FEMS Microbiology Ecology

Long-term CO₂ injection and its impact on near-surface soil microbiology

Simone Gwosdz^a, Julie M. West^{bd}, David Jones^b, Jana Rakoczy^a, Kay Green^b, Tom Barlow^b, Marco Blöthe^a, Karon Smith^c, Michael Steven^c and Martin Krüger^a

* corresponding author: Martin Krüger, Stilleweg 2, 30165 Hannover, Tel.: +49-(0)511-643 3102, Fax.: (+49)(0)511-6432304, Email: Martin.Krüger@bgr.de

Running title: Impacts of elevated CO₂ on soil microbiology

Keywords: CCS, CO₂-leakage, Bacteria, Archaea, qPCR, pyrosequencing

^a Federal Institute for Geosciences and Natural Resources (BGR), 30655 Hannover, Germany

^b British Geological Survey, Keyworth, Nottingham NG12 5GG, UK

^c University of Nottingham, School of Geography, Nottingham, NG7 2RD. UK

^d West Consult, 10 Alford Road, West Bridgford, Nottingham NG2 6GJ

Abstract

Impacts of long-term CO₂ exposure on environmental processes and microbial populations of near surface soils are poorly understood. This near-surface long-term CO₂ injection study demonstrated that soil microbiology and geochemistry is influenced more by seasonal parameters than elevated CO₂. Soil samples were taken during a three-year field experiment including sampling campaigns before, during and after 24 months of continuous CO₂ injection. CO₂ concentrations within CO₂-injected plots increased up to 23% during the injection period. No CO₂ impacts on geochemistry were detected over time. In addition, CO₂exposed samples did not show significant changes in microbial CO₂ and CH₄ turnover rates compared to reference samples. Likewise, no significant CO₂-induced variations were detected for the abundance of Bacteria, Archaea (16S rDNA) and gene copy numbers of the mcrA gene, Crenarchaeota and amoA gene. The majority (75-95%) of the bacterial sequences were assigned into five phyla: Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria and Bacteroidetes. The majority of the archaeal sequences (85-100%) were assigned to the thaumarchaeotal cluster I.1b (soil group). Univariate and multivariate statistical as well as principal component analyses (PCA) showed no significant CO₂-induced variation. Instead, seasonal impacts especially temperature and precipitation were detected.

Introduction

Rising anthropogenic greenhouse gas emissions into the atmosphere will lead to negative climate impacts and enormous environmental, economic and social consequences (Solomon et al. 2007). Geological sequestration of captured and compressed CO₂ (carbon capture and storage (CCS)) may be one option to reduce the atmospheric concentration of this important greenhouse gas. The major risk associated with geologic CCS is the possibility of CO₂ leakage from deep storage reservoirs. To implement CCS, investigation of possible consequences of CO₂ leakage is needed. Thus, artificial CO₂ injection sites were established for deep monitoring of geochemical reactions within storage sites and possible impacts of CO₂ leakages (Class et al. 2009; Jenkins et al. 2015). Near-surface monitoring has focussed mainly on soil gas and geochemical alterations (Little and Jackson 2010; Beaubien et al. 2013). Few studies have monitored environmental responses in near-surface soils, e.g. the ZERT facility in Montana (USA) (Morales and Holben 2013, 2014) or the CIUDEN facilities at Cubillos del Sil (Spain) (Fernández-Montiel et al. 2015). Leakage of CO2 could conceivably cause changes in soil microbial communities or plant-microbe interactions. So far, most information about near-surface CO₂-soil-plant-microbe interactions have been gained with natural CO₂ vents (e.g. Beaubien et al. 2008; Oppermann et al. 2010; Sáenz de Miera et al. 2014; Beulig et al. 2015; Fernández-Montiel et al. 2015, 2016). With our project at the ASGARD (Artificial Soil Gassing and Response Detection) field site at the University of Nottingham we aimed to understand the environmental effects of longterm CO₂ injection. A CO₂-injected and control plot were monitored for three years with 24 months of continuous CO₂ injection and a subsequent recovery phase of five months. This first, near-surface long-term CO₂ injection study presents geochemical and microbiological results from sampling campaigns before, during and after 24 months of CO₂ injection. In contrast to previous short-term studies of CO₂-injected sites or investigations at natural CO₂

vents we link our microbiological findings to geochemistry and seasonal conditions during long-term CO₂ injection and monitoring.

The ASGARD site is located on the University of Nottingham's Sutton Bonington Campus,

Materials and Methods

Site Description

south of central Nottingham (Supplementary Figure 1a). Previously it was used as sheep pasture and had remained grassland for more than 10 years. The ASGARD area is geologically characterized by up to 1.5 m of head deposit overlying mudstones of the Mercia Mudstone Group. Previous analyses of the mineralogical composition showed that quartz was the main component of the soil (> 90% of the dry weight) followed by K-feldspar and albite along with trace amounts of mica, kaolinite, chlorite and hematite. The top soil layer (~ 0.1 m) contains 8.9% clay, 22.9% silt and 68.2% sand, with no differences between the A horizon (0.15–0.30 m depth) and B horizon (0.45–0.50 m depth) (West et al. 2009). For a detailed geological description of the ASGARD facility, see also (Ford 2006). The facility consisted of 30 CO₂-injected and reference plots (15 & 15) each with an area of 2.5 m x 2.5 m (Supplementary Figure 1b and 1c). Ten plots were kept as pasture for different experiments. The other plots were planted with different agricultural crops. CO₂ was injected into the centre of the plots through permanently installed pipework at a depth of 50-60 cm below ground level. Non-gassed but otherwise identically treated plots were used as references. Previous short-term, intermittent CO₂ injection periods took place between 2006 and 2008 with both 1 and 3 L CO₂ min⁻¹ (Pierce and Sjögersten 2009; West et al. 2009). For the present study, CO₂ was continuously injected into one pasture plot at a constant flow rate of 1 L min⁻¹ (approx. 1 ton y⁻¹) from October 2010 to May 2012 (Smith et al. 2013). One ungassed plot was used as reference.

Sampling procedure

For our study, samples were taken before, during and after CO₂ injection from 2010-2012 twice a year (May and October) at 15-30 cm depth, in the middle of the investigated CO₂-injected and reference pasture plot. The samples were stored at 8°C and transported to the laboratory as fast as possible. Collected soil samples from both plots each sampling campaign were homogenized and subsamples were taken for geochemical (stored at 4°C), bio molecular (stored at -20°C) and microbial activity analyses (incubated at 20°C).

Meteorology

Climate data including averages of temperature, rainfall and irradiance each month for the years 2010-2012 were recorded at Sutton Bonington weather monitoring station located at the Nottingham University (http://www.metoffice.gov.uk/climate/uk/summaries).

Soil Geochemistry

Concentrations of CO₂, CH₄ and O₂ were determined using portable infrared landfill gas analysers GA2000 and GA5000 (Geotech, Warwickshire, UK). In addition, soil CO₂ flux measurements were taken during the sampling campaigns using a portable flux meter equipped with an infrared CO₂ sensor connected via Bluetooth to a palm-top computer (West Systems, Firenze, Italy). Soil moisture was determined after each sampling campaign prior to the biogeochemical analyses by drying 1 g of wet soil sample at 60°C to constant weight. In addition, soil carbon content (total carbon; TC) was analysed using a LECO CS 230 analyser (LECO Corporation, St. Joseph, USA). To obtain the total organic carbon (TOC), inorganic carbon was removed by adding a 10% solution of hydrochloric acid to the soil samples. Trace elements were analysed by X-ray fluorescence spectrometry as previously described by (Shibata *et al.* 2009). All samples were analysed in triplicates.

