- 1 A comparison of annual layer thickness model estimates with observational measurements using
- 2 the Berkner Island ice core, Antarctica
- 3 A. Massam^{*,1,2}, S. Sneed³, G.P. Lee^{1,4}, R.R. Tuckwell¹, R. Mulvaney¹, P.A. Mayewski³, P.L. Whitehouse²
- 4 *Corresponding author: ashsam73@bas.ac.uk
- ⁵ ¹British Antarctic Survey, High Cross, Cambridge, CB3 0ET, UK
- ⁶ ²Department of Geography, Durham University, South Road, Durham, DH1 3LE, UK
- 7 ³Climate Change Institute, University of Maine, 133 Sawyer Research Building, Orono, ME
- 8 ⁴School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4
- 9 7TJ, UK 04469-5741

10 Abstract

13

A model to estimate the annual layer thickness of deposited snowfall at a deep ice core site,
compacted by vertical strain with respect to depth, is assessed using ultra-high resolution laboratory

14 ice, using ultra-violet laser ablation inductively-coupled plasma mass spectrometry (UV LA ICP-MS)

analytical techniques. A recently established technique of high-resolution direct chemical analysis of

15 has been applied to ice from the Berkner Island ice core, and compared with results from lower-

16 resolution techniques conducted on parallel sections of ice. The results from both techniques have

been analysed in order to assess the capability of each technique to recover seasonal cycles from

18 deep Antarctic ice. Results do not agree with the annual layer thickness estimates from the age-

19 depth model for individual samples less than one metre long as the model cannot reconstruct the

20 natural variability present in annual accumulation. However, when compared with sections over 4 m

21 long, the deviation between the modelled and observational layer thicknesses is minimised to within

two standard deviations. This confirms that the model is capable of successfully estimating mean

annual layer thicknesses around analysed sections. Furthermore, our results confirm that the LA

24 ICP-MS technique can reliably recover seasonal chemical profiles beyond standard analytical

25 resolution.

26 Keywords: ultra-high resolution; mass spectrometry; age-depth model; chemistry; glaciology

28 Introduction

The deposition of snow across Antarctica results in a record spanning millennia which is capable of recording seasonal cycles of several different climatic proxies, revealing past climatic conditions on local, regional and global scales, on both short- and long-term timescales. Preservation of temporal variations in stable water isotopes and chemistry as the deposited snow turns to ice creates an isotope-chemistry series that can provide seasonal to glacial/interglacial reconstructions of past climate (Dansgaard 1953, 1964).

35 Unreactive gases trapped within the ice matrix offer continuous records of atmospheric conditions 36 on a global scale due to rapid rates of atmospheric mixing. In order to reconstruct large-scale 37 climatic events on an inter-hemispheric scale, climate proxies from multiple sources must be 38 integrated and tied to a single chronology, which requires a continuous, high-resolution record. 39 Accurate synchronisation of ice core records with climate proxy records from marine, polar and 40 terrestrial sites gives the best view of global climate responses during glacial/interglacial periods, and high-resolution profiles are vital to the full interpretation of the timing and characteristics of 41 42 underlying mechanisms and to understanding the relationship between the Polar Regions and the 43 rest of the Earth.

44 The dating of deep Antarctic ice cores still relies primarily on modelled accumulation derived from 45 seasonal cycles in the stable water isotopes and chemistry. Therefore, improvements to existing chronologies depend on further developments of the analytical techniques. The low mean annual 46 47 accumulation characterizing much of Antarctica makes it difficult to obtain sub-annually resolved 48 proxy records in ice cores beyond certain depths. Therefore, the construction of Antarctic ice-core 49 chronologies – and the subsequent interpretation of palaeoclimate records – typically relies on 50 glaciological modelling techniques that are constrained using observational data, e.g. known-age 51 horizons preserved in the ice or chemical records. Increasing the resolution of palaeoclimate 52 records improves the information that can feed into climate or chronological models. The models

applied to ice-core profiles rely on the resolution of the stable water isotope profile as well as a
number of glaciological assumptions on ice-sheet stability and they therefore have larger ageuncertainty compared to annual-layer counted ice-core chronologies.

56 As water isotopes tend to diffuse in ice and the seasonal cycles may be lost, improvements to 57 analytical resolution have been progressing following two main approaches, continuous and discrete 58 trace-element analysis. A direct, continuous method (continuous flow analysis – CFA) takes 59 measurements continuously along the length of the ice core. CFA methods are less labour-intensive, 60 although they usually result in the destruction of the ice core by melting. Continuous melting of an 61 ice section coupled with the in situ analysis of trace-chemical species by ICP-MS and UV/visible 62 spectroscopy improves the resolution of continuous records and achieves a spatial resolution of ~10 mm (Sigg et al. 1994, Rothlisberger et al. 2000). A great advantage of CFA systems is their relatively 63 64 low contamination levels, ensured by removing the meltwater produced by the outermost part of 65 the ice core. A disadvantage of CFA systems is the dispersion in the melting and liquid transport that 66 limits the sub-annual resolution of deep Antarctic ice cores and consequently, the degree to which 67 information available on long timescales can be accurately synchronised with other climate proxy 68 archives.

69 Developments to direct trace-element analysis improve the depth-resolution by the application of 70 ultra-violet laser sampling coupled with an ICP-MS. For some time, LA ICP-MS has been applied to 71 geological samples in order to optimise the resolution and accuracy of trace-element analysis in 72 geochemical contexts (Arrowsmith 1987, Bea et al. 1996). More recently, this technique in ultra-73 high resolution direct trace-element analysis has been independently developed in ice-core 74 laboratories (Reinhardt et al. 2001, Müller et al. 2011, Sneed et al. 2015). Previous studies have 75 demonstrated that the ultra-violet LA ICP-MS apparatus and calibration technique developed at the 76 WM Keck Laser Ice Facility at the Climate Change Institute (University of Maine) yields profiles that 77 are similar in shape and trend of the ice-core profile to those produced using CFA analysis, but at

78 orders of magnitude higher resolution (Sneed et al. 2015). Correlation of LA ICP-MS results with 79 existing chemical records on alpine ice-core chemistry profiles confirms the reproducibility of the 80 results (Sneed et al. 2015). Further to this, LA ICP-MS can be utilized as a basis of comparison for 81 previous studies; a recent study dramatically increased the resolution of the record comprising the 82 end of the Younger Dryas and the onset of the Holocene as preserved in the GISP2 ice core 83 (Mayewski et al. 2014). This ultra-high resolution record offered a novel view of abrupt climate 84 change over this period and suggested a decrease in storm frequency and an increase in the length 85 of the Arctic summer season at this transition (Mayewski et al. 2014). Most recently, LA ICP-MS has 86 been applied to West Antarctic ice originating from the last glacial period at Siple Dome-A. 87 Successful analysis of sub-seasonal profiles demonstrated the variability in the annual layer thickness 88 measurements that had not been identified earlier in glaciological models or ice core chemistry 89 (Haines et al. 2016).

