 1). It is from these two regions where the best resolved
622	Holocene profiles, with available TOC data, can be found (e.g. Horiuchi et al. 2000;
623	Watanabe <i>et al.</i> 2009) (Fig. S4). A compilation of Holocene %TOC and $\delta^{13}C_{TOC}$ records
624	reveals similarities across the length of the lake (Fig. S3; Fig. S4 a,b). These temporally
625	coherent observations indicate that regional-scale drivers influenced carbon dynamics
626	throughout Lake Baikal (Table 2) (Fig. 5d). We therefore estimated organic carbon burial
627	budgets during early (11.7 – 10 kyr BP, mid (10 – 4 kyr BP) and late (4 – 1 kyr BP)
628	Holocene periods. Burial rates of organic carbon were consistently higher at Vydrino than
629	on the Academician Ridge, and mean burial rates were substantially higher during the
630	early Holocene than the middle or late periods in both regions (Table 3). Burial rates are
631	likely higher on the Vydrino Shoulder because although autochthonous sources of
632	organic carbon dominate both regions, burial efficiencies on the Academician Ridge are
633	very low due to extraordinarily high oxygen exposure times of over 1000 years; on
634	Vydrino oxygen exposure times are of the order of 10s of years (Sobek et al. 2009).
635	There is considerable variation in burial rates between the two regions, but higher CMAR
636	during the early Holocene highlights the importance of melting glaciers and permafrost
637	on carbon budgets for the whole lake, not just coastal regions of the south basin. Using
638	mean burial rates for early, mid and late Holocene periods, we estimate that 1.03 Pg
639	organic carbon have been buried in Lake Baikal sediments since the start of the
640	Holocene, and almost one quarter of this was deposited before 10 kyr BP. Interestingly if
641	we had just used annual rate of carbon burial for at BAIK13-7 (2.7 g C m ⁻² yr ⁻¹), the
642	estimated budget for buried carbon during the Holocene is similar at 1.00 Pg C. Global

643	carbon storage in lake sediments during the Holocene range from 428 Pg (Cole et al.
644	2007) to 820 Pg (Einsele <i>et al.</i> 2001). Large lakes (area > 10,000 km ²) account for only
645	27 Pg C stored during the Holocene (Cole et al. 2007), so the Lake Baikal contribution to
646	this figure is relatively minor (c. 4%). In comparison to Boreal lakes in general, Holocene
647	carbon storage in Baikal sediments is still only between 4-5% (Kortelainen et al. 2004).
648	Finally, we estimate that TOC buried in Lake Baikal sediments since its formation is
649	likely to be substantially lower than the 4,500 Pg given by Alin & Johnson (2007). They
650	assumed constant sedimentation rates based on ²¹⁰ Pb dated cores from Edgington et al.
651	(1991) of 0.0595 cm yr ⁻¹ . However, these rates are from upper-most sediments, and rates
652	decline as sediments become more compacted. For the Holocene, we estimate average
653	sedimentation rates of 0.0163 cm yr ⁻¹ , while for other regions in the lake, sedimentation
654	rates have been estimated to be about 0.030 cm yr ⁻¹ (Colman et al. 2003). Correcting for
655	slower sedimentation rates in more compacted sediments, the total amount of organic
656	carbon buried in Baikal sediments may well be in the order of only c. 2,200 Pg carbon.
657	
658	Although on a global perspective, Holocene carbon stored in Lake Baikal is relatively
659	minor, that almost one quarter was deposited during the first few thousand years may
660	have had major implications for biodiversity and ecosystem functioning of the lake.
661	Large supplies of allochthonous carbon exported to lakes influences lake water properties
662	including light and heat penetration because of the optical properties of dissolved organic
663	matter (Solomon et al. 2015). For example, light extinction rates are faster, so resulting in
664	a decline in primary production. These processes may account for the decline in diatom
665	cell fluxes concomitant with rapid increases in CMAR (Fig. 3h, i). Work is on-going to

assess overall impact on diatom productivity – biodiversity relationships, and our
unpublished results indicate a major decline in diatom palaeoproductivity at this time.

669	High-resolution, multiproxy, palaeolimnology has demonstrated that carbon dynamics at
670	the forest – steppe ecotone were highly variable during the Holocene. Allochthonous
671	delivery was highest during the early Holocene because high summer insolation and
672	increasing northern hemisphere temperatures caused rapid glacier retreat and melting
673	permafrost, releasing carbon with little forest to stabilize catchment soils. We estimate
674	the approximately one quarter of the Holocene carbon budget was sequestered during this
675	period, which may have had a profound effect on primary production and diversity of
676	large-celled diatom species. Warm summers during the Early Holocene were vulnerable
677	to extended winter cooling associated with periods of increased intensity of the Siberian
678	High. These resulted in abrupt drops in organic carbon burial rates, concomitant with
679	hydrological changes in the catchment. That these changes occurred almost
680	simultaneously with changes elsewhere (e.g. decline in Asian summer monsoon (Dykoski
681	et al., 2005) and increased aridity on the Tibetan Plateau (Thompson et al., 1997))
682	highlight that carbon dynamics in central Asia, far from oceanic influences, were highly
683	responsive to changes in the global climate system during the early Holocene. Sustained
684	low diatom productivity and carbon burial after c. 3 kyr BP is concurrent with the
685	neoglacial, linked to pronounced cooling (Marcott et al., 2013) and aridity caused by
686	vegetation and snow / ice albedo feedbacks in central Asia (e.g. Ganopolski et al., 1998;
687	Renssen et al., 2006), leading to permafrost refreezing again.

688

689 Substantial warming over the past 50 years has led to permafrost degradation in southern 690 Siberia (Törnqvist *et al.*, 2014) and ecological changes in Lake Baikal (Hampton *et al.*) 691 2014). Yet if current rates of permafrost warming are comparable to those during the 692 early Holocene (Anisimov et al., 2002, the influence on carbon dynamics to Lake Baikal 693 have yet to be realised. One reason for the discrepancy may be related to river discharge, 694 which increases DOC input into Boreal lakes Prokushkin et al., (2011). During the early 695 Holocene, river discharge into Lake Baikal was much greater (Mackay et al. 2011) 696 because glaciers were melting, causing lake levels to rise substantially (Urabe *et al.* 697 2004), which in turn likely resulted in the very high carbon burial rates observed. In 698 recent decades, average runoff from Selenga River basin has declined, leading to 699 decreased sediment loads (Törnqvist et al., 2014). Low mean Baikal carbon burial rates 700 during the past 50 years are in contrast to other studies where recent increases in CMAR 701 have been attributed to increased agriculture, e.g. China (Dong *et al.*, 2012) and Europe 702 (Anderson *et al.*, 2014) or global warming / increased deposition of reactive nitrogen e.g. 703 northern lakes in North America (Heathcote et al. 2015). In the near future, it is doubtful 704 whether nutrient enrichment or warming will result in increased carbon burial to Baikal 705 sediments. There is increasing evidence that nutrient enrichment of coastal waters in Lake 706 Baikal are starting to have an impact on nearshore communities (Timoshkin *et al.* 2016), 707 but there is as yet no evidence of nutrient enrichment in pelagic Lake Baikal (Izmest'eva 708 et al. 2016). And although regional warming and forest fires are predicted to increase in 709 the near future, driving the forest-steppe ecotone northwards (Tchebakova et al. 2009), 710 southern Siberia is predicted to become more arid (Törnqvist et al., 2014), leading to a 711 decline in Selenga River discharge. So despite further permafrost degradation, large