Microbial CO₂ and CH₄ turnover

To study the influence of CO₂ on microbial activity, aerobic and anaerobic microcosms were prepared using CO₂-induced and reference soil samples of each sampling campaign. For the investigation of aerobic mineralization rates, glass bottles flushed with sterile filtered, synthetically air were filled with 3 g soil. For the determination of CH₄ oxidation rates, 5 Vol.% CH₄ was added to the microcosms and its consumption was measured over the course of the experiment. In addition, anaerobic respiration and CH₄ production rates were measured. Microcosms were prepared with 5 g soil and flushed with sterile filtered nitrogen to remove O₂. Microcosms were prepared in triplicates and incubated at 20°C. Microbial activities were detected measuring CO₂ and CH₄ using a GC-FID gas chromatographer (SRI 8610C, SRI Instruments, USA) equipped with a methanizer as described in (Nauhaus *et al.* 2002). The rates were calculated in umol gdw⁻¹ soil d⁻¹.

DNA Extraction

Total DNA was extracted from frozen soil samples (-20°C) in duplicates following the manufacturers manual of the FastDNA Spin Kit for soil (Bio 101; MP Biomedicals).

Quantitative PCR analyses

Quantitative PCR was performed on a StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). Each reaction contained 5 μl TaqMan 2x Universal PCR Master Mix (NoAmpEraseUNG, Applied Biosystems), 0.4 μl PCR primers and probe for *Bacteria* (2.5 μM each) and *Archaea* (20 μM primers and 5 μM probe), 2.3 μl sterile water, 0.5 μl BSA (20 mg/ml) and 1 μl 16S rDNA template added to a final volume of 10 μl. Samples were analysed for total numbers of *Bacteria*, *Archaea* and *Crenarchaeota* as well as several functional groups including ammonia-oxidizing *Archaea* (AOA) and *Bacteria* (AOB) and methanogens (methyl coenzyme-M reductase; *mcrA*). The qPCR assays were calibrated

by 10-fold serial dilutions of PCR amplified pure standards and PCR-amplified, non-target 16S rDNA gene amplicons (environmental archaeal and bacterial *amoA* sequence mixtures) of the relevant target gene. Microbial primers, standards and description of the qPCR specifications can be found in Supplementary Table 1. Overall, nine replicates (3 replicates x 3 dilutions; 10-, 100- and 1000-fold) of each sample were analysed. Amplification efficiencies were calculated from the StepOne v2.1 software on the basis of threshold cycle versus gene abundance of standards according to the relationship E = 10(-1/slope). Amplification efficiencies ranged between 80 and 100%. The qPCR amplifications were analysed with the StepOne v2.1 software and the results are expressed in gene copies per gram dry weight.

Clone Library Construction

PCR amplicons of bacterial and archaeal 16S rDNA genes were generated using 1:10 or 1:100 dilutions each soil DNA extract. Bacterial 16S rDNA genes were amplified by using primer sets 27f (5'-AGRGTTYGATYMTGGCTCAG-3') - 1392r (5'-ACGGGCGGTGTGTRC-3') and 109f (5'-ACKGCTCAGTAACACGT-3') - 915r (5'-GTGCTCCCCCGCCAATTCCT-3'), respectively (Lane, D.J. 1991). For the Archaea, the universal archaeal primers 109f (5'-ACK GCT CAG TAA CAC GT -3') (Whitehead and Cotta 1999) and 915r (5'- GTG CTC CCC CGC CAA TTC CT -3') (Stahl *et al.* 1991) were used. The PCR reactions contained 25 μl DreamTaq PCR Master Mix (2x) (Thermo Scientific), 0.3 μM of each primer, 4 μl template DNA and nuclease-free water up to 50 μl. The PCR conditions for the bacterial primer pair were as follows: initial denaturation for 5 min at 95°C followed by 25 cycles of 30 s at 94°C, 30 s at 52°C, and 75 s at 72°C, and a final extension at 72°C for 20 min. The PCR conditions for the archaeal primer pair were as follows: initial denaturation for 5 min at 95°C followed by 35 cycles of 30 s at 95°C, 30 s at 52°C, and 90 s at 72°C, and a final extension at 72°C for 10 min. Triplicate PCRs were performed for each soil DNA extract. Purification,

cloning and sequencing of the 16S rDNA PCR products was conducted at LGC Genomics GmbH (LGC Genomics GmbH, Berlin, Germany) and Microsynth AG (Microsynth AG, Balgach, Switzerland).

Phylogenetic analyses

Chimeras were identified and removed using Geneious R7 software and DECIPHER (Wright et al. 2012). Sequences with mismatches or gaps were removed using MOTHUR (Schloss et al. 2009). For clustering the sequences into OTUs and additional analysis of community structure, MOTHUR was used (Schloss et al. 2009). Representatives of each OTU at the 0.03 distance level were aligned and classified with the ARB-SILVA aligner and assembled in the existing parsimony tree of the SILVA reference database SSURef 118 (Pruesse et al. 2012). The phylogenetic trees for *Archaea* and *Bacteria* were calculated using ARB software tools (Ludwig et al. 2004).

Statistical analyses

To determine whether CO₂, seasonal or interannual alterations affected soil properties and soil microbial activities, two-way ANOVA was used. Nonmetric multidimensional scaling (MDS) plots, based on distance matrixes were generated for a visualisation and interpretation of CO₂ impacts for bacterial and archaeal communities. Analysis of similarity (ANOSIM) was performed to detect differences of the bacterial and archaeal communities between the CO₂-injected and reference samples. Permutational multivariate analysis of variance (PERMANOVA) was used to determine whether CO₂, seasonal or interannual alterations affected bacterial and archaeal communities with 9999 permutations. Similarity percentage (SIMPER) analysis was performed to identify the taxa that contributed most of the variance among CO₂-injected and reference samples. MDS as well as analyses of similarity and variance base on the Bray-Curtis dissimilarity index. Analyses of MDS, ANOVA and

multivariate statistics were performed in PAST (Hammer *et al.* 2001). For the archaeal clone libraries, the calculation of diversity (Shannon) and richness (Chao) indices were generated using MOTHUR (Schloss *et al.* 2009). For the illustration of correlations between climate or geochemical data, archaeal sequences and CO₂/O₂ concentrations, principal component analysis (PCA) was conducted using reshape2 and ade4 packages in R (Dray and Dufour 2007; Wickham 2007; Team 2012).

