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ABSTRACT 9	  

The strength of rocks in the subsurface is critically important across the geosciences, with 10	  

implications for fluid flow, mineralization, seismicity, and the deep biosphere. Most studies 11	  

of porous rock strength consider the scalar quantity of porosity, in which strength shows a 12	  

broadly inverse relationship with total porosity, but pore shape is not explicitly defined. Here 13	  

we use a combination of uniaxial compressive strength measurements of isotropic and 14	  

anisotropic porous lava samples, and numerical modelling to consider the influence of pore 15	  

shape on rock strength. Micro computed tomography (CT) shows that pores range from sub-16	  

spherical to elongate and flat ellipsoids. Samples that contain flat pores are weaker if 17	  

compression is applied parallel to the short axis (i.e. across the minimum curvature), 18	  

compared to compression applied parallel to the long axis (i.e. across the maximum 19	  

curvature). Numerical models for elliptical pores show that compression applied across the 20	  

minimum curvature results in relatively broad amplification of stress, compared to 21	  

compression applied across the maximum curvature. Certain pore shapes may be relatively 22	  

stable and remain open in the upper crust under a given remote stress field, while others are 23	  

inherently weak. Quantifying the shape, orientations, and statistical distributions of pores is 24	  

therefore a critical step in strength testing of rocks. 25	  

 26	  

1. INTRODUCTION 27	  



Numerical and experimental studies of strength across material sciences, biomechanics, and 28	  

geology, show a strong link between porosity and strength in both natural and manufactured 29	  

porous materials: an increase in porosity or pore size is typically associated with a decrease in 30	  

brittle strength and fracture toughness (Figure 1A: Rice, 1998; Leguillon and Piat, 2008; 31	  

Schaefer et al., 2015). Figure 1 shows that although there is a broad inverse relationship 32	  

between strength and porosity, but strength ranges substantially for a given porosity. Notably, 33	  

it is typical for studies of the strength of porous rocks to tacitly assume isotropic pore shape. 34	  

The mechanical response of rocks that exhibit foliations (e.g., bedding, banding, or fractures) 35	  

is strongly controlled by the relative orientation of the applied load and foliation plane (i.e. 36	  

the β-angle: e.g. Paterson and Wong, 2005). In the case of fractures, which are often modelled 37	  

as penny-shaped cracks (i.e. oblate ellipsoidal pores, with semi-axes a=b>>c), the aspect ratio 38	  

(which we define here as c/a, such that a low aspect ratio approaches a sphere with value 1, 39	  

and a high aspect ratio approaches 0) is so high (<< 0.1) that compression applied to the short 40	  

axis facilitates elastic closure and strengthening; compression parallel (or at a low angle) to 41	  

the crack long axes promotes opening and weakening (e.g. Sibson, 1985). Rocks can also 42	  

contain prolate to oblate pores with aspect ratios between those of spherical pores and planar 43	  

discontinuities (i.e. aspect ratio in the range 0.1-1.0). In such cases, elastic closure of the short 44	  

axis dimension is not possible for most rocks, and the mechanical response should be 45	  

expected to differ from rocks containing penny shaped cracks. Pore geometry, and the 46	  

resulting mechanical influence, is poorly documented in studies of rock strength. Here we use 47	  

physical and mechanical characterization of minimally weathered, 750-1500 year old olivine-48	  

tholeiite lava (henceforth, basalt lava) from the south flank of Kilauea Volcano, Hawai’i, to 49	  

constrain the effect of low aspect ratio pores (i.e., vesicles with aspect ratios >0.1) on rock 50	  

strength, through a combination of Uniaxial Compressive Strength (UCS) tests, and 51	  

numerical modelling. We show that pore geometry – not just the scalar quantity of porosity – 52	  

provides a fundamental control on rock strength. Therefore, unless pore geometry is well 53	  



characterized and the effective bulk orientation of the pores are known with respect to the 54	  

principal stress axes, mechanical test results are not directly comparable. 55	  

 56	  

2.  Background and Methods 57	  

2.1 Kilauea Pahoehoe Lava 58	  

Small volume tholeiitic pahoehoe lavas are emplaced as non-channelized, inflated sheets on 59	  

the subhorizontal (1-2°) south flank of Kilauea Volcano. Sheet flows have been observed as 60	  

thin layers (10-50 cm thick), inflating to thicknesses as great as 4 m (e.g. Hon et al., 1994). 61	  