712	quantities of released organic carbon may yet not find a route into Lake Baikal. Taken
713	together, our data provide new and important insights into how abrupt climate change
714	events can influence Holocene carbon dynamics in even very remote regions. However,
715	understanding future changes to carbon dynamics must take account of hydrological
716	variability as well as warming temperatures.
717	
718	
719	Acknowledgements. We wish to acknowledge the various agencies who helped to fund
720	this work, especially UK NERC (IP/635/0300; NE/J010227/1), the EU FPV programme
721	(EVK2-CT-2000-0057) and the Norwegian Research Council (IGNEX ref: 249894/F20).
722	We thank Dr Alexander Prokopenko for providing the TOC data from the Buguldieka
723	Saddle, used in Fig S4B. We thank UCL Geography Cartography Unit who helped
724	prepared the figures, David Adger and two anonymous reviews for very insightful
725	comments which have helped to improve the manuscript considerably.
726	

727 **References**

- 728
- Alin SR, Johnson TC (2007) Carbon cycling in large lakes of the world: a synthesis of
- 730 production, burial, and lake-atmosphere exchange estimates. Global Biogeochemical
- 731 Cycles, **21**, GB3002, doi:10.1029/2006GB002881.
- 732
- Alley RB, Ágústsdóttir AM (2005) The 8 k event: cause and consequences of a major
- Holocene abrupt climate change. Quaternary Science Reviews, 24,
- 735 1123–1149.

736

- Anderson NJ (2014) Landscape disturbance and lake response: temporal and spatial
 perspectives. Freshwater Reviews, 7, 77-120.
- 739
- Anderson NJ, D'Andrea W, Fritz SC (2009) Holocene carbon burial by lakes in SW
- 741 Greenland. Global Change Biology, **15**, 2590-2598.
- 742
- 743 Anderson NJ, Bennion H, Lotter AF (2014) Lake eutrophication and its implications for

```
organic carbon sequestration in Europe. Global Change Biology, 20, 2741-2751.
```

745

- Andersson C, Risebrobakken B. Jansen E, Dahl SO (2003) Late Holocene surface ocean
- conditions of the Norwegian Sea (Vøring Plateau). Paleoceanography, 18, 1044,
- 748 doi:10.1029/2001PA000654.

750	Anisimov OA, Velichko AA, Demchenko PF, Eliseev AV, Mokhov II, Nechaev VP
751	(2002) Effect of climate change on permafrost in the past, present, and future. Izvestiya
752	Atmospheric and Ocean Physics, 38 , 25-39.
753	
754	Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Tracking
755	Environmental Change Using Lake Sediments. Vol. 1: Basin Analysis, Coring, and
756	Chronological Techniques. (eds Last WM, Smol JP) pp 171-203. Kluwer Academic
757	Publishers, Dordrecht.
758	
759	Arz HW, Lamy F, Pätzold J (2006) A pronounced dry event recorded around 4.2 ka in
760	brine sediments from the northern Red Sea. Quaternary Research, 66, 432-441.
761	
762	Battarbee RW, Kneen MJ (1982) The use of electronically counted microspheres in
763	absolute diatom analysis. Limnology and Oceanography, 27, 184–188.
764	
765	Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years.
766	Quaternary Science Reviews, 10, 297-317.
767	
768	Berkelhammer M, Sinha A, Stott L, Cheng H, Pausata FSR, Yoshimura K (2012) An
769	abrupt shift in the Indian monsoon 4000 years ago. In: Climates, landscapes, and
770	civilizations (eds Giosan L, et al.,) American Geophysical Union Geophysical
771	Monograph 198, p. 75–87.
772	

773	Berner KS, Koç N, Godtliebsen F (2010) High frequency climate variability of the
774	Norwegian Atlantic Current during the early Holocene period and a possible connection
775	to the Gleissberg cycle. The Holocene, 20 , 245-255.
776	
777	Bezrukova EV, Abzaeva AA, Letunova PP, Kulagina NV, Vershinin KE, Belov AV,
778	Orlova LA, Danko LV, Krapivina SM (2005) Post-glacial history of Siberian spruce
779	(Picea obovata) in the Lake Baikal area and the significance of this species as a paleo-
780	environmental indicator. Quaternary International, 136, 47-57.
781	
782	Bezrukova EV, Tarasov PE, Solovieva N, Krivonogov SK, Fiedal F (2010) Last glacial-
783	interglacial vegetation and environmental dynamics in southern Siberia: chronology,
784	forcing and feedbacks. Palaeogeography, Palaeoclimatology, Palaeoecology, 296, 185-
785	198.
786	
787	Björck S, Rundgren M, Ingolfsson O, Funder S (1997) The Preboreal oscillation around
788	the Nordic Seas: terrestrial and lacustrine responses. Journal of Quaternary Science, 12,
789	455-465.
790	
791	Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an
792	autoregressive gamma process. Bayesian Analysis, 6, 457-474.

Bond G, Showers W, Cheseby M et al., (1997) A pervasive millennial scale cycle in

North Atlantic Holocene and glacial climates. Science, **278**, 1257–1266.

796	
797	Bond G, Kromer B, Beer J et al., (2001) Persistent solar influence on North Atlantic
798	climate during the Holocene. Science, 294, 2130–2136.
799	
800	Booth RK, Jackson ST, Forman SL, Kutzbach JE, Bettis EA, Kreigs J, Wright DK (2005)
801	A severe centennial-scale drought in midcontinental North America 4200 years ago and
802	apparent global linkages. The Holocene, 15, 321-328.
803	
804	Brincat D, Yamada K, Ishiwatari R, Uemura H, Naraoka H (2000) Molecular-isotopic
805	stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments.
806	Organic Geochemistry, 31 , 287-294.
807	
808	Bush ABG (2005) CO_2/H_2O and orbitally driven climate variability over central Asia
809	through the Holocene. Quaternary International, 136 , 15–23.
810	
811	Cai B, Edwards R, Cheng H, Tan M, Wang X, Liu T (2008) A dry episode during the
812	Younger Dryas and centennial-scale weak monsoon during the early Holocene: a high
813	resolution stalagmite record from southeast of the Loess Plateau, China. Geophysical
814	Research Letters, 35 , L02705.
815	
816	Carlson AE, Legrande AN, Oppo DW et al., (2008) Rapid early Holocene deglaciation of
817	the Laurentide ice sheet. Nature Geoscience, 1, 620–624.
818	

- 819 Charlet F, Fagel N, De Batist M et al., (2005) Study of the sedimentary dynamics on
- 820 elevated plateaus in Lake Baikal Russia based on sediment cores and high-resolution
- geophysical data. Global and Planetary Change, 46, 125-144.
- 822
- 823 Chaudhuri P, Marron JS (1999) SiZer for exploration of structures in curves, Journal of
- the American Statistical Association, 94, 807–823.
- 825
- 826 Chen F, Xu Q. Chen, J *et al.*, (2015) East Asian summer monsoon precipitation
 827 variability since the last deglaciation. Scientific Reports, 5, 11186; doi:
 828 10.1038/srep11186.
- 829
- Cole JJ, Prairie YT, Caraco NF *et al.* (2007) Plumbing the global carbon cycle:
 integrating inland waters into the terrestrial carbon budget. Ecosysyems, **10**, 171-184.
- 832
- 833 Colman SM, Karabanov EB, Nelson CH (2003) Quaternary sedimentation and
 834 subsidence history of Lake Baikal, Siberia, based on seismic stratigraphy and coring.
 835 Journal of Sedimentary Research, 73, 941-956.
- 836
- 837 Cullen HM, deMenocal PB, Hemming S, Hemming G, Brown FH, Guilderson T, Sirocko
- 838 F (2000) Climate change and the collapse of the Akkadian empire: evidence from the
- 839 deep sea. Geology, **28**, 379-382.
- 840
- 841 D'Arrigo R, Jacoby G, Wilson, R, Panagiotopulos F (2005) A reconstructed Siberian