Results and Discussion

Soil Gas measurements and CO₂ impacts on soil geochemistry

During the 24 months of CO₂ injection at the ASGARD site, soil geochemical investigations were conducted to determine the concentration and flux of soil gases as well as soil pH, mineralogy and C content. Before and after the first four months of CO₂ injection, no significant differences in soil gas concentrations and flux rates between CO₂-exposed and reference plots were detected (Table 2). The subsequent measurements at 10, 16 and 24 months of CO₂ injection showed increasing CO₂ and decreasing O₂ concentrations within the upper 15-30 cm of the soil (Figure 1). A CO₂ maximum of 23% in soil gas was detected after 24 months of gassing (May 2012). Five months after the stop of CO₂ injection (Oct 2012), the CO₂ and O₂ values were comparable to those before CO₂ injection (CO₂ conc.: 0.2-4%) (Figure 1). Within the reference plots, CO₂ and O₂ concentrations remained relatively stable between 0.2-1.3% CO₂ and 19.7-22% O₂ over the three-year observation period. Previous soil gas measurements within the CCS project CLEAN in Germany and at the ZERT field site in Montana (Lewicki et al. 2010; Schlömer et al. 2014) observed highly variable CO₂ concentrations between 0.2-19% CO₂, quite similar to the CO₂ concentrations detected at the ASGARD site for both CO₂-injected and reference plots. A significant relationship between CO₂ injection at ASGARD and alterations in geochemistry was not detected (ANOVA, P > 0.05; Supplementary Table 3). The soil pH measurements were conducted once per season in

between 5 and 6.5 and did not show significant alterations during CO₂ injection. Similar results were detected during a previous injection period in 2006 (West et al. 2009). The results of both sampling campaigns at the ASGARD site demonstrated the soil buffering capacities and the necessity of long-term observations. In contrast to our results, previous studies of CO₂-injection sites reported the potential of CO₂-induced weathering of soils, groundwater and aquifer minerals including increasing dissolution of metals and trace elements (Altevogt and Jaffe 2005; Wei *et al.* 2011; Harvey *et al.* 2012). Alterations over time without CO₂ impacts have also been detected for total carbon (TC) and total organic carbon (TOC) contents (ANOVA, P > 0.05; Supplementary Table 3). For CO₂-affected samples in May, a mean TC content of 2.1% was observed and only slightly higher TC values of 2.4% were detected within the reference samples. For October, a mean TC content of 2.1% in CO₂-injected samples and 2% in reference samples was detected. Similar results were observed with TOC values.

CO₂ impacts on soil microbial activity

During CO₂ injection, not only alterations in the degradation of soil organic matter have to be considered but also the influence of the rising supply of CO₂ as a direct microbial electron acceptor. Thus, in addition to CO₂ production as a result of the degradation of soil organic matter, CH₄ production and CH₄ oxidation are of potential interest. For the investigation of microbial activity within the soil samples, cultivation experiments focusing on microbial CO₂ and CH₄ production, and CH₄ oxidation were conducted.

For the ASGARD site, no significant CO_2 -induced differences in microbial metabolic rates were detected (ANOVA, P > 0.05; Supplementary Table 4). Instead, significant differences between the sampling years and the May and October samples were observed (ANOVA, P < 0.05; Supplementary Table 4). As to be expected, lower microbial metabolic rates under

anaerobic conditions were detected (up to 1 500 times lower) (Figure 2a- 2d). Potential CO₂ production rates were slightly higher under aerobic conditions than under anaerobic conditions (Figure 2a and 2b). The values for the aerobic CO₂ production ranged between 0.5 and 2.9 μmol CO₂ d⁻¹ gdw⁻¹ for the CO₂-affected samples and between 0.5 and 3.2 μmol CO₂ d⁻¹ gdw⁻¹ for the reference samples. Under anaerobic conditions, CO₂ production ranged between 0.1 and 1.6 μmol CO₂ d⁻¹ gdw⁻¹ for the CO₂-affected samples and between 0.1 and 1.5 μmol CO₂ d⁻¹ gdw⁻¹ for the reference samples. A maximum peak for the CO₂ production was detected in May 2011 (Figure 2a and 2b). Unfortunately, because of technical problems no data were collected for the October 2011 samples.

Investigations of specific microbial metabolic rates have so far mainly been conducted for natural CO₂ vents (e.g. Oppermann *et al.* 2010; Frerichs *et al.* 2013; Fernández-Montiel *et al.* 2015). However, CO₂-induced differences in aerobic and anaerobic CO₂ production rates as described in these studies, could not be detected for the ASGARD site (Oppermann *et al.* 2010; Frerichs *et al.* 2013). In addition, no significant CO₂ impact over time was detected for the CH₄ production and oxidation (Figure 2c and 2d).

The potential rates of CH₄ production ranged between 0.01 and 0.3 μmol d⁻¹ gdw⁻¹ within CO₂-exposed samples and 0.02-0.1 μmol d⁻¹ gdw⁻¹ for reference samples (Figure 2d). Similar CH₄ production rates have been detected in previous studies at natural CO₂ vents with values between 0.001 and 0.1 μmol d⁻¹ gdw⁻¹ (Oppermann *et al.* 2010; Beulig *et al.* 2015). However, distinct increasing CH₄ production rates with increasing CO₂ concentration as described at natural sites could not be detected at the ASGARD site.

For both CO₂-exposed and reference samples CH₄ oxidation rates slightly increased over time with a peak in May 2012 of 2.2 μmol CH₄ d⁻¹ gdw⁻¹ followed by a decrease in October 2012 to 0.4 μmol CH₄ d⁻¹ gdw⁻¹ (Figure 2c). Similar to our results, during a one year CO₂ injection experiment at the PISCO₂ experimental site, in the CIUDEN facilities at Cubillos del Sil

(León; Spain), no CO₂ impacts on microbial activity were detected (Fernández-Montiel *et al.* 2015).

CO₂ impacts on soil microbial abundance

For the investigation of CO₂ impacts on microbial abundance, bacterial and archaeal 16S rDNA gene copy numbers were determined. Both bacterial and archaeal 16S rDNA gene copy numbers ranged from 10⁷ to 10¹⁰ gdw⁻¹ of soil (Figure 3a and 3b) without significant CO₂-induced differences between CO₂-exposed and reference samples (ANOVA, P > 0.05; Supplementary Table 6a). Similar results were detected for the CO₂ injection site PISCO₂ as well as for some natural CO₂ vents (Beaubien *et al.* 2008; Frerichs *et al.* 2013; Beulig *et al.* 2015; Fernández-Montiel *et al.* 2015). In contrast, decreasing microbial gene copy numbers by up to two orders of magnitude with increasing CO₂ at natural CO₂ vents were previously detected (Oppermann *et al.* 2010; Fernández-Montiel *et al.* 2016). Similar results were detected during a previous 19 weeks gas release experiment at the ASGARD site in 2009 with decreasing total microbial numbers detected with, however, different methodological approaches (West *et al.* 2009, 2015).

In addition to general bacterial and archaeal abundances, *Crenarchaeota* as well as several functional genes with potential relevance for CO₂ turnover were quantitatively analysed.

Similar to the bacterial and archaeal abundances, no CO₂ impacts were detected (Table 2).