In addition to increased resolution of climate records, major advantages of the LA ICP-MS technique
include the rapid analysis time and the fact that the ultra-violet laser results in negligible ice loss,
allowing repeated analyses to be carried out (Müller et al. 2011). In repeating the analysis,
individual line scans can be used to measure single- and multi-element arrays, increase the spatial
resolution available, and provide an alternative approach to acquiring ultra-high resolution profiles
of climatic proxies in ice cores.

An alternative discrete high-resolution technique, developed by R. Mulvaney and E. Wolff (pers.
comm) at the British Antarctic Survey, cuts samples at a higher resolution than standard discrete
techniques of ~10 mm by employing a microtome device to shave the ice sample at a sub-millimetre
resolution (Thomas et al. 2009). Seasonal cycles in chemistry recovered in glacial ice from the North
Greenland Ice Core Project (NGRIP) ice core allowed an absolute measurement of annual layer
thickness and insight into the phasing of chemical signals and characteristics of the DO 8 event at *circa* 38 ka BP at 2 mm depth-resolution (Thomas et al. 2009). A full geochemical profile outlined

103 the dominant and recessive mechanisms for the duration of the climatic transition into DO 8 at sub-104 annual resolution. The method, though effective for high-resolution analysis on deep ice, is labour-105 intensive and it is difficult to cover more than small sections of an ice core. Improvements to the ion 106 chromatography system at the British Antarctic Survey – principally a new Dionex 4000 IC system – 107 allow a reduced sample volume and therefore improve the spatial resolution of each measurement. 108 Despite these advances in direct ice-core analysis, LA ICP-MS is yet to be employed on ice originating 109 from the Weddell Sea, Antarctica, where traditional discrete and CFA methods fail to recover 110 seasonal chemical cycles at great depths. The aim of this study is to compare the different analytical 111 techniques, and then use the results to test the accuracy of the modelling of the annual layer thickness of the Berkner Island ice core. The Berkner Island ice core was drilled over three field 112 seasons 2003-2006 (Mulvaney et al. 2007), reaching the ice sheet base at a depth of 948 m, at the 113 114 south dome of the island, which is embedded within the Ronne and Filchner ice shelves in the 115 Weddell Sea, Antarctica. In this study, we reconstruct annual layer thickness from the stable water 116 isotope profiles and glaciological modelling and, following a study to assess the reliability of the 117 records, we assess these model estimates with the observational annual layer thickness 118 measurements obtained by LA ICP-MS.

119 Methodology

120 High-resolution analysis, completed on parallel sections of ice from three depth ranges along the 121 Berkner Island ice core, was achieved by indirect and direct trace-element methods. For comparison 122 and confirmation of the record obtained by LA ICP-MS on Antarctic frozen samples, discrete 123 sampling has been completed on parallel sections of ice to obtain a second geochemical profile. 124 Where the annual layer thickness is estimated to be greater than 20 mm, the discrete samples were not cut using the microtome technique, but instead a band saw was used for which an associated ice 125 126 loss is calculated. The ion profiles generated by each method have been compared by identifying 127 annual peaks in each profile and calculating the mean annual layer thickness for each section. For

assistance in the identification of annual layer peaks, a long section of CFA data is presented for the
Berkner Island ice core at a depth where sub-annual resolution is still attainable by this lowerresolution technique.

Successively, comparison of annual layer thickness measurements with the annual layer thickness estimated from the model is the final assessment in this work. The methodology for the annual layer thickness model is included in the supplementary material, accompanied with a list of the parameters and known-age horizons used in the estimation of annual layer thickness at Berkner lsland.

136 Continuous Flow Analysis

A full ice core can be continuously melted in core sections with the dimensions of 30 x 30 mm, with only the inner part of the ice section measured to eliminate the risk of contamination. The remainder of the ice section melted runs off the melt-head as waste. Analysis of the Berkner Island ice core by CFA was completed at BAS, on a system that is capable of measuring a full ion profile among other chemical species, at a continuous rate with a maximum resolution of 10 mm.

142 LA ICP-MS and Discrete Sample Details

The ice core retrieved from Berkner Island was selected for this study for its low mean annual accumulation at the surface, with an overall thickness of 948 m. Present-day mean annual accumulation at the core site is 0.185 m yr⁻¹ in water equivalent, with an age-depth profile reaching the last interglacial period. As a result, the annual layer thickness model estimates that the depth at which thinned annual layers are beyond the standard laboratory resolution of ~10 mm is ~560 m. This leaves 40% of the total ice core profile beyond the reach of sub-annual profiles using standard methods.

Parallel sticks of ice, cut from the archived ice core material, have been analysed by two methodsincluding high and ultra-high resolution measurements. Sticks of ice were cut from the inner section

of the ice core to avoid potential contamination by the drilling fluid residue on the exterior of the ice
core. Sticks of ice were placed in plastic lay-flat bags with the ice core bag number and top of the
core section clearly indicated.

155 LA ICP-MS

The analysis of Berkner Island ice using LA ICP-MS was completed at the WM Keck Laser Ice Facility, at the Climate Change Institute (CCI), University of Maine. The laser-ablated ICP-MS methodology is largely described in Sneed et al. (2015) and only a brief summary of the key features is features is mentioned here. Profiles were acquired using the Sayre Cell[™] cryocell, developed at CCI, which is capable of holding up to one metre of ice at 248 K and has a small volume (~20 cm³) open-design ablation chamber. The cryocell system is positioned underneath a New Wave UP-213 laser,

162 connected to a Thermo Element 2 ICP-MS with Teflon tubing (Sneed et al. 2015).

163 Prior to analysis, the ice sample was cleaned by removing the outer millimetre of ice using a ceramic 164 scraper to limit the contamination risk. The ice is held in the cryocell whilst the gas flow was purged 165 for two minutes in order to remove impurities in the system. Individual line scans, measured using a 166 laser spot size of 100 µm in diameter, yield the ultra-high spatial resolution of LA profiles. LA ICP-MS 167 profiles are continuous for 40 mm; once finished, the ice is automatically moved to begin the next 40 168 mm segment, starting at the end of the previous ablation pass. Adjacent line scans, used for multi-169 element analysis, are separated by 200 μ m to prevent overlapping scans. Sampling resolution is 121 170 µm sample⁻¹; this resolution is dependent on the laser spot diameter, firing rate, scan speed and the 171 ICP-MS sampling rate (Sneed et al. 2015).