- 842 High index since AD 1599 from Eurasian and North American tree rings.
- 843 Geophysical Research Letters, **32**, L050705.
- 844
- 845 Dean WE, Gorham E (1998) Magnitude and significance of carbon burial in lakes,
- reservoirs and peatlands. Geology, **26**, 535-538.
- 847
- 848 De Batist M, Canals M, Sherstyankin P, Alekseev S, INTAS Project 99-1669 Team (2006) A
- new bathymetric map of Lake Baikal. Deutsches GeoForschungsZentrum GFZ.
- 850 http://doi.org/10.1594/GFZ.SDDB.1100
- 851
- 852 DeLuca T, Boisvenue C (2012) Boreal forest soil carbon: distribution, function and
- 853 modelling. Forestry, **85**, 161-184.
- 854
- 855 Demske D, Heumann G, Granoszewski W, Nita M, Mamakowa K., Tarasov PE,
- 856 Oberhänsli H (2005) Late glacial and Holocene Vegetation and regional climate
- variability evidence in high-resolution pollen records from Lake Baikal. Global and
- 858 Planetary Change, 46, 255-279.
- 859
- 860 Dixit Y, Hodell DA, Petrie CA (2014) Abrupt weakening of the summer monsoon in
- 861 northwest India ~4100 yr ago. Geology, **42**, 339-342.
- 862

863	Dong X, Anderson NJ, Yang X, Chen X, Shen J (2012) Carbon burial by shallow lakes
864	on the Yangtze floodplain and ist relevance to regional carbon sequestration. Global
865	Change Biology, 18, 2205-2217.
866	
867	Dykoski CA, Edwards RL, Cheng H et al., (2005) A high-resolution, absolute-dated
868	Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and
869	Planetary Science Letters, 233, 71-86.
870	
871	Edgington DN, van Klump J, Robbins JA, Kusner YS, Pampura VD, Sandimirov IV
872	(1991) Sedimentation rates, residence times and radionuclide inventories in Lake Baikal
873	from 137 Cs and 210 Pb in sediment cores. Nature, 200 , 601-604.
874	
875	Einsele G, Yan J, Hinderer M (2001) Atmospheric carbon burial in modern lake basins
876	and its significance for the global carbon budget. Global and Planetary Change, 30, 167-
877	195.
878	
879	Elsig J, Schmitt J, Leuenberger D et al., (2009) Stable isotope constraints on Holocene
880	carbon cycle changes from an Antarctic ice core. Science, 461, 507-510
881	
882	Fisher TG, Smith DG, Andrews JT (2002) Preboreal oscillation caused by a glacial Lake
883	Agassiz flood. Quaternary Science Reviews, 21, 873-878.
884	
885	Flückiger J, Monnin E, Stauffer B et al., (2002) High-resolution Holocene N ₂ O ice core

886	record and its relationship with CH_4 and CO_2 . Global Biogeochemical Cycles, 16 , 1010.
887	
888	Ganopolski A, Kubatzki C, Claussen M, Brovkin V, Petoukhov V (1998) The influence
889	of vegetation-atmosphere-ocean interaction on climate during the mid-Holocene. Science,
890	280 , 1916-1919.
891	
892	Gasse F (2000) Hydrological changes in the African tropics since the Last Glacial
893	Maximum. Quaternary Science Reviews, 19, 189–211.
894	
895	Gong DY, Ho CH (2002) The Siberian High and climate change over middle to
896	high latitude Asia. Theoretical and Applied Climatology, 72, 1-9.
897	
898	Granin NG, Granina LZ (2002) Gas hydrates and gas venting in Lake Baikal. Geolgia i
899	Geofizica, 43 , 629–637.
900	
901	Groisman, PY, Blyakharchuck TA, Chernokulsky AV et al., (2013) Climate Changes in
902	Siberia. In: Regional Environmental Changes in Siberia and their Global Consequences
903	(eds Groisman PY, Gutman G), pp 57-109, Springer Environmental Science and
904	Engineering, Dordrecht, Germany.
905	
906	Hall IR, Bianchi GG, Evans JR (2004) Centennial to millennial scale Holocene climate-
907	deep water linkage in the North Atlantic. Quaternary Science Reviews, 23, 1529–1536.
908	

909	Hammarlund D (1992) A distinct δ^{13} C decline in organic lake sediments at the
910	Pleistocene-Holocene transition in southern Sweden. Boreas, 22, 236-243.
911	
912	Hampton SE, Gray DK, Izmest'eva LR, Moore MV, et al. (2014) The Rise and Fall of
913	Plankton: Long-Term Changes in the Vertical Distribution of Algae and Grazers in Lake
914	Baikal, Siberia. PLoS ONE 9(2): e88920. doi:10.1371/journal.pone.0088920
915	
916	Heathcote AJ, Anderson NJ, Prairie YT, Engstrom DR, del Giorgio PA (2015) Large
917	increases in carbon burial in northern lakes during the Anthropocene. Nature
918	Communications, 6, doi: 10.1038/ncomms/10016
919	
920	Horiuchi K, Minoura K, Hoshino K, Oda T, Nakamura T, Kawai T (2000)
921	Palaeoenvironmental history of Lake Baikal during the last 23000 years.
922	Palaeogeography, Palaeoclimatology, Palaeoecology, 157, 95-108.
923	
924	Hyodo A, Longstaffe FJ (2011) The palaeoproductivity of ancient Lake Superior.
925	Quaternary Science Reviews, 30, 2988-3000.
926	
927	Iglesias V, Whitlock C, Markgraf V, Bianchi MM (2014) Postglacial history of the
928	Patagonian forest/steppe ecotone (41-43 °S). Quaternary Science Reviews, 94, 120-135.
929	

930	Izsmet'eva LR, Moore MV, Hampton SE et al. (2016) Lake-wide physical and biological
931	trends associated with warming in Lake Baikal. Journal of Great Lakes Research, 42, 6-
932	17.
933	
934	Jackson ST, Overpeck JT (2000) Responses of plant populations and communities to
935	environmental changes of the late Quaternary. Paleobiology, 26, 194–220.
936	
937	Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric
938	and large-scale land surface air temperature variations: an extensive revision and an
939	update to 2010. Journal of Geophysical Research, 117, D05127.
940	
941	Karabanov E, Williams D, Kuzmin M et al., (2004) Ecological collapse of Lake Baikal
942	and Lake Hovsgol ecosystems during the Last Glacial and consequences for aquatic
943	species diversity. Palaeogeography, Palaeoclimatology, Palaeoecology, 209, 227-243.
944	
945	Kastowski M, Hinderer M, Vecsei A (2011) Long-term carbon burial in European lakes:
946	analysis and estimate. Global Biogeochemical Cycles, 25, GB3019,
947	doi:101029/2010GB003874 12pp.
948	
949	Kiyashko SI, Richard P, Chandler T, Kozlova TA, Williams DF (1998) Stable carbon
950	isotope ratios differentiate autotrophs supporting animal diversity in Lake Baikal.
951	Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la vie, 321, 509-
952	516.