The *mcr*A gene was detected with 10⁷ gene copy numbers gdw⁻¹ in CO₂-exposed samples and between 10⁶ to 10⁸ gene copy numbers gdw⁻¹ in reference samples (Table 2). Higher values were detected for *Crenarchaeota* with 10⁷-10⁹ 16S rDNA gene copy numbers gdw⁻¹ in CO₂-exposed and 10⁸-10⁹ gene copy numbers gdw⁻¹ in reference samples (Table 2). Similar values for both *mcr*A and crenarchaeal gene copies were detected in previous studies for different soil types (Oppermann *et al.* 2010; Angel et *al.* 2012; Frerichs *et al.* 2013; Dubey *et al.* 2014). Similar to the ASGARD results, a previous study during about 20 days of CO₂ injection at the

ZERT field site showed no significant CO₂ impact on *mcr*A abundane (Morales and Holben 2013). However, contrary results were detected especially for natural CO₂ vents with both increasing and decreasing numbers of *mcr*A genes with increasing CO₂ concentration (Oppermann *et al.* 2010; Frerichs *et al.* 2013). Gene copy numbers of ammonia-oxidizing *Bacteria* (AOB) in May samples ranged between 10⁶-10⁸ for both CO₂-exposed and reference samples. In October 2012, AOB gene copy numbers for both CO₂-exposed and reference samples were one to three orders of magnitude lower compared with May samples (Table 2). Similar results were observed for AOA in both CO₂-exposed and reference samples with 10⁶-10⁹ gene copy numbers in May samples and 10⁷ gene copy numbers in October 2012 (Table 2). Previous investigations of AOB and AOA gene copy numbers in CO₂-unaffected agricultural soil and pasture showed similar numbers between 10⁴-10⁹ gene copies gdw⁻¹ (Nicol *et al.* 2008; Daebeler *et al.* 2014). Unfortunately, the potential stimulation or inhibition of AOA and AOB by increasing CO₂ concentrations remains unclear (Frerichs *et al.* 2013; Morales and Holben 2013, 2014).

Altogether, possible CO₂ impacts on soil microbial abundance remain uncertain and seem to vary. In contrast to rather inconsistent results from CO₂ injection studies (Morales and Holben 2013; Fernández-Montiel *et al.* 2015), most previous results from natural CO₂ vents suggest a CO₂-induced decrease in microbial abundance (e.g. Fernández-Montiel *et al.*, 2016).

CO₂ impacts on soil microbial communities

Bacteria

Independent of the soil treatment, the majority of the bacterial sequences were assigned into five phyla: *Firmicutes* (9-65%), *Proteobacteria* (10-30%), *Actinobacteria* (2-44%), *Acidobacteria* (1-25%) and *Bacteroidetes* (0-12%) (Figure 4). They represent 75-95% of the sequences within all 16S rRNA clone libraries. Lower abundances (5-15%) were detected for *Planctomycetes*, *Nitrospirae*, *Chloroflexi*, *Verrucomicrobia*, *Gemmatimonadetes* and

Candidate divisions (Figure 4). No significant differences were observed between bacterial community compositions from CO₂-injected and reference samples (ANOSIM, R = -0.15, P = 0.91; Figure 4). Instead, common soil *Bacteria* were detected (Janssen 2006; Lauber et al. 2009; Sáenz de Miera et al. 2014) with significant seasonal variations over time (PERMANOVA, F = 4.23, P = 0.01, permutation 9999; Supplementary Table 6b). The most dominant phylum within CO₂-exposed and reference samples at 15-30 cm depth was the Firmicutes phylum (Figure 4) with sequences assigned to the families Bacillaceae and Planococcaceae. SIMPER analysis at phylum level indicated that Firmicutes contributed most of the differences in the relative abundance between CO₂-injected and reference sites (30.1%), followed by Actinobacteria (22.5%), unclassified Bacteria (11.6%), Acidobacteria (11.5%) Proteobacteria (7.3%) and Bacteroidetes (5.6%) (Supplementary Table 7). Several previous studies from CO₂-affected and unaffected sites reported only low abundances of 0-8% Firmicutes in soils (Janssen 2006; Sáenz de Miera et al. 2014). Other studies detected higher abundances of *Firmicutes* representatives of up to 50% in grassland soil (Felske et al. 1998) or rhizosphere (Teixeira et al. 2010). In addition, analyses of soil samples from the Stavesinci CO₂ vent area (Slovenia) showed increasing numbers of Firmicutes sequences with increasing CO₂ (Šibanc et al. 2014). So far, analyses of soil samples from natural CO₂ vents suggest that high CO₂ concentrations might result in increasing numbers of Acidobacteria, Chloroflexi and anaerobic acetogens (Sáenz de Miera et al. 2014; Šibanc et al. 2014; Beulig et al. 2015). However, the microbial interactions and metabolic activity of soil Bacteria under high CO₂ concentrations remains unclear and need further research.

Archaea

For both CO₂-exposed and reference samples, the majority of the archaeal sequences (85-100%) were assigned to *Candidatus Nitrososphaera*, the first cultivated representative of the thaumarchaeotal 16S rRNA sequence cluster I.1b (soil group), followed by 0-7% of

unclassified Archaea and 0-1% *Euryarchaeota* (Figure 5). The cultivation of *Candidatus Nitrososphaera gargensis* has proven its ability for aerobic, chemolithoautotrophic nitrification and the potential for a mixotrophic life (Hatzenpichler *et al.* 2008; Pratscher *et al.* 2011; Spang *et al.* 2012). The archaeal 16S rRNA clone libraries cover 75-94% of the estimated archaeal representatives (Supplementary Table 5) without significant differences between archaeal community compositions from CO_2 -injected and reference samples (ANOSIM, R = -0.10, P = 0.89; Figure 5). Similar results were detected for the Shannon diversity index and Chao1 richness index (Supplementary Figure 1) without significant CO_2 -induced alterations (t-test, P > 0.05).

Also in the archaeal community composition significant seasonal variation over time was observed (PERMANOVA, F = 10.89, P = 0.01, permutation 9999; Supplementary Table 6b). SIMPER analysis at phylum level indicated that *Thaumarchaeota* contributed most of the differences in the relative abundance between CO₂-injected and reference sites (78.1%) (Supplementary Table 7). The predominance and importance of thaumarchaeotal I.1b soil group within both CO₂-injected and reference soil samples agrees with previous studies in different soil ecosystems (Hansel et al. 2008; Bates et al. 2011; Eilers et al. 2012). Nevertheless, previous analyses of CO₂-exposed and reference soil samples from natural CO₂ vents showed contrary results with CO₂-induced alterations in archaeal community composition. Within CO₂ vents, thaumarchaeotal I.1b soil group members were dominating in contrast to the predominant euryarchaeotal Methanomicrobia members at the reference sites (Frerichs et al. 2013; Šibanc et al. 2014). In contrast to these findings, in another study Beulig et al. (2015) detected Nitrososphaerales of the Thaumarchaeota only within the reference samples of the investigated mofette field in the Cheb Basin (Czech Republic). Here, the CO₂ vent samples were dominated by the euryarchaeotal classes Methanosarcinales and *Methanomicrobiales* (50-90%).