Samples were collected from exposed lavas along open portions of the ENE-WSW striking 62	  

Kulanaokuaiki fault, located at the eastern end of the Koa’e fault system, 7-8 km south of 63	  

Kilauea’s summit caldera (Figure 2).  Normal faults in the Koa’e system develop at shallow 64	  

depths (<5 km: e.g. Lin and Okubo, 2016) with the early stages of fault propagation 65	  

associated with the opening of extension fractures that reactivate pre-existing cooling joints, 66	  

where observed in the near surface (e.g., Duffield, 1975). The Kulanaokuaiki fault 67	  

accommodates 0 to 15 m of displacement (Duffield, 1975), and was most recently active 68	  

during the December 1965 eruption of Kilauea. Careful characterisation of several lavas 69	  

exposed in the fault footwall reveals a distinctive 3-zone physical stratigraphy based on the 70	  

total volume and geometry of vesicles and the scale of joint patterns: (1) a top of 18-31% 71	  

porosity, with sub-spherical vesicles up to 4 mm in diameter; (2) a core of 12-13% porosity, 72	  

with sub-spherical vesicles up to 1.5 mm in diameter; and (3) a base, of 15-19% porosity, 73	  

with oblate or amalgamated vesicles up to 15 mm in diameter. The thickness of these three 74	  

zones scale proportionally with the thickness of a lava, and representative samples were 75	  

targeted for each zone. Basalt lava samples for this study are fine grained with porphyritic 76	  

texture; phenocrysts are dominantly of olivine and plagioclase, set in a matrix of granular 77	  

plagioclase and pyroxene.  Olivine phenocrysts are typically euhedral up to 1.00-1.25 mm in 78	  

size. 79	  



  Field and hand sample observations show that oblate vesicles in the basal zone are 80	  

aligned sub-horizontally, parallel to bedding; in the lava core and top zones, the minor 81	  

fraction of non-spherical vesicles appear to be randomly oriented.  Sample porosity was 82	  

obtained for samples from each zone, using the saturation and calliper method, following the 83	  

International Society for Rock Mechanics (ISRM) suggested methodology (Bieniawski and 84	  

Bernede, 1979a).  85	  

 86	  

2.2. CT and volume analysis 87	  

Lava samples were analysed using a Nikon XT225 Metris X-ray computed tomography (X-88	  

ray CT) scanner to determine total porosity, and pore shape. Sample cores were imaged via a 89	  

series of X-ray slices resulting in ~3000 images collected at 0.12° increments in a 360° 90	  

rotation. The X-ray beam attenuates in a known way with material density (e.g., Roche et al., 91	  

2010); this allows the X-ray signal to be mapped to material density. Images are assigned 92	  

discrete digital grey values (0-255) according to the material density, represented by voxels: 93	  

pixels in 3-dimensional space (x, y, z coordinates). Using the 3-D image volume graphics 94	  

package, VGStudio, each sample volume was reconstructed using a threshold procedure to 95	  

derive an isosurface to define material boundaries. The isosurface was manually derived for 96	  

each sample to find the best fit to the real surface area and define volumes of solid space 97	  

(white voxels) and background (black voxels). Inversion of the grey scale of the solid 98	  

material within each sample isolated the lowest densities - the empty pores (vesicles) - and 99	  

permitted the accurate determination of the volume, and geometry, of void spaces, in each of 100	  

the lava samples. The average voxel resolution for the technique, using 37 mm diameter 101	  

cores, is ~1μm. Values for porosity, derived from CT data, are comparable to connected-102	  

porosity values determined from traditional saturation techniques.  103	  

 Threshold segregated images were extracted from VG Studio as image stacks, and 104	  

imported to Blob3D (Ketcham, 2005) and Quant3D (Ketcham and Ryan, 2004 for 3-D pore 105	  

analysis. Blob3D provides a series of manual methods to segregate CT data, and to separate 106	  



objects based on a user-defined protocol, which can then be measured for size, intersection, 107	  

and orientations. The software can also be used to create a best fit ellipsoid, from which we 108	  

have extracted major, intermediate, and minor axis data (see supplementary files for full 109	  

details). Pore-shape fabric analysis was conducted on segmented sample core data using 110	  