172 Ice samples, up to 200 mm in length, were analysed for sodium (Na), which has been shown to have
173 a clear annual cycle (Sommer et al. 2000). The LA ICP-MS generates results available in counts per
174 second (cps). The relative intensity of element concentrations in cps were converted to

concentrations (µg/L) using calibration curves constructed from liquid samples and lasing frozen
standard reference material (Sneed et al. 2015).

177 A dual-cyclonic spray chamber with entrance ports for liquid samples and laser aerosols is fitted to 178 the ICP-MS system. A low-flow nebuliser (20 µL min⁻¹ from Elemental Scientific) aims to reduce the 179 amount of liquid aspirated and to enable higher gas flow in the laser ablation chamber. This 180 facilitates daily calibration of the ICP-MS, which is completed using a combination of liquid standards 181 and frozen reference materials in a two-step process outlined by Sneed et al. (2015). To ensure 182 accurate results using the Sayre Cell[™] cryocell, the base of the open cell must have an airtight seal 183 with the ice sample. Soundness of the seal is tested in two ways: (i) a flowmeter built into the 184 cryocell system, and (ii) the ICP-MS is tuned with the ice in place so that a small leak would be 185 observable in the ice chemistry signal (Sneed et al. 2015).

186 Discrete Samples

For the deepest sections investigated by LA ICP-MS, we obtained discrete samples from a parallel cut of the same ice core, to be measured in solution mode. This method has been used successfully to analyse the warming transition of Dansgaard-Oeschger 8 (DO8), at *circa* 38kyr in Greenland ice (Thomas et al. 2009).

Unlike the ice sampled by the other techniques in this study, sections of ice for the discrete method were limited to 80 mm in length. The reason for this was to limit the bending moment exerted on the stick of ice as it passed under the blade whilst being held in the microtome vice system. The depth ranges of discretely-cut samples are included in table I.

Prior to cutting the discrete samples, any dust or residue was removed from the instruments by cleaning the microtome blade and mantle using isopropanol. A pre-frozen section of ultra-high purity (UHP) water was passed under the blade to clean it thoroughly; after this process, five 198 samples of UHP water were collected for use as a background standard for the cold room procedure199 during the chemical analysis.

A clean microtome blade removed the outer millimetre of ice in order to avoid contamination from the outer layers. The ice was then placed in the mantle of the microtome and passed under the blade. The mantle automatically raises 40 µm with every forward stroke so the exact sample size can be determined by the number of times the ice has passed under the blade.

204 Lower Resolution Discrete Sampling

A lower-resolution discrete sampling method was employed on sections of ice for which annual layer thickness is estimated to be greater than 20 mm. For these sections, the high-resolution microtome technique would not be necessary and instead 5 mm discrete samples were cut using a band saw and measured using the same method as samples obtained from the microtome device. An associated ice loss of a millimetre was accounted for in the depth profile, as calculated by the width of the band saw blade.

For all discrete samples, a full ion profile was obtained in sterile conditions by ion chromatography
(IC). In order to prevent contamination during the discrete sampling process, protective clothing and
powder-free nitrile gloves were worn throughout both the sampling and analysis procedures. The
ice sample was only handled with pre-cleaned tongs and the outer millimetre of the ice sample was
scraped away using a scalpel or microtome blade to remove any contaminants from the surface of
the sample. Ion profiles were measured on a Dionex IC 4000 ion chromatography system in a class100 clean room, which has less than 100 particles of 0.5 µm m⁻³.

218 Results

We begin by presenting the estimated age and layer thickness of the analysed samples, as derived using the glaciological model. Subsequent sections contain the LA ICP-MS and discrete sampling results, respectively. Annual cycles are identified in the IC and LA ICP-MS records based on the prominence of the Na and Mg peaks from the baseline, and the return of the peak to the baseline
between the seasons. Peaks that do not return to the baseline are characterised as discrete events
within one annual cycle.

225 Model Estimates

- 226 Specific sampled depths were chosen based on the estimated period of original deposition, as
- interpreted from the isotopic record (fig. 1), the modelled annual layer thickness (equation S1-S3),

and ultimately the condition of the archive material at BAS (presented in table I).

229 CFA Results

- As a method of comparison, and to aid the analysis of annual layer identification, a four-metre
- section of the Berkner Island ice core at 447 m, analysed by CFA, is presented with the correlating
- dielectric profiling (DEP) data (fig. 2). The section shows a mean annual layer thickness of ~57 mm,

and highlights the variable annual layer thickness and values of Na.

- 234 LA ICP-MS on Mid-Holocene Ice from 5.5 ka BP (454 459 m)
- Fig. 3 shows the sections of ice analysed by LA ICP-MS originating from the mid-Holocene period.

Three sections were taken from the depth range 454 – 459 m, where the model predicts the annual

237 layer thickness to be ~57 mm (table I). Results are presented on semi-logarithmic plots. Red dashed

- 238 lines delineate peaks that could represent either an annual or sub-seasonal deposition in Na. It is
- not confirmed if these peaks in Na are definitive annual layers or discrete events within an annual
- 240 cycle, with a mean annual layer thickness much thinner than the estimated values and the annual
- layer thickness observed in the DEP and CFA Na profiles at 447-451 m.

242 LA ICP-MS on Glacial Ice from 27.1 – 27.7 ka BP (694 – 697 m)

Over the second depth range of 694 – 697 m, the mean annual layer thickness is estimated by
disregarding sections of ice where the chemical signal is not resolvable (~19 – 38 mm and ~50 – 70

mm). In these sections in fig. 4, a black dashed line marks where the annual signal is not discernible.
An increase in the seasonal periodicity per sampled section of ice, as determined by the seasonal
fluctuations in Na, is due to the compaction of annual layers. In fig. 4c, a drop in concentration at 40
mm is likely due to the recommencement of a line scan.

249 LA ICP-MS on Glacial Ice from 29.7 – 31.2 ka BP (702 – 707 m)

250 Similar to the sections of ice analysed from 694 – 697 m, there is a drop in concentration values at 251 40 mm in fig. 5a, and 80 mm in fig. 5c, due to the recommencement of line scans. Additionally, as 252 with the observed layer thickness estimations from 694 – 697 m, observed layer thickness has been 253 estimated only for sections of ice where a seasonal signal is resolvable in the ice. Layer thickness is 254 counted between $\sim 10 - 25$ mm and $\sim 45 - 60$ mm in fig. 5a, yielding an average annual layer 255 thickness of 3.1 mm. Across the ice sections analysed between 702 and 707 m, the chemical signal 256 appears to be a smoothed signal where annual layers are no longer resolvable either in the ice-core 257 record or through the analytical technique. Where identifiable in these profiles, the frequency of 258 the peaks appear to increase from ~3 mm in fig. 5b to 5-6 mm in fig. 5c.