954	Kleiven HKF, Kissel C, Laj C, Ninnemann US, Richter TO, Cortijo E (2008) Reduced
955	North Atlantic deep water coeval with the glacial lake Agassiz freshwater outburst.
956	Science, 319 , 60–64.
957	
958	Korhola A, Weckström J, Holmström L, Erästö P (2000) A quantitative Holocene
959	climatic record from diatoms in northern Fennoscandia. Quaternary Research 54, 284-
960	294.
961	
962	Kortelainen P, Pajunen H, Rantakari M, Saarnisto M (2004) A large carbon pool and
963	small sink in boreal Holocene lake sediments. Global Change Biology, 10, 1648-1653.
964	
965	Leng MJ, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from
966	lake sediment archives. Quaternary Science Reviews, 23, 811-831.
967	
968	Line JM, Birks HJB (1996) BSTICK Version 1.0. Unpublished computer program.
969	Botanical Institute, University of Bergen, Bergen.
970	
971	Mackay AW (2007) The paleoclimatology of Lake Baikal: a diatom synthesis and
972	prospectus. Earth-Science Reviews, 82, 181-215.
973	
974	Mackay AW, Ryves DB, Battarbee RW, Flower RJ, Jewson D, Rioual P, Sturm M (2005)
975	1000 years of climate variability in central Asia: assessing the evidence using Lake

976	Baikal (Russia) diatom assemblages and the application of a diatom-inferred model of
977	snow cover on the lake. Global and Planetary Change, 46, 281-297.
978	
979	Mackay AW, Swann GEA, Brewer TS et al., (2011). A reassessment of late glacial -
980	Holocene diatom oxygen isotope record from Lake Baikal using a geochemical mass-
981	balance approach. Journal of Quaternary Science, 26, 627-634.
982	
983	Mackay AW, Bezrukova EV, Leng MJ (2012) Aquatic ecosystem responses to Holocene
984	climate change and biome development in boreal central Asia. Quaternary Science
985	Reviews, 41 , 119-131.
986	
987	Maerki M, Müller B, Wehrli B (2006) Microscale mineralization pathways in surface
988	sediments: a chemical sensor study in Lake Baikal. Limnology and Oceanography, 51,
989	1342-1354.
990	
991	Marcott SA, Shakun JD, Clark PU, Mix AC (2013) A reconstruction of regional and
992	global temperature for the past 11,300 years. Science, 339 , 1198-1201.
993	
994	Mayewski PA, Meeker LD, Twickler MS, Whitlow SI, Yang Q, Lyons WB, Prentice M
995	(1997) Major features and forcing of high-latitude northern hemisphere atmospheric
996	circulation using a 110,000-year-long glaciochemical series. Journal of Geophysical
997	Research, 102, 26345-26366.

- 999 Mayewski PA, Rohling EE, Stager JC et al., (2004) Holocene climate variability.
- 1000 Quaternary Research, **62**, 243–255.
- 1001
- 1002 McGregor HV, Fischer MJ, Gagan MK, Fink D, Phipps SJ, Wong H, Woodroffe CD
- 1003 (2013) A weak El Niño/Southern Oscillation with delayed seasonal growth around 4,300
- 1004 years ago. Nature Geoscience, **6**, 949-953.

- 1006 Meyers PA, Lallier-Verges E (1999) Lacustrine sedimentary organic matter records of
- 1007 Late Quaternary paleoclimates. Journal of Paleolimnology, **21**, 345-372.

1008

- 1009 Meyers PA, Teranes JL (2001) Sediment organic matter. In: Tracking Environmental
- 1010 Change Using Lake Sediments. Volume 2, Physical and Geochemical Methods. (eds Last
- 1011 WM, Smol JP) pp. 239-269, Kluwer Academic Publishers, Dortrecht, The Netherlands.

1012

1013 Moran MD (2003) Arguments for rejecting the sequential Bonferroni in ecological 1014 studies. Oikos, **203**, 403-405.

- 1016 Morrill C, Anderson DM, Bauer BA et al. (2013) Proxy benchmarks for intercomparison
- 1017 of 8.2 ka simulations. Climate of the Past, 9, 423-432.
- 1018
- 1019 Moy CM, Dunbar RB, Guilderson TP et al., (2011) A geochemical and sedimentary
- 1020 record of high southern latitude Holocene climate evolution from Lago Fagnano, Tierra
- del Fuego. Earth and Planetary Science Letters, **302**, 1-13.

- 1023 Müller B, Maerki M, Schmid M, Vologina EG, Wehrli B, Wüest A, Sturm M (2005)
- 1024 Internal carbon and nutrient cycling in Lake Baikal: sedimentation, upwelling, and early
- 1025 diagenesis. Global and Planetary Change, 46, 101-124.
- 1026
- 1027 Newby PE, Shuman BN, Donnelly JP, Kamauskas KB, Marsicek J (2014) Centennial-to-
- 1028 millenial hydrologic trends and variability along the North Atlantic Coast, USA, during
- 1029 the Holocene. Geophysical Research Letters, **41**, 4300-4307.
- 1030
- 1031 Park C, Marron JS, Rondonotti V (2004) Dependent SiZer: goodness-of-fit tests for time
- series models. Journal of Applied Statistics, **31**, 999–1017.
- 1033
- 1034 Piotrowska N, Bluszcz A, Demske D, Granoszewski W, Heumann G (2004) Extraction
- and AMS Radiocarbon Dating of Pollen from Lake Baikal Sediments. Radiocarbon, 46,
- 1036 181-187.

- 1038 Prokopenko AA, Williams DF (2004) Deglacial methane emission signals in the carbon
- 1039 isotopic record of Lake Baikal. Earth and Planetary Science Letters, 218, 135-147.
- 1040
- 1041 Prokopenko AA, Williams DF (2005) Depleted methane-derived carbon in waters in
- 1042 Lake Baikal, Siberia. Hydrobiologia, **544**, 279-288.
- 1043

- 1044 Prokopenko AA, Williams DF, Karabanov EB, Khursevich GK (1999) Response of Lake
- 1045 Baikal ecosystem to climate forcing and pCO_2 change over the last glacial / interglacial
- transition. Earth and Planetary Science Letters, **172**, 239-253.
- 1047
- 1048 Prokopenko AA, Khursevich GK, Bezrukova EV et al., (2007) Paleoenvironmental proxy
- 1049 records from Lake Hovsgol, Mongolia, and a synthesis of Holocene climate change in the
- 1050 Lake Baikal watershed. Quaternary Research, 68, 2-17.
- 1051
- 1052 Prokushkin AS, Pokrovsky OS, Shirokova LS et al., (2011) Sources and the flux patter of
- 1053 dissolved carbon in rivers of the Yenisey basin draining the Central Siberian Plateau.