Quant3D (Figure 3). Various methods can be applied to the CT data set, including the star 111	  

volume distribution (SVD: Cruz-Orive et al., 1992), the mean intercept length (MIL: Harrigan 112	  

and Mann, 1984), and the star length distribution (SLD; Smit et al., 1998). Of these, SLD is 113	  

the most applicable to 3-D pore shape characterisation; SLD places a series of points within 114	  

the pores, from which lines are projected outward with a uniform orientation distribution. The 115	  

length of lines is measured between the original point to the material boundary (i.e. the pore 116	  

wall); line intersections are used as orientations for directional analysis, and plot as 3-D rose 117	  

diagrams. SVD is similar but projects lines as infinitesimal cones; the star volume is the 118	  

volume that has direct line of sight from the point of origin. For complex irregular objects, as 119	  

in the case of natural pores that exhibit internal corners, the pore extremities are obscured, 120	  

and the star volume may be underestimated in certain directions. MIL projects lines across the 121	  

sample, but unlike SLD, lines cross multiple material boundaries. As such MIL measures the 122	  

line length within the pores and the solid rock; results are strongly affected by material 123	  

distribution, in particular the thickness of solid rock separating pores. 124	  

Analyses were conducted using the SLD method for the entire sample core (Figure 125	  

3A, 3C, 3E), and for representative individual pores extracted from the sample volume 126	  

(Figure 3B, 3D, 3F). The main data visualisation output is a 3-D rose diagram, which are 127	  

displayed to show ellipsoid diameter values divided by the maximum diameter, such that the 128	  

maximum display value is 1.0; absolute values range between 0.0-1.0. In the case of 129	  

individual pore analyses, the minimum displayed value is therefore representative of the pore 130	  

aspect ratio (i.e. c/a: indicated on the colour bars as S, and referring to plots in Figure 131	  

3B,D,F). For the full sample volume, the minimum displayed value is the mean aspect ratio 132	  

for the analysed volume (indicated on the colour bars as V, and referring to plots in Figure 133	  



3A,C,E); the rose plot is therefore representative of a preferred shape orientation within the 134	  

sample. 135	  

 136	  

2.3. Experimental rock deformation 137	  

To experimentally simulate near-surface conditions for fracture nucleation and propagation, 138	  

the unconfined compressive strength (UCS) was measured for 42 samples that represent the 3 139	  

main zones of a lava: 12 from the top zone; 4 from the core zone; and 22 from the  basal zone. 140	  

UCS tests were conducted on oven-dried cylindrical cores with a diameter of 37 mm, and 141	  

tests were performed in accordance with the ISRM suggested methodology (Bieniawski and 142	  

Bernede, 1979b; Fairhurst and Hudson, 1999). The test apparatus is an MTS 815 servo-143	  

controlled, hydraulic rock mechanics testing system, with a 4600 kN loading frame. Samples 144	  

were taken to failure at a constant strain rate of 5 x10-6 sec, with axial and circumferential 145	  

strain measured throughout experiments. To identify and characterise mechanical anisotropy 146	  

in the lava, samples were cored and tested in two orthogonal orientations relative to the 147	  

measured pore shape: (1) a vertical core, oriented normal to bedding, and (2) a horizontal 148	  

core, oriented parallel to bedding.  149	  

 150	  

3. Results 151	  

3.1. CT volume analysis 152	  

Pore shape analysis using Quant3D confirms our field characterisation that pores in the 153	  

studied lavas are not spherical (Figure 3). Individual pores in the top and core zones typically 154	  

have aspect ratios between 0.60-1.00 (e.g., Figure 3B, 3D). Individual pores in the basal zone 155	  

are a mixture of large (>5 mm3) oblate geometries with aspect ratios typically between 0.10-156	  