259 Initial observations on the geochemical profiles confirm that fluctuations in the Na⁺ signal are visible 260 in the Berkner Island ice-core record. These layers do not show a clear seasonal pattern in many 261 places, with variations in strength, thickness and signature common throughout the profiles. This is 262 most visible between the Holocene sections at 454 – 459 m and the late glacial sections at 695 – 697 263 m where the number of layers over a common depth range increases by up to a factor of 10. 264 Focussing on the LA ICP-MS profiles between the depths of 454 – 459 m it is not possible to identify 265 a uniform annual layer thickness, despite a relatively stable isotopic record for this depth range (fig. 1a, 3a – c). The layers identifiable in these sections range in thickness between 5 and 30 mm, 266

compared with the 39 mm estimated in the annual layer thickness model.

Within the profiles analysed from a depth 694 m and deeper, sections of ice appear to have little seasonality in the analysed profiles (fig. 4a and 5c). These results raise the following questions regarding the reliability of LA ICP-MS at greater depths: firstly, is the method capable of obtaining sub-annual cycles in ice originating from the last glacial period, preserved in the Berkner Island ice core? Secondly, has the chemical signal diffused at these depths, leading to a smoothed record in the ice? The answers to these questions will partly be addressed by determining the repeatability of the ultra-high resolution results using the alternative, established methods.

In the deepest analysed sections of the ice core the observed mean annual layer thickness doubles
between 695 m and 704 m, suggesting a significant increase in annual accumulation at the time of
original deposition. This is contrary to what has been predicted by the model that is unable to
identify natural variability not preserved in the stable water isotope profile.

The results presented have been obtained using both lower- and high-resolution discrete sampling
methods. Results are presented as semi logarithmic plots of chemical profiles against the sample
length, mm.

282 Discrete Sampling on Mid-Holocene Ice from 5.5 ka BP (454 – 459 m)

283 Discrete samples were cut roughly at a 5 mm spatial resolution on sections of ice parallel to ice 284 analysed by LA ICP-MS. In addition, the dataset has been expanded by sampling an additional 100 -285 150 mm of ice per metre of ice in each depth range. Fig. 6 displays the results from this study, and 286 the expanded profiles for sections of ice sampled from 455 – 459 m, with red dashed lines indicating 287 the point at which a peak is visible. An immediate observation of the three expanded profiles is that 288 seasonality appears smoothed throughout each profile, with a variable annual layer thickness of 50-289 70 mm that agrees with the CFA profiles and annual layer thickness model. Additional chemistry and 290 the DEP datasets for the corresponding depths have been included for a thorough comparison of the 291 between the LA ICP-MS Na and the lower-resolution datasets (fig. 7-8). The LA ICP-MS Na signal is

292 presented in two ways: (i) the log of the original high-resolution dataset; (ii) a logarithmic profile of 293 the smoothed LA ICP-MS Na to the lower resolution used in the discrete sampling. Sub-seasonal 294 discrete events are visible in the sodium and chloride profiles but are not identifiable in the non-sea 295 salt Sulphur (nss-S) and DEP datasets. Annual layers are delineated with grey bands in each figure, in 296 comparison to the red dashed lines in previous plots where chemical peaks could have been 297 interpreted as an annual signal.

298 Discrete Sampling on Glacial Ice from 29.7 – 31.2 ka BP (702 – 707 m)

A microtome blade was used to discretely cut samples for two sections of ice, originating from the

last glacial period, at a spatial resolution of $320 - 480 \,\mu$ m. The results of these analyses are

displayed in fig. 9-10, against the LA ICP-MS results. The IC profiles are displayed as semi logarithmic

302 plots of trace-element sodium, (Na⁺), magnesium (Mg²⁺), and calcium (Ca²⁺) against sampled depth

303 (mm). Only a cation profile is available for ice at 703.2 – 703.22 m due to low sampling volume,

meaning there is only a sulphate signal available at 706.3 – 706.38 m in this depth range.

Additional annual layers are identified in the lower-resolution profile, suggesting that the loss of an

annual signal during the LA ICP-MS analysis is due to the capability of the technique and that the

307 seasonal record of the Berkner Island ice core is resolvable and preserved.

308 Discussion

The methods employed in this study have all used a sample resolution where seasonal variability should be visible in the resulting profile based on the estimated annual layer thicknesses at each analysed depth. As a result, the detection of annual layers is dependent on three factors: (i) the preservation of a seasonal cycle in the ice-core record, (ii) the reliability of the method to extract the seasonality, and (iii) whether the sampling resolution was sufficient. The following section will discuss the feasibility of each analytical approach to obtain a seasonal profile on the ice used as part of this study. 316 Analysis of ice at depths 454 – 459 m using the lower-resolution discrete technique was not 317 successful in replicating the trends seen in the high-resolution profile due to the high sampling 318 volume required (fig. 7-8). This led us to investigate the small-scale variations resolved in the high-319 resolution analysis that suggest the LA ICP-MS technique was able to measure sub-annual discrete 320 events within an annual layer. In addition to this sub-seasonal variability, the profile shows the 321 changes in annual accumulation in short timeframes. The Holocene period shows no consensus of a 322 mean annual accumulation rate that is consistent over the timeframe analysed, suggesting a highly 323 variable annual accumulation. Both of these unresolved can be answered by comparison of the 324 high-resolution datasets with longer timeseries of annual layers from the Berkner Island ice core. 325 Wagenbach et al. (1994) presented a high-resolution profile for the upper depths of ice at two 326 domes (north and south) on Berkner Island. The annually resolved profiles demonstrated significant 327 variability in annual layer thickness over a depth range of 11 m; similarly, within this study, CFA and 328 the corresponding DEP profile in the deep Berkner Island record also replicates natural variability 329 (fig. 2). Results show a mean annual layer thickness that matches the modelled estimate for the 330 total depth range, but the measured profile demonstrates great variability over a couple of metres. 331 This study has assessed the preservation of annual layers in ice originating from the last glacial 332 period by comparison with lower-resolution techniques. Good correlation can be seen between LA 333 ICP-MS profiles and profiles derived using lower-resolution techniques on ice from the last glacial 334 period, as well as comparison of each sampling technique with the modelled estimates (fig. 9-10;

table I). The trend, magnitude and frequency of Na cycles suggests that annual layers are visible and
that these methods can be applied to deep Antarctic ice cores with confidence that the technique is

capable of a sub-annual resolution where annual layers are at least as small as 3 mm.