1054 Environmental Research Letters, 6, 045212 (14 pp)

- 1055
- 1056 R Development Core Team (2016) R: A Language and Environment for Statistical
- 1057 Computing. Vienna, Austria : the R Foundation for Statistical Computing. ISBN: 3-
- 1058 900051-07-0. Available online at http://www.R-project.org/.
- 1059
- 1060 Rasmussen DO, Andersen KK, Svensson AM et al., (2006) A new Greenland ice core
- 1061 chronology for the last glacial termination. Journal of Geophysical Research, 111, 1 of
- 1062 16.
- 1063
- 1064 Reimer PJ, Bard E, Bayliss A et al., (2013) IntCal13 and Marine13 radiocarbon age
- 1065 calibration curves 0–50,000 years cal BP. Radiocarbon, **55**, 1869–1887.

1067	Renssen H, Goosse H, Muscheler R (2006) Coupled climate model simulation of
1068	Holocene cooling events: oceanic feedback amplifies solar forcing. Climate of the Past, 2,
1069	79-90.
1070	
1071	Reuss NS, Hammarlund D, Rundgren M, Segerström U, Eriksson L, Rosén P (2010)
1072	Lake ecosystem responses to Holocene climate change at the subarctic tree-line in
1073	northern Sweden. Ecosystems, 13, 393-409.
1074	
1075	Roberts SL (2016) Algal community response to anthropogenic pollution and
1076	environmental change at Lake Baikal, Siberia, over recent centuries. PhD thesis,
1077	University of Nottingham, 329 pp.
1078	
1079	Rohling EJ, Pälike H (2005) Centennial-scale cooling with a sudden cold event around
1080	8,200 years ago. Nature, 434 , 975-979.
1081	
1082	Romanovsky VE, Drozdov DS, Oberman NG et al., (2010) Thermal state of permafrost
1083	in Russia. Permafrost and Periglacial Processes, 21, 136-155.
1084	
1085	Sakata S, Hayes JM, McTaggart AR, Evans RA, Leckrone KJ, Togasaki RK (1997)
1086	Carbon isotope fractionation associated with lipid biosynthesis by a cyanobacterium:
1087	relevance for interpretation of biomarker records. Geochimica et Cosmochimica Acta, 61,
1088	5379-5389.
1089	

1090	Schmid M, De Batist M, Granin NG et al., (2007) Sources and sinks of methane in Lake
1091	Baikal: a synthesis of measurements and modelling. Limnology and Oceanography, 52,
1092	1824-1837.
1093	
1094	Schuur EAG, Bockheim J, Canadell JG et al., (2008) Vulnerability of permafrost carbon
1095	to climate change: implications for the global carbon cycle. Bioscience, 58, 701-714.
1096	
1097	Seddon AWR, Froyd CA, Witkowski A, Willis K (2014) A quantitative framework for
1098	analysis of regime shifts in a Galápagos coastal lagoon. Ecology, 95, 3046-3055.
1099	
1100	Sharkuu N (1998) Trends in permafrost development in the Selenge River basin,
1101	Mongolia. Collection Nordicana, 55, 979-985.

1103 Simpson GL (2014) Identifying periods of change with GAMs.

- 1104 <u>http://www.fromthebottomoftheheap.net/2014/05/15/identifying-periods-of-change-with-</u>
- 1105 gams/. Accessed May 2016.
- 1106
- 1107 Smith AC, Wynn PM, Barker PA, Leng MJ, Noble SR, Tych W (2016) North Atlantic
- 1108 forcing of moisture delivery to Europe throughout the Holocene. Scientific Reports 6,
- 1109 24745.
- 1110

1111	Sobek S, Durisch-Kaiser E, Zurbrügg R, Wongfun N, Wessels M, Pasche N, Wehrli B
1112	(2009) Organic carbon burial efficiency in lake sediments controlled by oxygen exposure
1113	time and sediment source. Limnology and Oceanography, 54, 2243-2254.
1114	
1115	Sobek S, Anderson NJ, Bernasconi SM, Del Sontro T (2014) Low organic carbon burial
1116	efficiency in arctic lake sediments. Journal of Geophysical Research: Biogeosciences,
1117	119 , 1231-1243.
1118	
1119	Solanki SK, Usoskin IG, Kromer B, Schüssler M, Beer J (2004) An unusually active sun
1120	during recent decades compared to the previous 11,000 years. Nature, 431 , 1084-1087.
1121	
1122	Solomon CT, Jones SE, Weidel BC et al., (2015) Ecosystem consequences of changing
1123	inputs of terrestrial dissolved organic matter to lakes: current knowledge and future
1124	challenges. Ecosystems, 18, 376-389.
1125	
1126	Sun Y, Clemens SC, Morrill C, Lin X., Wang X, An Z (2012) Influence of Atlantic
1127	meridional overturning circulation on the East Asian winter monsoon. Nature
1128	Geoscience, 5, 46-49.
1129	
1130	Spencer RGN, Mann PJ, Dittmar T (2015) Detecting the signature of permafrost thaw in
1131	Arctic rivers. Geophysical Research Letters, 42, 2830-2835 doi:10.1002/2015GL063498.
1132	

1133	Tarasov P, Bezrukova E, Karabanov E <i>et al.</i> , (2007) Vegetation and climate dynamics
1134	during the Holocene and Eemian interglacials derived from Lake Baikal pollen records.
1135	Palaeogeography, Palaeoclimatology, Palaeoecology, 252, 440-457.
1136	
1137	Tchebakova NM, Parfenova E, Soja AJ (2009) The effects of climate, permafrost and fire
1138	on vegetation change in Siberia in a changing climate. Environmental Research Letters,
1139	4 , 045013.
1140	
1141	Thompson LG, Yao T, Davis ME et al., (1997) Tropical climate instability: The Last
1142	Glacial Cycle from a Qinghai-Tibetan ice core. Science, 276, 1821-1825.
1143	
1144	Thompson LG, Mosley-Thompson E, Henderson KA (2000) Ice-core palaeoclimate
1145	records in tropical South America since the Last Glaciation. Journal of Quaternary
1146	Science, 15, 377-394.
1147	
1148	Thompson LG, Mosley-Thompson E, Davis ME et al., 2002. Kilimanjaro Ice Core
1149	Records: Evidence of Holocene Climate Change in Tropical Africa. Science, 298, 589-
1150	593.
1151	
1152	Timoshkin OA, Samsonov DP, Yamamuro M et al. (2016) Rapid ecological change in
1153	the coastal zone of Lake Baikal (East Siberia): Is the site of the world's greatest
1154	freshwater biodiversity in danger? Journal of Great Lakes Research, 42, 487-497.
1155	

1156	Todd MC, Mackay AW (2003) Large-scale climatic controls on Lake Baikal ice cover.
1157	Journal of Climate, 16, 3186-3199,
1158	
1159	Törnqvist R, Jarsö J, Pietroń J, Bring A, Rogberg P, Asokan SM (2014) Evolution of the
1160	hydro-climate system in the Lake Baikal basin. Journal of Hydrology, 519 , 1953-1962.
1161	
1162	Travnik LJ, Downing JA, Cotner JB et al. (2009) Lakes and reservoirs as regulators of
1163	carbon cycling and climate. Limnology and Oceanography, 54, 2009-2314.
1164	
1165	Urabe A, Tateishi M, Inouchi Y, Matsuoka H, Inoue T, Dmytriev A, Khlystov OM
1166	(2004) Lake-level changes during the past 100,000 years at Lake Baikal, southern
1167	Siberia. Quaternary Research, 62, 214-222.
1168	
1169	Vaughan DG, Comiso JC, Allison I et al., (2013) Observations: Cryosphere. In: Climate
1170	Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
1171	Assessment Report of the Intergovernmental Panel on Climate Change [eds Stocker TF,
1172	Qin D, Plattner GK). Cambridge University Press, Cambridge, UK and New York, USA.
1173	
1174	Vonk JE, Alling V, Rahm L, Mörth CM, Humborg C, Gustafsson Ö (2012) A centennial
1175	record of fluvial organic matter input from the discontinuous permafrost catchment of
1176	Lake Torneträsk. Journal of Geophysical Research, 117, G03018
1177	doi:10.1029/2011JG001887.
1178	