0.40 (e.g., Figure 3F), and smaller (typically <<5 mm3) pores with lower aspect ratios in the 157	  

range 0.41-0.80. Large oblate pores in the basal zone are generally well-aligned sub-158	  

horizontally (Figure 3E); the contribution of smaller pores with aspect ratios >0.40 has the 159	  

effect of increasing the mean aspect ratio for basal zone samples (e.g., Fig. 3E: mean aspect 160	  



ratio of 0.54). Although pores in the top and core zones are non-spherical (e.g., Fig. 3B,D), 161	  

the pore long axes show no preferred orientation, giving a mean aspect ratio of ~0.85 in both 162	  

sample sets (Figure 3A, 3C). 163	  

 164	  

3.2. Uniaxial Compressive Strength 165	  

UCS results highlight a distinctive mechanical anisotropy through the lava (Figure 1A; Figure 166	  

4A, 4B; Table 1). Each test resulted in an extension to extensional shear fracture along the 167	  

long axis of the sample (Figure 4C-F), with a principal failure plane forming an acute angle 168	  

(~15-30°) with the applied maximum compressive stress (σ1, where σ1 ≥ σ2 ≥ σ3; here 169	  

compressive stress is reckoned positive). Stress-strain curves (Figure 4A, 4B) show no 170	  

evidence for premature failure on a pre-existing fracture. Sample bulk density ranges from 171	  

2.08-2.64 g/cm3, showing an inverse relationship with porosity (Figure 1B). Inspection of pre-172	  

UCS test thin sections indicates that mineralogy is consistent throughout the lava; samples 173	  

exhibit minor intragranular or crystal boundary fractures – probably related to cooling – but 174	  

no preferred orientation was recognised.  175	  

The lava core has the lowest porosity (12-13%) and is strong and stiff, irrespective of 176	  

compression direction, with average peak strengths of 91 MPa (vertical) and 106 MPa 177	  

(horizontal), and Young’s moduli of 17 GPa and 19 GPa, respectively (Figure 4A, 4B; Figure 178	  

5A, 5B). Unit tops have the highest porosity (18-31%) and are weaker with average peak 179	  

strengths of 57 MPa (vertical) and 69 MPa (horizontal) UCS, with Young’s moduli of 19 GPa 180	  

and 20 GPa respectively (Figure 4A, 4B; Figure 5A, 5B). This is consistent with the broad 181	  

inverse relationship shown in Figure 1A. 182	  

 Conversely, unit bases (15-19% porosity) show a large contrast in average strength, 183	  

ranging from 40 MPa (vertical) to 80 MPa (horizontal); Young’s moduli: 12 and 20 GPa, 184	  

respectively; Figure 4A, 4B; Figure 5A, 5B). The strength range in the lava base is reduced 185	  

when separated by orientation. Samples subjected to the equivalent of horizontal compression 186	  

(i.e. parallel to bedding) have comparable strengths with the lower porosity core, ranging 187	  



between ~80-102 MPa, with an additional sub-set between ~60-70 MPa. However, for 188	  

samples subjected to the equivalent of vertical compression (i.e. normal to bedding), samples 189	  

show much lower compressive strengths of ~16-30 MPa, with a sub-set of values between 190	  

~40-60 MPa. Sample porosity in base samples is relatively constant at ~15-19% (Figure 5A), 191	  

hence porosity - as a scalar quantity - is not responsible for the variation in rock strength. 192	  

 The variation in compressive strength measured through the lava unit is best 193	  

represented using the strength anisotropy ratio (traditionally, the maximum measured 194	  

compressive strength divided by the minimum measured compressive strength (σcmax/ σcmin). 195	  

This ratio quantifies the anisotropy found in rocks and to define the shape of the anisotropy 196	  

curve on plots of compressive strength and weakness orientation (i.e. the β angle, e.g. 197	  