In the deeper section, continuous seasonal profiles are not always visible in the record despite the
annual layer thickness estimated to be greater than the resolution of all the techniques employed.
This implies a potential loss of signal within the ice core record, resulting in a smoothed profile with

limited seasonal fluctuations. However, this loss of seasonality in the record is not repeated in the
lower-resolution discretely cut ice core profile at 702 – 707 m (fig. 9-10), suggesting the annual
record is still resolvable at this depth. In glacial ice, annual layer thickness appeared to increase
dramatically; this increase in annual layer thickness from ~3 mm at 704 m to ~6 mm at 706 m
indicates significant natural variability not previously identified through modelling techniques.

346 Annual Layer Visibility in the LA ICP-MS Record

347 The cycles visible in the laser-ablated profiles follow the pattern expected of ice core annual layers. 348 The greatest annual layer thicknesses are visible in the upper depths of the ice core, with the 349 number of seasonal cycles visible increasing with depth due to the compaction of annual layers in 350 the ice core. The patterns that emerge as the analysed depth increases indicate that the ultra-high 351 resolution method at shallower depths results in a "noisy" signal. The low sampling volume required 352 makes the LA ICP-MS profiles more sensitive to small scale variations; as the layer thickness of the 353 cycles decrease with depth, the number of small-scale variations also decreases, suggesting that the 354 main cause for this "noise" in the signal is the analytical resolution.

355 The seasonal layers visible in the Berkner Island ice, retrieved at a depth in the ice sheet previously 356 unattainable by standard laboratory resolution, confirm that our results are in line with other studies 357 suggesting that LA ICP-MS is a valuable technique for high-resolution ice core analysis (Müller et al. 358 2011, Mayewski et al. 2014, Sneed et al. 2015). Since the initial development of LA ICP-MS on frozen samples, the technique has been established through successful application to Greenland and alpine 359 360 ice. Most notably, LA ICP-MS demonstrated a clear sub-annual view of abrupt climate events 361 including the onset of the Holocene in the GISP2 record as well as the assessment of the capability to identify sea ice and dust markers in the GRIP ice core record (Reinhardt et al. 2001, Mayewski et al. 362 363 2014). In particular, the ultra-high resolution records that can be produced using LA ICP-MS have 364 the potential to enhance the information available to constrain age-depth models; the profiles 365 presented as part of this study show that the method is capable of inferring climatic variability not

recorded in the stable isotopic history of the ice core such as rapid changes in mean annualaccumulation.

368 In addition to the ultra-high spatial resolution achieved when using LA ICP-MS on frozen samples, 369 the contribution of LA ICP-MS to ice-core analyses is significant. The rapid analysis time, permitted 370 by the balance between the laser spot diameter and high spatial resolution, means it is possible to 371 measure a 40 mm profile in several minutes. Furthermore, the methodology and implementation of 372 an ultra-violet laser is non-destructive to the frozen samples unlike both discretely-cut and IR LA ICP-373 MS. These features of ultra-violet LA ICP-MS add support to the recommendation that this 374 technique should be applied to frozen samples where possible in order to improve the resolution of 375 an ice core profile, and the subsequent chronology and palaeoclimate analysis.

376 Discrete Sampling

377 The lower-resolution sampling technique used to analyse the sections of ice originating from the 378 Holocene does not reproduce results obtained by laser ablation. Seasonal variations detected by the 379 high-resolution LA ICP-MS results are beyond the 5 mm sampling resolution of the lower-resolution 380 technique. Similarities in the broad shape profile of the lower-resolution profiles suggest a 381 smoothed record that is comparable to the shape and trends in the high-resolution LA ICP-MS 382 record. These results agree with the comparison study on the Colle Gnifetti ice core, which found 383 that lower-resolution CFA was unable to detect seasonal variability but showed a profile resembling 384 a smoothed version of the ones acquired by LA ICP-MS (Sneed et al. 2015). 385 In ice originating from the last glacial period, a higher and variable spatial resolution of $320 - 480 \,\mu m$

was necessary. The results presented in fig. 9-10 correlate well with the corresponding ultra-high
 resolution records, and help confirm the potential of LA ICP-MS on Antarctic ice from the last glacial.
 Annual layers identified throughout each analysed profile correspond well, though discrepancies are

apparent between the discretely sampled and laser-ablated profiles, with more annual layers
identifiable in the lower-resolution profile.

391 Assessment of the Annual Layer Thickness Model

As part of this study, a model was used primarily to estimate the annual layer thickness along the ice core to assist the initial sampling observations (see the supplementary data to this article). The confirmation that seasonal profiles are visible in the glacial ice permits a second comparison study; the observational data with the modelled layer thickness estimates. By comparing these two profiles, the model can be independently validated and give insight into the empirical relationships that contribute to age-depth determinations.

398 Table I outlines the depths (m, to the nearest integer) that have been sampled and analysed by LA

399 ICP-MS and the discrete sampling techniques, the observed annual layer thickness (if available), and

400 the modelled annual layer thickness estimate and standard deviation (2σ , mm). The results of the

401 ultra-high resolution analysis, in comparison with the modelled annual layer thickness

402 approximations, demonstrate that the model is successful in estimating the annual layer thickness

403 along the ice core at each depth section except for the depth range 704 – 707 m.

404 The Holocene record produced by LA ICP-MS does not agree with the modelled estimates,

suggesting a highly variable accumulation profile that cannot be accurately modelled to account for

406 small-scale variations in accumulation variability over several years. Looking at a broader view, the

407 mean annual layer thickness over the four metres analysed by CFA is 57.0 \pm 8.8 mm, and 51.75 \pm

408 3.51 mm for the discretely-measured profiles. Both mean annual layer thickness values are within

409 the confidence interval of the mean modelled estimate of 59.75 ± 6.9 mm.

410 The small uncertainties attached to the measured and estimated annual layer thicknesses allow

411 corroboration between the high and low sampling resolutions and the model estimates on ice

412 originating from the last glacial period. Estimates agree to within a millimetre, but not the

413 prescribed error margin for ice analysed at a depth of 694-704 m. Similar to the Holocene sections, 414 for the full 10 m section of glacial ice analysed, the mean annual layer thickness measured by LA ICP-415 MS is 3.4 ± 0.2 mm, which corroborates with the mean modelled annual layer thickness estimate of 416 3.0 ± 0.2 mm.

The inter annual mean annual layer thickness measurements agree with the modelled estimates for each depth section analysed, suggesting that the model is able to estimate annual layer thickness for sections of the ice-core on a metre resolution or greater, but cannot accurately reconstruct natural, local variability in the accumulation profile. This is unsurprising as the resolution of this model is 0.55 m, based on the resolution of the stable water isotope data in the accumulation reconstruction (eq. S1).