Importance of seasonal conditions

In order to determine whether CO₂ exposure or seasonal factors have more influence on the investigated soil samples, univariate and multivariate analyses of variance (ANOVA; PERMANOVA) and principal component analysis (PCA) have been applied. The results showed no significant CO₂ impact on soil properties (ANOVA, P > 0.05; Supplementary Table 3), microbial activity (ANOVA, P > 0.05; Supplementary Table 4), microbial abundance or community composition (PERMANOVA, P > 0.05; Supplementary Table 5a and 5b) but alterations over time. The PCA biplot explained 72% of the variance (Figure 6). The PC 1 (x-axis) comprises the climate factors including e.g. moisture and temperature. The PC 2 (y-axis) comprises the measured soil gases CO₂ and O₂. Interestingly, most samples cluster close to PC 1, climate factors. Therefore, most October samples cluster together with rainfall in contrast to most of the May samples which correlate with temperature and high carbon availability (TC, TOC), due to high rainfall in autumn and the growing season in spring. The majority of both May and October samples cluster in the lower half of PC 2, with oxygen as the major influencing parameter without or less CO₂ impact. In contrast, samples collected in May and October 2011 as well as in May 2012 are clustering close to PC 2, with CO₂ as the most influencing parameter. These samples were collected after 10, 16 and 24 months of CO_2 injection with however, no significant CO_2 impacts (ANOVA, P > 0.05; Supplementary Table 3). The impact of climate parameters on near-surface ecosystems as detected within our study was confirmed in previous near-surface studies (Kreyling et al. 2008; Lauber et al. 2013; Schlömer et al. 2014). However, less data are available for microbial responses on changing climate parameters during CO₂-injection. Morales and Holben (2013) for example, described CO₂-induced alterations in soil microbial community related to seasonal conditions during a CO₂ injection period in summer 2009. They also assume a strong probability that CO₂ impacts might be masked by seasonal variations.

Conclusions and recommendations for future research studies

Rising CO₂ concentrations in near-surface soils can induce multiple ecological responses. To date, results of the various studies available are inconsistent as a consequence of e.g. a broad range of soil types, CO₂ elevation methods/CO₂ concentrations, exposure time and detection techniques of potential CO₂-induced microbiological alterations. In addition, previous studies often focused on short-term CO₂ injection periods or natural CO₂ vents. So far, no experimental setup has focused on CO₂-dependent biogeochemical alterations in near-surface soils before, during and after long-term CO₂ injection. With our project, we aimed to fill this gap of research. The results presented in our study were the first obtained from a long-term, near-surface CO₂ injection experiment with 24 months of continuous CO₂ gassing. This included geochemical and microbiological analyses before, during and after CO₂ injection. Our results from the ASGARD facility showed that soil CO₂ concentrations between 0.3 and 23% over a time period of three years had no detectable impact on soil microbiology. Still, the potential and maybe site-specific links between CO₂ exposure time, CO₂ concentration/injection rate, soil buffering capacities and ecological responses have to be clarified. Furthermore, the impacts of climate variations have to be investigated. For the ASGARD site, impacts of climate parameters, especially temperature and precipitation, have been detected which possibly mask CO₂ effects. Therefore, a detailed evaluation of the ecosystem baseline is of fundamental importance to clarify how CO₂ may influence nearsurface microbial communities. In consequence, future research studies need extended sampling campaigns to classify seasonal impacts and to identify short-term effects after CO₂ injection (increase statistical reliability). In addition, further comprehensive microbial community analyses are needed.

Acknowledgments

The present work was conducted within the project "Research into Impacts and Safety in CO₂ Storage (RISCS)" and the framework of CO₂GeoNet. RISCS was funded by the EC 7th Framework Programme (Project no. 240837) and by industry partners ENEL I&I, Statoil, Vattenfall AB, E.ON and RWE.

We thank Pat Coombs, Amanda Gardner and Simon Gregory for help during the sampling campaigns; Stefan Schlömer and Holger Probst for help with GC measurements; Falk Bratfisch, Ursula Günther and Matthias Gehre for help with soil carbon analyses; Martina Herrmann for help with AOA/AOB qPCR establishment; and Jana Sitte for proofreading of the manuscript.

Literature

Altevogt AS, Jaffe PR. Modeling the effects of gas phase CO2 intrusion on the biogeochemistry of variably saturated soils. *Water Resour Res* 2005;**41**:W09426.

Angel R, Claus P, Conrad R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. *ISME J* 2012;**6**:847–62.

Bates ST, Berg-Lyons D, Caporaso JG *et al.* Examining the global distribution of dominant archaeal populations in soil. *ISME J* 2011;**5**:908–17.

Beaubien SE, Ciotoli G, Coombs P *et al*. The impact of a naturally occurring CO2 gas vent on the shallow ecosystem and soil chemistry of a Mediterranean pasture (Latera, Italy). *EGU*Gen Assem 2007 Adv CO2 Storage Geol Syst EGU 2007 2008;2:373–87.

Beaubien SE, Jones DG, Gal F *et al.* Monitoring of near-surface gas geochemistry at the Weyburn, Canada, CO2-EOR site, 2001–2011. *IEAGHG Weyburn-Midale CO2 Monit Storage Proj* 2013;**16**, **Supplement 1**:S236–62.

Beulig F, Heuer VB, Akob DM *et al.* Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette. *ISME J* 2015;**9**:746–59.

Class H, Ebigbo A, Helmig R *et al.* A benchmark study on problems related to CO2 storage in geologic formations. *Comput Geosci* 2009;**13**:409–34.

Daebeler A, Bodelier PL, Yan Z *et al.* Interactions between Thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. *ISME J* 2014;**8**:2397–410.

Dray S, Dufour A-B. The ade4 package: implementing the duality diagram for ecologists. *J Stat Softw* 2007;**22**:1–20.

Dubey SK, Singh A, Watanabe T *et al.* Methane production potential and methanogenic archaeal community structure in tropical irrigated Indian paddy soils. *Biol Fertil Soils* 2014;**50**:369–79.

Eilers KG, Debenport S, Anderson S *et al.* Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. *Soil Biol Biochem* 2012;**50**:58–65.

Felske A, Wolterink A, Van Lis R *et al.* Phylogeny of the Main Bacterial 16S rRNA Sequences in Drentse A Grassland Soils (The Netherlands). *Appl Environ Microbiol* 1998;**64**:871–9.

Fernández-Montiel I, Pedescoll A, Bécares E. Microbial communities in a range of carbon dioxide fluxes from a natural volcanic vent in Campo de Calatrava, Spain. *Int J Greenh Gas Control* 2016;**50**:70–9.

Fernández-Montiel I, Sidrach-Cardona R, Gabilondo R *et al.* Soil communities are affected by CO2 belowground emissions at a natural vent in Spain. *Soil Biol Biochem* 2016;**97**:92–8.

Fernández-Montiel I, Touceda M, Pedescoll A *et al.* Short-term effects of simulated below-ground carbon dioxide leakage on a soil microbial community. *Int J Greenh Gas Control* 2015;**36**:51–9.

Ford JR. The geology of the ASGARD site, Sutton Bonington. *Br Geol Surv Intern Rep IR06049R* 2006.

Frerichs J, Oppermann BI, Gwosdz S *et al.* Microbial community changes at a terrestrial volcanic CO2 vent induced by soil acidification and anaerobic microhabitats within the soil column. *FEMS Microbiol Ecol* 2013;**84**:60–74.

Hammer Ø, Harper DAT, Ryan PD. *PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontolia Electronica* 4., 2001.

Hansel CM, Fendorf S, Jardine PM *et al.* Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. *Appl Environ Microbiol* 2008;**74**:1620–33.