Paterson and Wong, 2005; Ramamurthy et al., 1993). Rocks with ratios <2 are considered to 198	  

be isotropic or minimally anisotropic (e.g. sandstone); rocks with values between 2-4 are 199	  

classified as moderately anisotropic (e.g. shale); and those with values >4 are classified as 200	  

highly anisotropic (e.g. fractured sandstone) (Ramamurthy et al., 1993; Al Harthi, 1998). To 201	  

define a ratio for samples in this study (tested in two orientations only), we compare median 202	  

values of strength (i.e. maximum median UCS/minimum median UCS) in each orientation to 203	  

reduce the influence of potential outlier data. Lava top and core samples in this study appear 204	  

to be relatively isotropic by this definition with strength anisotropy ratios of 1.39 and 1.16, 205	  

respectively (Figure 5C). In contrast, lava base samples show a ratio approximately twice that 206	  

for the rest of the unit at ~2; a value similar to ratios for shales, siltstones, and mudstones. 207	  

Notably, higher anisotropy ratios in the Kilauea lava samples correlate with high aspect ratios 208	  

for pores derived from CT volume analysis. Samples are weakest in cases where compression 209	  

(i.e. σ1) is applied parallel to the pore short axis. 210	  

 211	  

3.3. 2-D numerical modelling 212	  

CT volume analysis shows that pores within the lava base have aspect ratios ranging from 213	  

0.1-0.4 (Figure 3). Increasing aspect ratio relative to a sphere, produces a directional 214	  



dependence of pore wall curvature. Here we isolate the role of pore curvature using numerical 215	  

simulation based on Eshelby’s solution (Eshelby, 1957, 1959). In our models, a single 216	  

elliptical pore with an aspect ratio of 0.33 is embedded in an infinite, otherwise 217	  

homogeneous, isotropic linear elastic matrix (Fig. 6; Fig. 7). Remote stresses are applied far 218	  

from the pore, and the total stress (and strain) fields are calculated on a regular Cartesian grid 219	  

of points within the matrix (Fig. 6). Matrix stress components were contoured to produce 220	  

plots of horizontal (σxx) and vertical (σzz) normal stress (Figure 6). Our models involve no 221	  

fluid, and in each case the applied axial stress is 10 MPa. In the case of applied compression 222	  

(Figs 6c-f and 7c-f), a confining pressure of 0.1 MPa (1 atmosphere) is applied in the 223	  

horizontal axis, corresponding to a standard unconfined laboratory test. This remote stress 224	  

configuration is therefore technically biaxial, but for the purposes of description – and 225	  

comparison to the UCS tests – we will refer to it as uniaxial. Figure 7 shows perturbation 226	  

stress due to the pore (i.e. the elastic stress field associated with the pore only, removing the 227	  

remote stress contribution), for the same applied remote stress as in Figure 6. 228	  

For an elliptical pore subject to uniaxial tension in the horizontal axis elevated tensile 229	  

stress is predicted to develop at the pore maximum curvatures, in both σxx and σzz axes (Figs 230	  

6A,7A, and Figs 6B,7B respectively), hence these are considered to be the likely sites for 231	  

failure and crack propagation away from the pore. Axisymmetric compression, replicating 232	  

UCS experimental conditions for the two test orientations, produces fundamental differences 233	  

from tensile stress models, in terms of the magnitude and the distribution of the stress 234	  

perturbation. Where vertical compression is applied parallel to the pore long axis (Figures 6C, 235	  

6D and 7C,7D), σxx is only mildly tensile near the pore tip (Figure 7C) and σzz shows a similar 236	  

distribution and perturbation to the tension model at the maximum curvatures (Figure 7D). 237	  

Hence the pore geometry is relatively strong under compression compared to tension. 238	  