423 At 704 m, the layer thickness observations deviate from the estimated profile due to an increase in 424 annual layer thickness despite continued compaction along the ice core and no evidence in the 425 isotopic record to suggest a deviation from the ice-core physics of strain and layer compaction. The 426 age estimate at 706 m (~32 ka BP) coincides with a large increase in stable nitrogen isotopes ($\delta^{15}N$) 427 identified in the gas-phase of Berkner Island (Mani 2010). From 37 ka BP, a large, positive excursion 428 in δ^{15} N begins and does not return to start-values for ~10 ka. One suggestion for this excursion in 429 δ^{15} N records is a rapid and significant increase in the accumulation rate that increased the firm 430 diffusive height, and the gravitational fractionation. This accumulation increase would have been 431 rapid in order to leave little-to-no trace in the isotopic record. It is highly probable that the deepest 432 section of ice analysed by LA ICP-MS corresponds to this signature preserved in the gas-phase 433 record, and that the observed increase in annual layer thickness within this section strengthens the 434 hypothesis of a rapid increase in annual accumulation. However, the employment of further analysis 435 by ultra-high resolution techniques could explore the robustness of these results. The increase in 436 annual layer thickness is likely due to a significant increase in mean annual precipitation at the time 437 of original deposition, and warrants further investigation.

Ultra-high resolution records are paramount to the assessment and improvement of ice-core
chronologies. With respect to the annual layer thickness model and the application of highresolution trace-element analysis, the results of this study suggest that a combination of
glaciological modelling and reliable annual layer thickness observations, derived using ultra-high
resolution measurement techniques, would improve the estimation of layer thickness and
consequently the age-depth profile of Antarctic ice cores.

444 Conclusions

445 LA ICP-MS on ice has the potential to retrieve continuous, seasonal signals from ice core records at 446 depths currently beyond the range of standard laboratory methods. The application of two 447 techniques in high resolution trace element analysis on frozen ice samples from the Berkner Island 448 ice core agree in measurements of annual layer thickness at three depth ranges, providing a detailed 449 snapshot of the Na and Mg seasonal record of the last glacial period. The results of this analysis 450 have been compared with results from a lower-resolution technique applied to parallel sections of 451 ice; trends, depositional peaks in Na and Mg, and absolute values of calibrated concentration in the 452 IC and LA ICP-MS profiles agree – particularly well in the ice originating from the last glacial period. 453 The low sample volume required for LA ICP-MS yields additional information and small-scale 454 variability is resolved in the Holocene profiles. Care and extra assessment of LA ICP-MS profiles 455 should be taken to ensure annual layers are not misidentified during the analysis of ice cores.

Assessment of a simple one-dimensional model to estimate the annual layer thicknesses along an ice core confirms that the model is effective at estimating annual layer thicknesses for Holocene and glacial ice on a low resolution. Modelled annual layer thickness for each individual ice section do not compare well with the observed measurements; the model is unable to reconstruct the natural variability on a local scale without a higher resolution stable water isotope profile and better observational data. Optimal annual layer thickness estimates should be constructed using a combination of the glaciological techniques used in the paper, and estimates for compaction rates

463	that are derived using ultra-high resolution analytical techniques such as LA ICP-MS and the discrete
464	sampling technique.

465 Supplementary Material

- 466 In addition to this work, the model explanation and a list of values used in the estimation of the
- 467 annual layer thickness is included in supplementary material to this paper.

468 Acknowledgements

469 An Antarctic Science bursary, a Natural Environment Research Council doctoral training grant, and

- 470 the US National Science Foundation funded this research. We would also like to thank the editor
- and the two reviewers, whose comments much improved this manuscript.

472 Author Contributions

The authors were all involved in the drafting and revisions of the manuscript. Individual input isoutlined below:

475 AM prepared all samples of ice for analysis; assisted latest development of discrete sampling

476 technique and contributed to discrete sampling work at BAS; designed and wrote the annual layer

- 477 thickness model, statistical comparison and wrote the manuscript. GL contributed to the discrete
- 478 sampling work and analysis by ion chromatography at BAS on Berkner Island; SS conducted the
- 479 analysis of the ice samples using LA ICP-MS at University of Maine; RT assisted in the ion
- 480 chromatography analysis of discrete samples; RM assisted design of analysis, model and manuscript;
- 481 PAM developed the concept and approach of the LA ICP-MS system at the Climate Change Institute,
- 482 University of Maine; facilitated collaboration between BAS and CCI UMaine; PW assisted design of

483 analysis, model and manuscript.

485 References

- 486 Arrowsmith, P. 1987. Laser Ablation of Solids for Elemental Analysis by Inductively Coupled Plasma
 487 Mass Spectrometry. *Analytical Chemistry*, **59**, 1437-1444.
- 488 Bazin, L., Landais, A., Lemieux-Dudon, B., Toye Mahamadou Kele, H., Veres, D., Parrenin, F.,
- 489 Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M.-F., Raynaud, D., Vinther, B., Svensson, A.,
- 490 Rasmussen, S.O., Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V.,
- 491 Chappellaz, J., Wolff, E. 2012. An optimized multi-proxy, multi-site Antarctic ice and gas orbital
- 492 chronology (AICC2012): 120-800ka. *Climate of the Past*, **9**, 1715-1731.
- 493 Bea, F., Montero, P., Stroh, A., Baasner, J. 1996. Microanalysis of minerals by an Excimer UV-LA-ICP-
- 494 MS system. *Chemical Geology*, **133**, 145-156.
- 495 Björck, S., Walker, M.J.C., Cwynar, L.C., Johnsen, S., Knudsen, K.-L., Lowe, J.J., Wohlfarth, B. and
- 496 INTIMATE members. 1998. An event stratigraphy for the Last Termination in the North Atlantic
- 497 region based on the Greenland ice core record: a proposal by the INTIMATE group. Journal of
- 498 *Quaternary Science*, **13**, 283-292.
- 499 Blockley, S.P.E., Lane, C.S., Hardiman, M., Rasmussen, S.O., Seierstad, I.K., Steffensen, J.P., Svensson,
- 500 A., Lotter, A.F., Turney, C.S.M., Bronk Ramsey, C., INTIMATE members. 2012. Synchronisation of
- 501 palaeoenvironmental records over the last 60,000 years, and an extended INTIMATE event
- 502 stratigraphy to 48,000 b2k. *Quaternary Science Reviews*, **36**, 2-10.
- Broecker, W.S. 1998. Paleocean circulation during the last deglaciation: a bipolar seesaw? *Palaeoceanography*, **13**, 119-121.
- Dansgaard, W., 1953. The abundance of ¹⁸O in atmospheric water and water vapour. *Tellus*, 5, 461469.
- 507 Dansgaard, W., 1964. Stable Isotopes in Precipitation. *Tellus*, **16**, 436-468.