Harvey OR, Qafoku NP, Cantrell KJ *et al.* Geochemical Implications of Gas Leakage associated with Geologic CO2 Storage—A Qualitative Review. *Environ Sci Technol* 2012;**47**:23–36.

Hatzenpichler R, Lebedeva EV, Spieck E *et al.* A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. *Proc Natl Acad Sci* 2008;**105**:2134–9.

Janssen PH. Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S rRNA and 16S rRNA Genes. *Appl Environ Microbiol* 2006;**72**:1719–28.

Jenkins C, Chadwick A, Hovorka SD. The state of the art in monitoring and verification—Ten years on. *Spec Issue Commem 10th Year Anniv Publ Intergov Panel Clim Change Spec Rep CO2 Capture Storage* 2015;**40**:312–49.

Kreyling J, Beierkuhnlein C, Elmer M *et al.* Soil biotic processes remain remarkably stable after 100-year extreme weather events in experimental grassland and heath. *Plant Soil* 2008;**308**:175–88.

Lane, D.J. 16S/23S rRNA sequencing. In: Stackebrandt, E., Goodfellow, M. (eds.). *Nucleic Acid Techniques in Bacterial Systematics*. New York: Wiley, 1991, 115–75.

Lauber CL, Hamady M, Knight R *et al.* Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. *Appl Environ Microbiol* 2009;**75**:5111–20.

Lauber CL, Ramirez KS, Aanderud Z *et al*. Temporal variability in soil microbial communities across land-use types. *ISME J* 2013;**7**:1641–50.

Lewicki JL, Hilley GE, Dobeck L *et al.* Dynamics of CO2 fluxes and concentrations during a shallow subsurface CO2 release. *Environ Earth Sci* 2010;**60**:285–97.

Little MG, Jackson RB. Potential Impacts of Leakage from Deep CO2 Geosequestration on Overlying Freshwater Aquifers. *Environ Sci Technol* 2010;**44**:9225–32.

Ludwig W, Strunk O, Westram R *et al.* ARB: a software environment for sequence data. *Nucleic Acids Res* 2004;**32**:1363–71.

Morales SE, Holben WE. Functional Response of a Near-Surface Soil Microbial Community to a Simulated Underground CO2 Storage Leak. *PloS One* 2013;8:e81742.

Morales SE, Holben WE. Simulated geologic carbon storage leak reduces bacterial richness and alters bacterial community composition in surface soil. *Soil Biol Biochem* 2014;**76**:286–96.

Nauhaus K, Boetius A, Krüger M *et al.* In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. *Environ Microbiol* 2002;**4**:296–305.

Nicol GW, Leininger S, Schleper C *et al*. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. *Environ Microbiol* 2008;**10**:2966–78.

Oppermann BI, Michaelis W, Blumenberg M *et al.* Soil microbial community changes as a result of long-term exposure to a natural CO2 vent. *Geochim Cosmochim Acta* 2010;**74**:2697–716.

Pierce S, Sjögersten S. Effects of below ground CO2 emissions on plant and microbial communities. *Plant Soil* 2009;**325**:197–205.

Pratscher J, Dumont MG, Conrad R. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. *Proc Natl Acad Sci* 2011;**108**:4170–5.

Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. *Bioinformatics* 2012;**28**:1823–9.

Sáenz de Miera LE, Arroyo P, de Luis Calabuig E *et al*. High-throughput sequencing of 16S RNA genes of soil bacterial communities from a naturally occurring CO2 gas vent. *Int J Greenh Gas Control* 2014;**29**:176–84.

Schlömer S, Möller I, Furche M. Baseline soil gas measurements as part of a monitoring concept above a projected CO2 injection formation—A case study from Northern Germany. *Int J Greenh Gas Control* 2014;**20**:57–72.

Schloss PD, Westcott SL, Ryabin T *et al.* Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. *Appl Environ Microbiol* 2009;**75**:7537–41.

Shibata Y, Suyama J, Kitano M *et al.* X-ray fluorescence analysis of Cr, As, Se, Cd, Hg, and Pb in soil using pressed powder pellet and loose powder methods. *X-Ray Spectrom* 2009;**38**:410–6.

Šibanc N, Dumbrell AJ, Mandić-Mulec I *et al.* Impacts of naturally elevated soil CO2 concentrations on communities of soil archaea and bacteria. *Soil Biol Biochem* 2014;**68**:348–56.

Smith KL, Steven MD, Jones DG *et al.* Environmental impacts of CO2 leakage: recent results from the ASGARD facility, UK. *GHGT-11* 2013;**37**:791–9.

Solomon, Qin, D., Manning, M. *et al.* The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. The Physical Science Basis (ed.). 2007.

Spang A, Poehlein A, Offre P *et al*. The genome of the ammonia-oxidizing CandidatusNitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. *Environ Microbiol* 2012;**14**:3122–45.

Stahl, D.A., Amann, R. Development and application of nucleic acid probes. In: Stackebrandt, E., Goodfellow, M. (eds.). *Nucleic Acid Techniques in Bacterial Systematics*. New York: Wiley, 1991, 205–48.

Team RC. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3-900051-07-0, 2012.

Teixeira LCRS, Peixoto RS, Cury JC *et al.* Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. *ISME J* 2010;**4**:989–1001.

Wei Y, Maroto-Valer M, Steven MD. Environmental consequences of potential leaks of CO2 in soil. *10th Int Conf Greenh Gas Control Technol* 2011;**4**:3224–30.

West JM, Jones DG, Annunziatellis A *et al.* Comparison of the impacts of elevated CO2 soil gas concentrations on selected European terrestrial environments. *Int J Greenh Gas Control* 2015;**42**:357–71.

West JM, Pearce JM, Coombs P *et al.* The impact of controlled injection of CO2 on the soil ecosystem and chemistry of an English lowland pasture. *Greenh Gas Control Technol 9 Proc* 9th Int Conf Greenh Gas Control Technol GHGT-9 16–20 Novemb 2008 Wash DC USA 2009;**1**:1863–70.

Whitehead T., Cotta M. Phylogenetic diversity of methanogenic archaea in swine waste storage pits. *FEMS Microbiol Lett* 1999;**179**:223–6.

Wickham H. Reshaping data with the reshape package. J Stat Softw 2007;21:1–20.

Wright ES, Yilmaz LS, Noguera DR. DECIPHER, a Search-Based Approach to Chimera Identification for 16S rRNA Sequences. *Appl Environ Microbiol* 2012;**78**:717–25.

Table 1. Soil CO₂ flux, atmospheric conditions (temperature, irradiance, rainfall), soil moisture and soil carbon content for CO₂ exposed and reference samples over time (n=1 for each sampling campaign). Soil samples of the CO₂-exposed plot were taken before CO₂ injection (May 2010), after 4, 10, 16 and 24 months of CO₂ injection and after CO₂ injection (Oct 2012).