- 1179 Votintsev KK, Meshcheryakova AI, Popovskaya GI (1975) Cycling of organic matter in
- 1180 Lake Baikal. Nauka, Novosibirsk, Russia.
- 1181
- 1182 Wang M, Chen H, Yu Z, Wu J, Zhu Q, Peng C, Wang Y, Qin B (2015) Carbon
- accumulation and sequestration of lakes in China during the Holocene. Global Change
- 1184 Biology, **21**, 4436-4448.
- 1185
- 1186 Wang Y, Cheng H, Edwards RL et al., (2005) The Holocene Asian Monsoon: Links to
- 1187 Solar Changes and North Atlantic Climate. Science, **308**, 854-857.
- 1188
- 1189 Wanner H, Bütikofer J (2008) Holocene Bond cycles: real or imaginary. Geografie-
- 1190 Sborník České Geografické Společnosti, **113**, 338-350.
- 1191
- 1192 Wanner H, Beer J, Bütikofer J et al., (2008) Mid- to late Holocene climate change: an
- 1193 overview. Quaternary Science Reviews, 27, 1791–1828.
- 1194
- 1195 Wanner H, Mercolli L, Grosjean M, Ritz SP (2014) Holocene climate variability and
- 1196 change: a database review. Journal of Geological Society of London, 172, 254-263.
- 1197
- 1198 Watanabe T, Naraoka H, Nishimura M, Kawai T (2004) Biological and environmental
- 1199 changes in Lake Baikal during the late Quaternary inferred from carbon, nitrogen and
- 1200 sulfur isotopes. Earth and Planetary Science Letters, **222**, 285-299.
- 1201

1202	Watanabe T, Nakamura T, Watanabe Nara F et al., (2009) A new age model for the
1203	sediment cores from Academician ridge (Lake Baikal) based on high-time-resolution
1204	AMS ¹⁴ C data sets over the last 30 kyr: paleoclimatic and environmental implications.
1205	Earth and Planetary Science Letters, 286, 347-354.
1206	
1207	Weckström J, Hanhijärvi S, Forsstrōm L, Kuusisto E, Korhola A (2014) Reconstructing
1208	lake ice cover in subarctic lakes using a diatom-based inference model, Geophysical
1209	Research Letters, 41, 2026–2032, doi:10.1002/2014GL059474.
1210	
1211	Wood SN (2004) Stable and efficient multiple smoothing parameter estimation for
1212	generalized additive models. Journal of the American Statistical Association, 99, 673-686
1213	
1214	Wood SN (2006) Generalized Additive Models. An introduction with R. Chapman and
1215	Hall / CRC Texts in Statistical Science, Boca Raton, FL, USA
1216	
1217	Wu B, Wang J (2002) Winter Arctic Oscillation, Siberian High and East Asian Winter
1218	Monsoon. Geophysical Research Letters, 29, doi:10.1029/2002GL015373.
1219	
1220	Wu X, Liu H, Guo D, Anenkhonov OA, Badmaeva NK, Sandanov DV (2012) Growth
1221	decline linked to warming-induced water limitation in hemi-boreal forests. PLOSone, 7,
1222	e42619, 12 pp.
1223	

1224	Yoshii K (1999)	Stable	isotope	analysis	of	benthic	organisms	in	Lake	Baikal.
1225	Hydrobiologia, 411	, 145-15	59.							

- 1227 Yoshii K, Melnik NG, Timoshkin OA, Bondarenko NA, Anoshko PN, Yoshioka T, Wada
- 1228 E (1999) Stable isotope analyses of the pelagic food web in Lake Baikal. Limnology and
- 1229 Oceanography, 44, 502-511.

1230

1231 Yoshioka T, Ueda S, Khodzher T, Bashenkhaeva N, Korovyakova I, Sorokovikova L,

1232 Gorbunova L (2002) Distribution of dissolved organic carbon in Lake Baikal and its

1233 watershed. Limnology, **3**, 159-168.

1234

1235 Zhang R, Delworth TL (2005) Simulated tropical response to a sunstantial weakening of

1236 the Atlantic thermohaline circulation. Journal of Climate, **18**, 1853-1860.

1237

1238 Zhao L, Wu Q, Marchenko SS, Sharkuu N (2010) Thermal state of permafrost and active

layer in central Asia during the International Polar Year. Permafrost and PeriglacialProcesses, 21, 198-207.

1241

- 1243
- 1244

Table 1: Location of sediment cores investigated in this study, and their analyses

- 1247 undertaken.

Core code	Туре	Lat.	Long.	Water	Core	Analyses
				depth	length	
CON01- 605-3	piston	51.5849	104.8548	675 m	10.45 m	DBD; diatoms
CON01- 605-5	box	51.5835	104.8518	665 m	2.50 m	¹⁴ C; $\delta^{13}C_{TOC}$; TOC; C/N; CMAR; pollen
BAIK13-7	gravity	51.5683	104.5286	1080 m	0.47 m	DBD; TOC; CMAR

1251 **Table 2:** Factors likely to influence organic geochemistry in Lake Baikal sediments away

1252 from Holocene mean values: %TOC = 1.8%; CN = 11.6; δ^{13} C values = -29.03%

1253

Factor	TOC	C/N	$\delta^{13}C_{ORG}$
Increased planktonic	Increase	Decrease	Decrease ¹
diatoms			
Relative increase in	Increase	Decrease	No change ²
pelagic productivity			
Relative increase in near-	Decrease	Unknown	Increase ³
shore productivity			
Increased picoplankton	Increase	Decrease	Unknown ⁴
Increased terrestrial input	Increase	Increase	Decrease ⁵
from mature soils			
Catchment DOM	No change	Increase	Increase ⁶
Increased C ₄ terrestrial	NA	NA	NA
input ⁷			
Increased atmospheric	No change	No change	No change
$p\mathrm{CO}_2^{-8}$			
Increased ice cover ⁹	Decrease	Unknown	No change
Gas hydrates ¹⁰	No change	No change	No change

1254

1255 1: at present, approximately 90% of organic matter in Lake Baikal is derived from

- 1256 phytoplankton, mainly diatoms during spring and autumn overturn; open water diatoms
- 1257 range between -28% to -35% (mean -29%); **2**. In pelagic Baikal, the HCO₃ pool is so
- 1258 large, no isotopic discrimination takes place (Yoshii *et al.* 1999); **3**: flora in littoral