- Dansgaard et al., 1993. Evidence for general instability of past climate from a 250-kyr ice-core
 record. *Nature*, **364**, 218-220.
- 510 EPICA Community Members, 2006. One-to-one coupling of glacial climate variability in Greenland
 511 and Antarctica. *Nature*, 444, doi: 10.1038/nature05301.
- 512 Gillet-Chaulet, F., Hindmarsh, R.C.A., Corr, H.F.J., King, E.C., Jenkins, A. 2011. In-situ quantification of
- 513 ice rheology and direct measurement of the Raymond Effect at Summit, Greenland using a phase-

514 sensitive radar. *Geophysical Research Letters*, **38**, doi: 10.1029/2011GL049843

- 515 Haines, S.A., Mayewski, P.A., Kurbatov, A.V., Maasch, K.A., Sneed, S.B., Spaulding, N.E., Dixon, D.A.,
- 516 Bohleber, P.D. 2016. Ultra-high resolution snapshots of three multi-decadal periods in an Antarctic
- 517 ice core. Journal of Glaciology, 62, doi: 10.1017/jog.2016.5
- 518 Hindmarsh, R.C.A., King, E.C., Mulvaney, R., Corr, H.F.J., Hiess, G., Gillet-Chaulet, F. 2011. Flow at ice-
- 519 divide triple junctions: 2. Three-dimensional views of isochrone architecture from ice-penetrating

radar surveys. *Journal of Geophysical Research*, **116**, doi: 10.1029/2009JF001622

- 521 Jouzel, J., Barkov, N.I., Barnola, J.-M., Genthon, C., Korotkevitch, Y.S., Kotlyakov, V.M., Legrand, M.,
- 522 Lorius, C., Petit, J.-P., Petrov, V.N., Raisbeck, G., Raynaud, D., Ritz, C., Yiou, F. 1989. Global change
- 523 over the last climatic cycle from the Vostok ice core record (Antarctica). *Quaternary International*, 2,
 524 15-24.
- 525 Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F., Severinghaus, J.P., Hutterli, M.A.,
- 526 Nakazawa, T., Aoki, S., Jouzel, J., Raymo, M.E., Matsumoto, K., Nakata, H., Motoyama, H., Fujita, S.,
- 527 Goto-Azuma, K., Fujii, Y., Watanabe, O. 2007. Northern hemisphere forcing of climatic cycles in
- 528 Antarctica over the past 360,000 years. *Nature*, **448**, doi: 10.1038/nature06015.
- 529 Kingslake, J., Hindmarsh, R.C.A., Aðalgeirsdóttir, G., Conway, H., Corr, H.F.J., Gillet-Chaulet, F.,
- 530 Martin, C., King, E.C., Mulvaney, R., Pritchard, H.D. 2014. Full-depth englacial vertical ice sheet

- 531 velocities measured using phase-sensitive radar. Journal of Geophysical Research: Earth Surface,
- 532 **119**, doi: 10.1002/2014JF003275.
- 533 Lemieux-Dudon, B., Blayo, E., Petit, J.-R., Waelbroeck, C., Svensson, A., Ritz, C., Barnola, J.-M.,
- 534 Narcisi, B.M., Parrenin, F. 2010. Consistent dating for Antarctic and Greenland ice cores. *Quaternary*
- 535 *Science Reviews*, **29**, 8-20.
- Lliboutry, L. and Duval, P. 1985. Various isotropic and anisotropic ices found in glaciers and polar ice
 caps and their corresponding rheologies. *Annales Geophysicae*, **3**, 207-224.
- 538 Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J.-M.,
- 539 Raynaud, D., Stocker, T.F., Chappellaz, J. 2008. Orbital and millennial-scale features of atmospheric
- 540 CH₄ over the past 800,000 years. *Nature*, **453**, 383-386.
- 541 Luthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J.,
- 542 Fischer, H., Kawamura, K., Stocker, T.F. 2008. High-resolution carbon dioxide concentration record
- 543 650,000-800,000 years before present. *Nature*, **453**, 379-382.
- 544 Mani, F.S. 2010. Measurements of $\delta^{15}N$ of nitrogen gas and composition of trace gases in air from
- 545 *firn and ice cores.* PhD Thesis, University of East Anglia, UK.
- 546 Mayewski, P.A., Sneed, S.B., Birkel, S.D., Kurbatov, A.V., Maasch, K.A. 2014. Holocene warming
- 547 marked by abrupt onset of longer summers and reduced storm frequency around Greenland. *Journal*
- 548 of Quaternary Science, **29**, 99-104.
- 549 Müller, W., Shelley, J.M.G., Rasmussen, S.O. 2011. Direct chemical analysis of frozen ice cores by UV
- laser ablation ICPMS. *Journal Analytical Atmospheric Spectrometry*, **26**, 2391-2395.
- 551 Mulvaney, R., Alemany, O., Possenti, P. 2007. The Berkner Island (Antarctica) ice-core drilling
- 552 project. *Annals of Glaciology*, **47**, 115-124.

- Parrenin, F., & Hindmarsh, R. 2007. Influence of a non-uniform velocity field on isochrone geometry
 along a steady flowline of an ice sheet. *Journal of Glaciology*, 53, 612-622.
- 555 Parrenin, F., Dreyfus, G., Durand, G., Fujita, S., Gagliardini, O., Gillet, F., Jouzel, J., Kawamura, K.,
- 556 Lhomme, N., Masson-Delmotte, V., Ritz, C., Schwander, J., Shoji, H., Uemura, R., Watanabe, O.,
- 557 Yoshida, N., 2007. 1-D-ice flow modelling at EPICA Dome C and Dome Fuji, East Antarctica. *Climate of*
- 558 *the Past*, **3**, 243-259.
- 559 Parrenin, F., Bazin, L., Capron, E., Landais, A., Lemieux-Dudon, B., Masson-Delmotte, V. 2015.
- 560 IceChrono1: a probabilistic model to compute a common and optimal chronology for several ice
- 561 cores. *Geoscientific Model Development*, **8**, 1473-1492.
- 562 Reinhardt, H., Kriews, M., Miller, H., Schrems, O., Lüdke, C., Hoffman, E., Skole, J. 2001. Laser
- ablation inductively coupled plasma mass spectrometry: a new tool for trace element analysis in ice
- 564 cores. Fresenius Journal of Analytical Chemistry, **370**, 629-636.
- 565 Rothlisberger, R., Bigler, M., Hutterli, M., Sommer, S., Stauffer, B. 2000. Technique for continuous
- 566 high-resolution analysis of trace substances in firn and ice cores. *Environmental Science* &
- 567 *Technology*, **34 (2)**, pp. 338-342.
- Ruddiman, W.F. and Raymo, M.E. 2006. A methane-based time scale for Vostok ice. *Quaternary Science Reviews*, **22**, 141-155.
- 570 Severinghaus, J. 2009. Southern see-saw seen. *Nature*, **457**, 1093-1094.
- 571 Shackleton, N.J. The 100,000 year ice-age cycle identified and found to lag temperature, carbon
- 572 dioxide, and orbital eccentricity. *Science*, **289**, 1897-1902.
- 573 Sigg, A., Fuhrer, K., Anklin, M., Staffelbach, T., Zurmuhle, D. 1994. A continuous analysis techniquefor
- trace species in ice cores. *Environmental Science & Technology*, **28(2)**, 204-209.