Samples/Time point	CO ₂ Flux	Temp.	Irradiance	Rainfall	Moisture	TC	TOC
	[g/mq/day]	[°C]	$[kJ/m^2]$	[mm ¹]	[%]	[%]	[%]
CO ₂ exposed site							
pre-gassing, May 2010	21.26	15.84	17959.73	0.59	8.09	2.38	2.30
Oct 2010 (4 months)	15.29	14.06	6136.18	1.60	11.92	1.97	1.64
May 2011 (10 months)	195.59	17.05	17904.09	1.25	10.71	1.87	1.76
Oct 2011 (16 months)	748.28	16.85	6685.11	1.35	6.53	2.38	2.20
May 2012 (24 months)	630.74	16.34	17720.01	0.92	8.12	2.00	1.79
post-gassing, Oct 2012	29.24	12.94	6252.36	1.61	15.57	2.04	1.86
Reference site							
May 2010	17.64	15.84	17959.73	0.59	7.59	2.54	2.39
Oct 2010	11.57	14.06	6136.18	1.60	13.90	2.03	1.96
May 2011	18.75	17.05	17904.09	1.25	8.74	2.33	2.20
Oct 2011	27.78	16.85	6685.11	1.35	8.21	2.13	2.01
May 2012	33.68	16.34	17720.01	0.92	9.31	2.22	2.13
Oct 2012	34.00	12.94	6252.36	1.61	15.92	1.88	1.68

- 1 Table 2. qPCR analysis of the microbial community composition in CO₂ exposed and reference samples over time using 16S rRNA genes and
- 2 functional genes (mcrA, amoA) (± SD; n = 3 samples; 9 measurements per sample; nd = not detected). Soil samples of CO₂-exposed plots were
- taken before CO₂ injection (May 2010), after 4, 10, 16 and 24 months of CO₂ injection and after CO₂ injection (Oct 2012). Results are expressed in
- 4 gene copies per gram dry

5	weight (gene	Sample	mcrA gene	Crenarchaeota	Archaeal amoA	Bacterial amoA	copies gdw
6	1)	CO ₂ exposed site					
	<i>)</i> •	pre-gassing, May 2010	nd	nd	$2.4 \times 10^6 \pm 5.6 \times 10^4$	$3.3 \times 10^8 \pm 1.3 \times 10^7$	
7		Oct 2010 (4 months)	$2.0 \times 10^{7} \pm 1.7 \times 10^{6}$	$1.8 \times 10^9 \pm 3.7 \times 10^7$	nd	nd	
8		May 2011 (10 months)	$8.9 \times 10^{7} \pm 4 \times 10^{7}$	nd	$2.2 \times 10^6 \pm 1.3 \times 10^5$	$1.4 \times 10^8 \pm 6.4 \times 10^6$	
		Oct 2011 (16 months)	$3.2 \times 10^{7} \pm 6.9 \times 10^{6}$	$1.9 \times 10^8 \pm 1.5 \times 10^7$	nd	nd	
9		May 2012 (24 months)	$3.9 \times 10^7 \pm 4.8 \times 10^5$	$6.5 \times 10^9 \pm 6.3 \times 10^8$	_	$3.8 \times 10^7 1.1 \times 10^6$	
10		post-gassing, Oct 2012	nd	$1.5 \times 10^7 \pm 4.4 \times 10^6$	$2.4 \times 10^7 \pm 3 \times 10^6$	$3.5 \times 10^5 \pm 8.8 \times 10^4$	
11		Reference site	(5	9 7	6	9 7	
		May 2010			$1.9 \times 10^6 \pm 7.2 \times 10^4$	$2.5 \times 10^8 \pm 1.1 \times 10^7$	
12		Oct 2010	$4.4 \times 10^8 \pm 1.4 \times 10^8$	$1.9 \times 10^9 \pm 5.5 \times 10^7$		nd	
13		May 2011	$1.7 \times 10^8 \pm 1.3 \times 10^8$	nd	$1.9 \times 10^6 \pm 8.4 \times 10^4$	$1.4 \times 10^8 \pm 7.8 \times 10^6$	
14		Oct 2011	$5.2 \times 10^7 \pm 1.9 \times 10^7$		nd	nd	
		May 2012	$4.3 \times 10^7 \pm 9.6 \times 10^5$	$6.4 \times 10^9 \pm 2.4 \times 10^8$	$3.0 \times 10^9 \pm 1 \times 10^8$	$7.8 \times 10^6 \pm 4.1 \times 10^5$	
15		Oct 2012	$4.0 \times 10^6 \pm 1.5 \times 10^6$	$3.7 \times 10^8 \pm 1.4 \times 10^7$	$5.8 \times 10^7 \pm 1.2 \times 10^7$	$2.0 \times 10^5 \pm 3.4 \times 10^4$	

16

17

18

Figure 1. Soil CO₂ (circles) and O₂ (squares) concentrations (%) over time at 15-30 cm depth (n=1 for each sampling campaign). Closed symbols indicate CO₂-exposed samples. Open symbols indicate reference samples. CO₂ injection from October 2010 to May 2012.