Global Change Biology

1259	regions have higher $\delta^{13}C$ values; aquatic macrophytes range between -5% to -18% and
1260	benthic algae between -5‰ to -11‰ (mean -9‰) (Kiyashko et al., 1998; Yoshii, 1999;
1261	Yoshii et al., 1999); 4: As far as we can ascertain, very little research has specifically
1262	looked at C fractionation in picoplankton. However, Sakata et al., (1997) suggest values
1263	of -22% to -30% ; 5 : well-developed soils result in an increase in ¹³ C-depleted respired
1264	CO ₂ (Hammarlund, 1992; Reuss et al., 2010); 6: dissolved organic matter from
1265	catchment rivers has δ^{13} C value of -26‰ to -27‰ (Yoshioka <i>et al.</i> , 2002); 7. molecular
1266	isotopic stratigraphy of sedimentary long-chain n-alkanes did not detect any C4 plants
1267	within its watershed during the late Quaternary (Brincat et al., 2000); 8: according to
1268	Prokopenko et al., (1999) increased Holocene atmospheric CO ₂ concentrations resulted in
1269	a decline in $\delta^{13}C_{\text{ORG}}$ values, but there is no relationship between Holocene CO_2
1270	concentrations and $\delta^{13}C_{ORG}$ values (Fig 3); 9: biogenic silica inferred productivity is
1271	much lower during cold glacial periods with significantly extended ice cover (Mackay,
1272	2007) but because of low overall primary production under the ice and higher CO_2
1273	solubility in colder water, isotopic discrimination is not thought to be important in Lake
1274	Baikal (Watanabe et al., 2004); 10: A within-lake process unique to Lake Baikal is the
1275	occurrence of sedimentary methane hydrates (Granin & Granina, 2002). Prokopenko &
1276	Williams (2004) suggested that the relatively negative Holocene TOC δ^{13} C values (in
1277	comparison to values for the late glacial of c. -24%) may have been caused by deglacial
1278	methane emissions, with methane accumulating under winter ice (Prokopenko &
1279	Williams, 2005). However, teragrams of methane would need to be emitted, but only 10s
1280	of megagrams have actually been measured (Schmid et al., 2007), making it unlikely that
1281	δ^{13} C-depleted methane drives lower sedimentary δ^{13} C values.

1283

1284 Table 3: Organic carbon burial rates determined for early, middle and late Holocene

1285 periods, based on 5 Holocene studies (see text for details and Fig 1 for locations).

1286

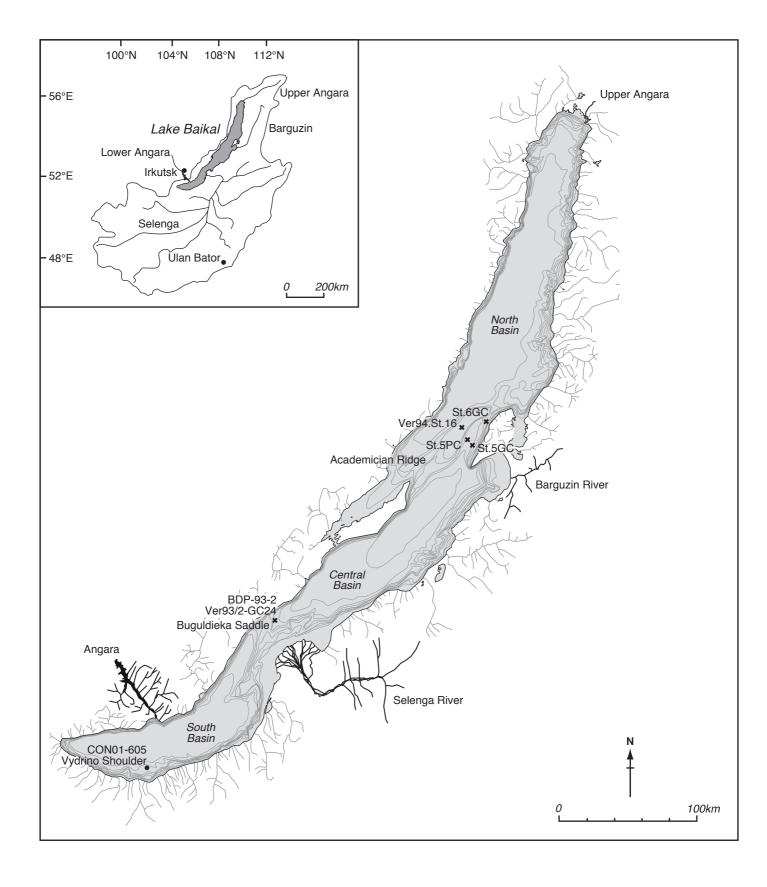
	Early Holocene	Middle Holocene	Late Holocene OC
	$CMAR (g C m^{-2} yr^{-1})$	$CMAR (g C m^{-2} yr^{-1})$	$CMAR (g C m^{-2} yr^{-1})$
CON01-605-5	8.97	6.21	3.84
Ver94.St16 (AR)	2.90	1.66	2.97
5GC (AR)	5.45	1.97	1.17
StPC (AR)	1.19	0.44	1.21
6GC (AR)	5.01	2.77	1.81
Mean (s.d.)	4.71 (2.94)	2.61 (2.18)	2.20 (2.17)

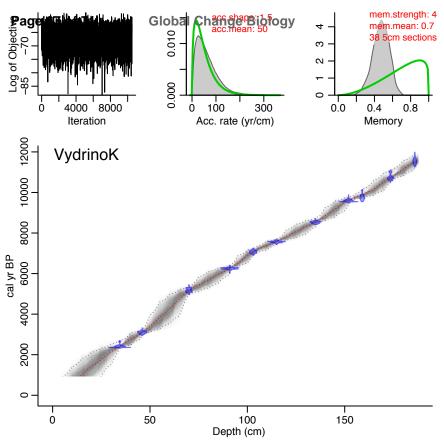
1287

1289	Figure Legends
1290	Figure 1. Map of Lake Baikal and its catchment, with locations of the different cores
1291	mentioned or utilized in this study highlighted.
1292	
1293	Figure 2. 'Bacon' Age-depth model (Blaauw & Christen, 2011) for Vydrino box core
1294	(CON01-605-05) of radiocarbon AMS dates calibrated using IntCal13 radiocarbon
1295	calibration curve (Reimer et al., 2013).
1296	
1297	Figure 3. Multiproxy data determined for Holocene sediments from the Vydrino
1298	Shoulder, Lake Baikal. Vegetation (3a-d) and organic geochemistry data (3e-h) are from
1299	Vydrino Shoulder core CON01-605-5. Diatom data (3i-j) are from Vydrino Shoulder core
1300	CON01-605-3. (a): % Arboreal Pollen; (b): Pinus sylvestris pollen (%PinSylv); (c):
1301	Pollen PC1 scores; (d): steppe – forest index; (e): total organic carbon (%TOC); (f): total
1302	organic carbon / total organic nitrogen ratios (C/N); (g): $\delta^{13}C_{TOC}$ (‰); (h): carbon mass
1303	accumulation rates (CMAR; g C m ⁻² yr ⁻¹) in 100-yr bins; (i): diatom cell fluxes (DCF cm ⁻²
1304	2 yr ⁻¹ x10 ⁶) from CON01-605-3; (j): benthic diatom fluxes (filled silhouette) with x5
1305	exaggeration to see fluxes in detail (empty silhouette); (k): CO2 data (p.p.m.v.) from
1306	Dome C ice core (Flückiger <i>et al.</i> , 2002); (l): δ^{13} C ice core records Dome C ice core
1307	(Elsig et al., 2009); (m): mean northern hemisphere temperature stack records for 60°
1308	latitude bands (30° N – 90° N) (Marcott <i>et al.</i> , 2013); (n): July insolation 50° N (W m ⁻²)
1309	(Berger & Loutre, 1991). The horizontal dotted line at 6.1 kyr BP marks significant
1310	change in PC1 identified by breakpoint analysis. Light blue zones denote abrupt reversal
1311	events at c. 10.3, 8.2, 4.1 and 2.8 kyr BP.