- 575 Sneed, S.B., Mayewski, P.A., Sayre, W.G., Handley, M.J., Kurbatov, A.V., Taylor, K.C., Bohleber, P.,
- 576 Wagenback, D., Erhardt, T., Spaulding, N.E. 2015. New LA-ICP-MS cryocell and calibration technique
- 577 for sub-millimeter analysis of ice cores. *Journal of Glaciology*, **226**, 233-242.
- 578 Sommer, S., Appenzeller, C., Röthlisberger, R., Hutterli, M.A., Stauffer, B., Wagenbach, D., Oerter, H.,
- 579 Wilhelms, F., Miller, H., Mulvaney, R. 2000. Glacio-chemical study spanning the past 2 kyr on three
- 580 ice cores from Dronning Maud Land, Antarctica: 1. Annually resolved accumulation rates. *Journal of*
- 581 *Geophysical Research: Atmospheres*, **105**, 29411-29421.
- 582 Tarantola, A. 1987. Inverse problem theory: Methods for data fitting and model parameter
- 583 estimation. *Elsevier Science*, New York.
- 584 Thomas, E.R., Wolff, E.W., Mulvaney, R., Johnsen, S.J., Steffensen, J.P., Arrowsmith, C. 2009.
- 585 Anatomy of a Dansgaard-Oeschger warming transition: high resolution analysis of the North
- 586 Greenland Ice Core Project ice core. *Journal of Geophysical Reearch*, **114**, DOI:
- 587 10.1029/2008JD011215.
- Wagenbach, D., Graf, W., Minikin, A., Trefzer, U., Kippstuhl, J., Oerter, H., Blindow, N. 1994.
 Reconnaissance of chemical and isotopic firn properties on top of Berkner Island, Antarctica. *Annals of Glaciology*, **20**, 307-312.
- 591 WAIS Divide Project Members, 2015. Precise interpolar phasing of abrupt climate change during the
 592 last ice age. *Nature*, **520**, 661-665.
- 593 Weertman, J. 1973. The Creep of Ice. In: Whalley, E., Jones, S.J., Gold, L.W. (Eds.). Physics and
- 594 chemistry of ice: papers presented at the Symposium on the Physics and Chemistry of Ice, held in
- 595 Ottawa, Canada, 14-18 August 1972, Ottawa, Royal Society of Canada, 320-337.

600 Figure 1 (Left to right): Berkner Island ice core sampled sections of ice (pink bands) across the

601 isotopic (left) and modelled annual layer thickness profiles (right).

603 Figure 2 (Top to bottom): Four-metre section analysed by CFA and DEP. Top: CFA Na; bottom: DEP.

Figure 3a – c: LA ICP-MS profiles for three sections of sample from 454 – 459 m; semi logarithmic

606 plots show the log(Na+) on a common depth scale with red dashed lines delineating a seasonal peak.

Figure 4a – c: LA ICP-MS profiles for three sections of ice from 694-697 m; semi logarithmic plots
show the log(Na+) on a common depth scale with red dashed lines delineating a seasonal peak.
Black dashed lines indicate where no annual layers are discernible.

- 612 Figure 5a c: LA ICP-MS profiles for three sections of ice from 702 707 m; semi logarithmic plots
- 613 show the log(Na+) on a common depth scale with red dashed lines delineating a seasonal peak.
- 614 Black dashed lines indicate where no annual layers are discernible.

- 616 Figure 6 (Top to bottom): Three sections of ice originating from 455 459 m analysed by ion
- 617 chromatography and displayed as semi logarithmic plots of element concentration with red dashed

- 620 Figure 7: Comparison of parallel sections of ice from 456.31 m 456.51 m from top to bottom: the
- 621 DEP data; nss-S profile analysed by discrete sampling; sodium and chloride profiles analysed by

- discrete sampling; ice analysed by LA ICP-MS with the profile smoothed to the same resolution used
- 623 in the discrete sampling technique, with annual layers indicated by grey lines.

Figure 8a: Comparison of parallel sections of ice from 458.51 – 458.71 m from top to bottom: the
DEP data; nss-S profile analysed by discrete sampling (red); sodium and chloride profiles analysed by
discrete sampling; ice analysed by LA ICP-MS with the profile smoothed to the same resolution used
in the discrete sampling technique (red), with annual layers indicated by grey lines.

630 Figure 9: Comparison of parallel sections of ice from 703.2 - 703.22 m from top to bottom: ice

- 631 analysed by discrete sampling technique; ice analysed via LA ICP-MS with a smoothed profile (red).
- 632 Black dashed lines indicate where no annual layers are discernible.

Figure 10: Comparison of parallel sections of ice from 706.3 - 706.38 m from top to bottom: ice
analysed by discrete sampling technique; the nss-S profile from the discrete sampling technique; ice
analysed via LA ICP-MS with a smoothed profile (red). Black dashed lines indicate where no annual
layers are discernible.

Table I: Annual layer thickness determined as the mean thickness value of all layers identified in each
analysed section, and the standard deviation of each set of annual layers. Modelled annual layer
thickness given with model error attached. For depths that have not been analysed by a particular
technique, the table reads "N/A". The estimated age for each sample depth is presented, as

643 estimated by the age-depth model.

Depth	LA ICP-MS +/-	Discrete Sampling	CFA +/- std	Model +/-	Estimated age
Analysed (m)	std dev (mm)	+/- std dev (mm)	dev (mm)	error (mm)	(ka BP)
447-451	N/A	N/A	57.0±8.8	57.0±1.9	5.0
454	Variable	57.0 ± 10.0	N/A	51.2 ± 1.9	5.5
456	6.7±0.6	55.0±1.3	N/A	49.8±1.9	5.6
458	26.1±2.3	70.0 ± 2.8	N/A	49.4 ± 1.9	5.6
694	2.9 ± 0.1	N/A	N/A	3.0±0.2	27.1
695	3.6 ± 0.1	N/A	N/A	3.1±0.2	27.4
696	4.0±0.2	N/A	N/A	3.1±0.2	27.7
702	3.1±0.1	2.6 ± 0.1	N/A	2.8±0.1	29.7
704	6.1±0.2	N/A	N/A	2.9±0.1	30.4
706	5.1±0.2	6.0±2.3	N/A	2.8±0.1	31.1

644