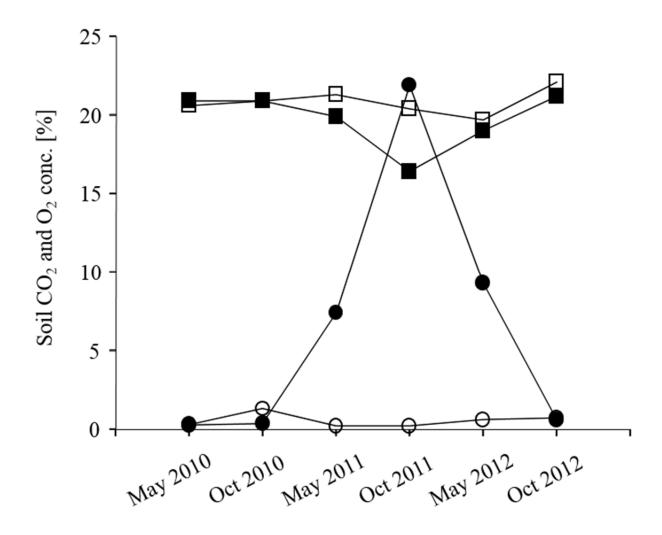
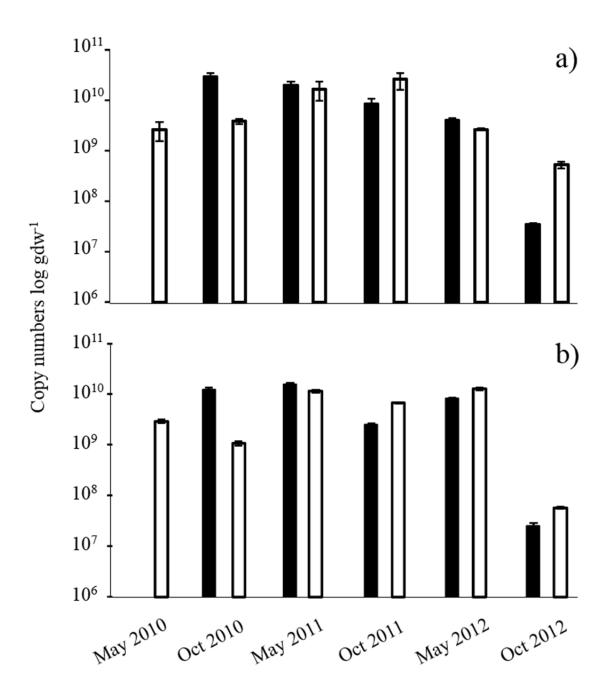
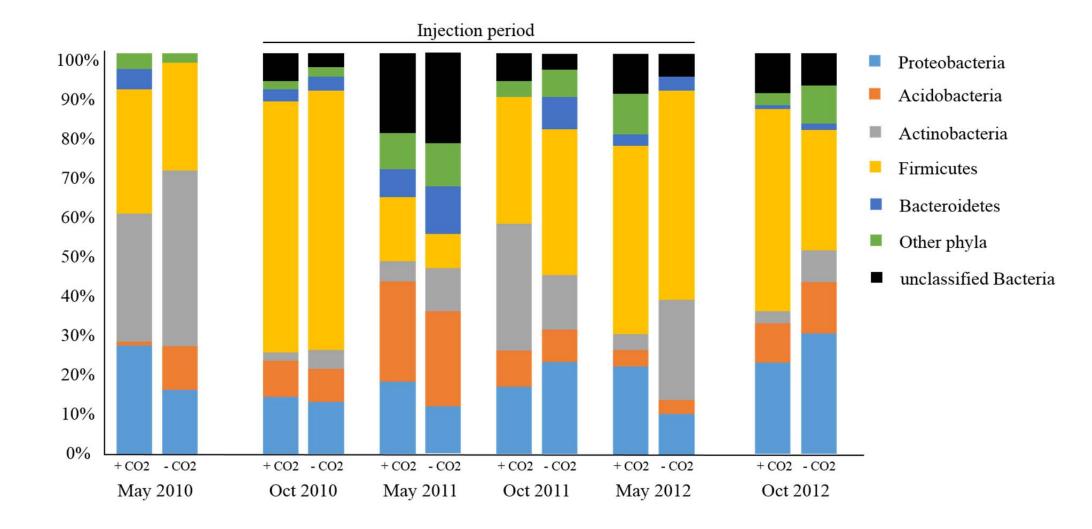
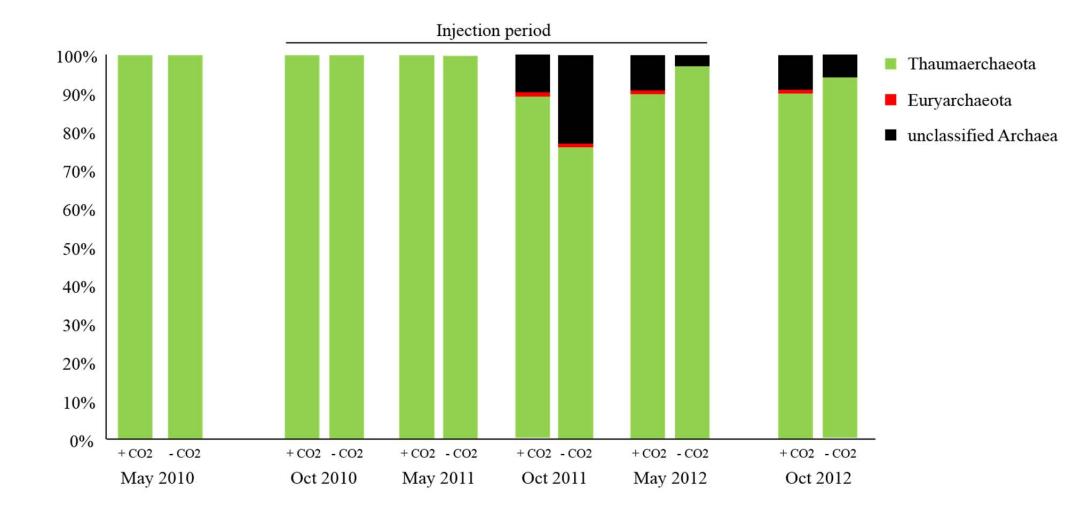
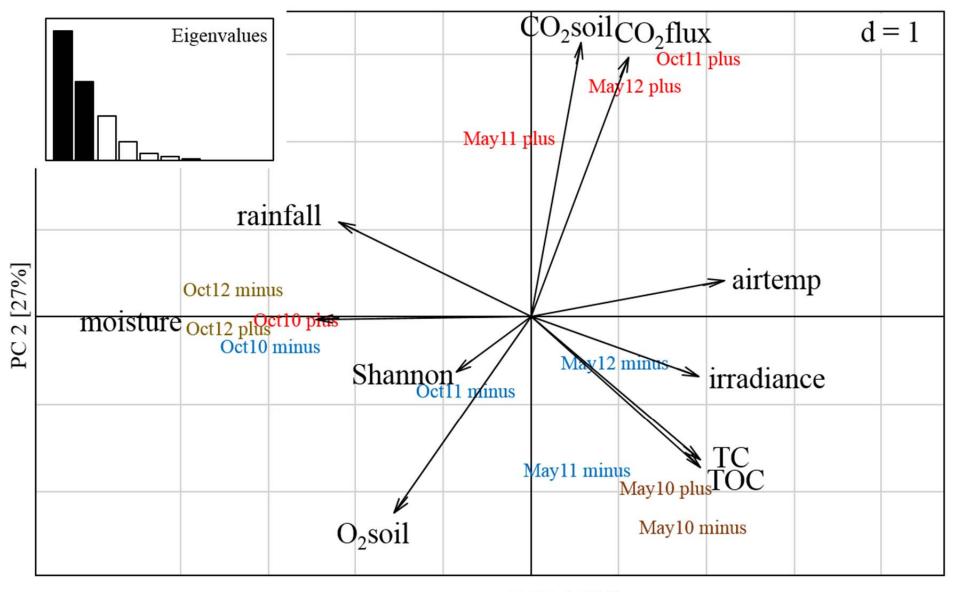

Figure 2. Potential microbial metabolic rates over time including a) aerobic CO_2 production, b) anaerobic CO_2 production, c) aerobic CH_4 oxidation and d) anaerobic CH_4 production. Closed symbols indicate CO_2 -exposed samples. Open symbols indicate reference samples. CO_2 injection from October 2010 to May 2012. The error bars show ± 1 x standard error (n = 3).

Figure 3. Comparison of qPCR quantification of a) bacterial and b) archaeal 16S rRNA genes from CO₂-exposed (black bars) and reference (white bars) samples. CO₂ injection from October 2010 to May 2012. Averages for replicates are shown with standard deviations indicated.


Figure 4. Bacterial community composition of CO_2 -exposed (+ CO_2) and reference (- CO_2) samples over time without significant differences (ANOSIM: R = -0.15; P = 0.91). CO_2 injection from October 2010 to May 2012.


Figure 5. Archaeal community composition of CO_2 -exposed (+ CO_2) and reference (- CO_2) samples over time without significant differences (ANOSIM: R = -0.10; P = 0.89). CO_2 injection from October 2010 to May 2012.


Figure 6. Principal component analysis (PCA) biplot showed correlations of atmospheric and geochemical data as well as archaeal clone libraries. Variables are symbolized by arrows, eigenvalues are presented in the bar chart drawn in the upper left corner. The correlation matrix explains 72% of the variance. CO₂-exposed samples are indicated in red, reference samples in blue, pre- and post-gassing samples in brown. Scale d=1.



PC 1 [45%]