Applying a remote vertical compression parallel to the pore short axis, results in pronounced 239	  

tensile stress amplification at the crack minimum curvature in both σxx and σzz (Figures 6E, 6F 240	  

and 7E,7F). Importantly, the distribution of that tensile stress amplification is much greater 241	  



than that experienced in the other models. Such increases in the area over which stress is 242	  

amplified will increase the potential for interaction between neighbouring pores, or pre-243	  

existing flaws, and promote failure at lower externally applied stresses. These simple models 244	  

support the strength anisotropy observations recorded in UCS tests for flattened pores in the 245	  

lava base (Figure 4A, 4B), indicating that pore-shape anisotropy is an important, but hitherto 246	  

undiagnosed control on rock strength. 247	  

 248	  

4. DISCUSSION 249	  

We have shown that pore aspect ratio is a fundamental control in rock strength, with samples 250	  

containing flat pores showing strength anisotropy ratios that are comparable to foliated 251	  

sedimentary rocks. Samples were cored at orthogonal angles, from a single block, and 252	  

detailed characterisation at a range of scales shows that mineralogy, density, porosity, and 253	  

pore distribution are near identical in both orientations; the only variable between core 254	  

direction is the relative orientation of the pores with respect to the applied load (e.g., cf. 255	  

Figure 4E, 4F and 7A, 7B). 256	  

 257	  

4.1 Importance of aspect ratio and the distribution of pores 258	  

Numerical models that isolate aspect ratio (e.g. Figure 6) show that pore geometry controls 259	  

the distribution of stress within a sample, affecting the strength of the material. However, the 260	  

range in peak strengths for lava base samples suggests that pore aspect ratio can operate in 261	  

conjunction with additional factors. For instance, samples that show very high aspect ratio 262	  

pores (e.g., sample 5B: the highest mean aspect ratio in the study at 0.32; Figure 8C, 8D) can 263	  

be stronger than samples with lower aspect ratio pores (e.g., sample 4B, which has a mean 264	  

aspect ratio of 0.54-0.58: Figure 8A,8B). Sample 5B is stronger in both the vertical and the 265	  

horizontal orientation. Sample 4B has a higher porosity (~20%) than 5B (~16%), which 266	  

contributes in part to the strength difference. However, in the vertical samples (bedding 267	  

normal) the peak strength of 4B is half that of 5B (i.e., 22 MPa, versus 44 MPa respectively); 268	  



in the horizontal samples (bedding parallel) the peak strength of 4B is ~65% that of 5B (i.e. 269	  

66 MPa versus 102 MPa respectively); a large drop in strength for only ~4 percentage point 270	  

difference in porosity. Inspection of the samples highlights that a further variable between 271	  

samples is the distribution of pores, and in particular, the spatial distribution of large, oblate 272	  

pores within the sample volume: sample 5B contains a few very large (up to 26 mm diameter; 273	  

1-3 mm in the short axis), oblate pores, which are separated by 10-15 mm in the direction of 274	  

the short axis; sample 4B contains a large number of smaller oblate pores (~5-15 mm 275	  

diameter; ~1-3 mm in the short axis) that are closer in proximity (i.e. ~5 mm). In the pre-276	  

failure elastic regime, the induced tensile stress around pores is additive, and will be 277	  

particularly effective in cases where pore-pore distances are small relative to the pore 278	  

diameter; this effect is considered to occur even at low sample porosities (~5-10%; Rice, 279	  

1997). Although sample 5B may show greater tensile stress amplification, the distance 280	  

between pores may limit the effect of stress field superposition. Conversely, the combination 281	  

of stress amplification and greater superposition of stress fields in 4B may cause failure at 282	  

much lower applied stresses. Hence the range in our UCS data may reflect the combination of 283	  

surface curvature effects and pore-pore distances. Further study is required to isolate these 284	  

effects - ideally using manufactured samples – but we consider total porosity alone to be 285	  

insufficient to characterise rock strength. 286	  

 287	  

4.2. Implications for the scaling of rock strength tests 288	  

The UCS results presented here show a broad correlation with data for porous materials (e.g., 289	  

Figure. 1A), including basalt lavas from various volcanic edifices. UCS and triaxial tests for 290	  

basaltic rock strength typically involve low porosity samples (~1-4%; e.g.,Heap et al., 2009, 291	  