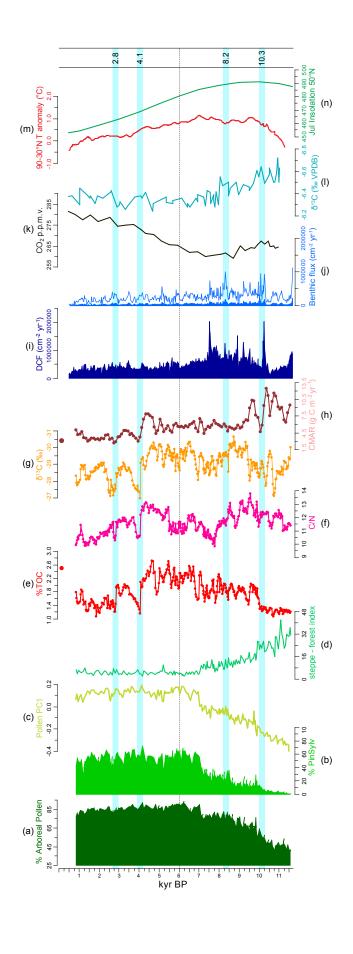
1313 Figure 4. Individual SiZer plots from our GAM SiZer analyses. Grey areas are periods of 1314 non-significant change, while blue and red periods show periods of significant decreasing 1315 / increasing change, respectively. 1316 1317 Figure 5. Modelled relationships between PC1 scores and organic geochemistry for early 1318 (5a-d) and late (5e-h) periods. Solid line indicates a significant relationship, p=0.05. 1319 1320 Figure 6. Multi-archive data plotted alongside 'deviations from mean' values of organic 1321 geochemical records (6c-f) from Vydrino Shoulder core CON01-605-5. (a): Sunspot numbers (Solanki *et al.*, 2004); (b): K⁺ ion concentrations (ppb) from GISP2 D core 1322 1323 (Mayewski et al., 1997); (c): total organic carbon (%TOC); (d): total organic carbon / total organic nitrogen ratios (C/N); (e): $\delta^{13}C_{TOC}$ (‰); (f): carbon mass accumulation rates 1324 (CMAR; g C m⁻² yr⁻¹) in 100-yr bins; (g): δ^{18} O_{diatom} record from Vydrino Shoulder piston 1325 1326 core CON01-605-05 (Mackay et al., 2011); (h): four stacked records of relative abundance of haematite- stained grains (%HSG) in North Atlantic sediments (Bond et al., 1327 2001); (i): dust concentrations $(x10^3 \text{ ml}^{-1})$ from Qinghai-Tibetan Guliya ice core 1328 (Thompson *et al.*, 1997); (j): 50-yr mean dust concentrations (ml⁻¹) from Mount 1329 1330 Kilimanjaro ice core NIF3 (Thompson *et al.*, 2002) plotted on a log scale; (k): 50-yr mean dust concentrations (ml^{-1}) from Huascarán ice core, Peru (Thompson *et al.*, 2000) 1331 1332 plotted on a log scale; (l): XRF Mn element density (cps) from Shaban Deep basin, northern Red Sea core GeoB 5836-2 (Arz *et al.*, 2006); (m): δ^{18} O (‰) of shallow-water 1333 1334 foraminifera *Globigerinoides ruber* from Shaban Deep basin, northern Red Sea core

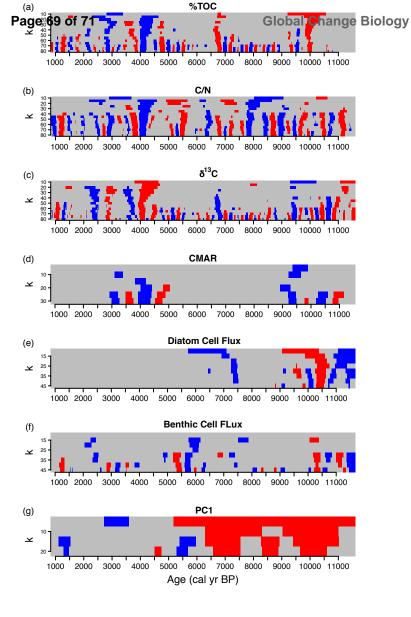
- 1335 GeoB 5836-2 (Arz et al., 2006); (n): Dolomite (% wt) from Gulf of Oman sediment core
- 1336 M5-422 (Cullen *et al.*, 2000); (o): δ^{18} O (‰) of ostracod *Melanoides tuberculata* from
- 1337 palaeolake Kotla Dahar, NW India (Dixit *et al.*, 2014); (p): δ^{18} O (‰) record from
- 1338 Mawmluh Cave speleothem, NE India (Berkelhammer *et al.*, 2012); (q): δ^{18} O (‰) record
- 1339 from Dongge Cave speleothem, SE China (Dykoski et al., 2005). Light blue zones denote
- 1340 cold reversal events at c. 10.8, 10.3, 8.2, 4.1 and 2.8 kyr BP.
- 1341
- 1342


1343 Supplementary Figure Legends


- 1344
- 1345 **Figure S1.** PCA biplot of pollen data. Codes used include Cyp = Cyperaceae; AlnFrut =
- 1346 *Alnus fruticosa* type; Tubul = Compositae Asteroideae; PinSylv = *Pinus sylvestris* type;
- 1347 PinSib = Pinus sibirica type; Betnana = Betula nana type; Betun = Betula
- 1348 undifferentiated. Full details given in (Demske *et al.*, 2005).
- 1349
- 1350 Figure S2. Breakpoint analysis of pollen PCA axis 1 data.
- 1351
- 1352 **Figure S3.** Compiled δ^{13} C data from Lake Baikal. A: Vydrino, this study; B: St.5GC
- 1353 from the Academician Ridge (Watanabe et al., 2009); C: St.5PC from the Academician
- 1354 Ridge (Watanabe et al., 2009); D: St.6GC from the Academician Ridge (Watanabe et al.,

1355 2009); E: Ver94/St16 from the Academician Ridge (Horiuchi et al. 2000).


- 1356
- 1357 Figure S4A. Compiled TOC data from Lake Baikal plotted against a radiocarbon age
- 1358 scale. A: Vydrino, this study; B: St.5GC from the Academician Ridge (Watanabe *et al.*,
- 1359 2009); C: St.5PC from the Academician Ridge (Watanabe et al., 2009); D: St.6GC from
- the Academician Ridge (Watanabe et al., 2009). E: Core Ver94.St.16 from the
- 1361 Academician Ridge (Horiuchi *et al.*, 2000);
- 1362
- 1363 Figure S4B. Compiled Holocene TOC data from Lake Baikal plotted against a depth
- scale. A: Core Ver93/2-GC24 from the Buguldieka Saddle, opposite the shallow waters
- 1365 of the Selenga Delta (Karabanov et al. 2004); B: Core BDP-93-2 from the Buguldieka


- 1366 Saddle, opposite the shallow waters of the Selenga Delta (Prokopenko *et al.* 1999).
- 1367 Approximate date horizons are derived from the revised chronology presented by
- 1368 Prokopenko *et al.* (2007), but no suitable age-depth model is available from which to plot
- 1369 these up on an age scale.