2010). Such studies involve large, and reproducible datasets for rock strength, making for a 292	  

statistically defined intact rock strength (e.g., the eponymous Etna basalt). Rock strength for 293	  

these low porosity samples is very high (>140 MPa), and they probably represent the very 294	  

strongest part of an individual lava. Intact rock strength and elastic properties determined 295	  



through experimental characterisation are important parameters that contribute to rock mass 296	  

strength (Hoek and Brown, 1980), which also accounts for meso- to macros-scale 297	  

discontinuities. It is therefore important to recognise that low porosity test results represent an 298	  

extreme end-member value for intact rock strengths, and using these values may result in 299	  

overestimation of the rock mass strength. This may have further implications concerning 300	  

elastic wave propagation and acoustic velocities, given that the low-porosity lava core may 301	  

represent only a small proportion of a volcanic edifice. Elastic wave velocities for intact rock 302	  

can be affected by pore geometry (Takei, 2002). However, it is important to note that intact 303	  

rock properties are not representative of the complex geometrical arrangement of fractured 304	  

crystalline units and volcaniclastic materials that comprise a volcano flank (e.g. Thomas et 305	  

al., 2004; Apuani et al., 2005).  306	  

 307	  

4.3. Pore aspect ratio: scaling and broader implications 308	  

Our UCS results suggest that for a given porosity, samples that exhibit a strong pore shape 309	  

anisotropy can be stronger and stiffer than samples containing spherical pores (Fig. 5). This 310	  

has important implications for micromechanical models of porous rock failure, which idealise 311	  

pores as equant spheres	  within an elastic medium (e.g. Sammis and Ashby, 1986; Zhu et al., 312	  

2010; Wong and Baud, 2012; Baud et al., 2014; Heap et al., 2014). The response of a curved 313	  

surface to an applied stress has long been of interest in engineering practice, architecture, and 314	  

material sciences. Recent numerical-based studies have shown that curved surfaces gain 315	  

substantial strength when they are compressed along their major axis (Lazarus et al., 2012; 316	  

Vella et al., 2012; see e.g., Figure 4), and the concept is widely applied to account for the 317	  

apparent strength of convex structures, from micro-biology in the case of eukaryotic cells 318	  

(Helfer et al., 2001), virus shells (Roos et al., 2010) and seeds (Pearce et al., 2011), to egg 319	  

shells (Lazarus et al., 2012; Vella et al., 2012) and larger man-made curved surfaces including 320	  

domes and bridges. The induced strength of curved surfaces scales proportionally to the 321	  

aspect ratio of the ellipse (Lazarus et al., 2012), such that doubling the size of the ellipse also 322	  



doubles the load-bearing capability. The variation in our UCS results correlates with pore 323	  

shape variability and it is useful to simplify this at a scale of individual non-spherical, 324	  

elliptical pores to consider strength and stiffness as a function of the radius of curvature. The 325	  

strongest samples have spherical pores, or pores that are oblate with the major axis parallel to 326	  

the axis of applied compression; in both instances, the radius of curvature is small with 327	  

respect to the axis of maximum compression. Conversely the weakest samples – by almost an 328	  

order of magnitude – are those in which pores are oblate and the axis of compression is 329	  

applied parallel to the short axis; where the radius of curvature is comparatively large. For a 330	  

given porosity (i.e. ~16%) sample strength can range between ~15-105 MPa, and therefore 331	  

characterising pore geometry, and not just the scalar porosity, is critically important when 332	  

constraining rock sample strength. 333	  

Our results show that varying aspect ratio of a void can present a stable configuration 334	  

relative to an applied tectonic stress. On the basis that strength scales proportionally with 335	  

aspect ratio, this type of geometry-induced strength may provide a mechanism by which it is 336	  

possible to maintain open pores or cavities for extended periods of time. We envisage that 337	  

this mechanism may operate in a number of : (1) dilational jogs along faults and fractures, 338	  

which show evidence for gravitational filling, or textures consistent with slow cementation 339	  

rates (Frenzel and Woodcock, 2014; Roberts and Walker, 2016); (2) dilational jogs in fault 340	  

systems that act as conduits for fluid flow and ore deposition in hydrothermal systems (e.g., 341	  

orogenic gold deposits; Goldfarb et al., 2005); (3) karstic aquifers (Loucks et al., 1999), 342	  

which undergo progressive compaction after their formation; and (4) subseafloor cavities that 343	  

can host microbial systems (Holland et al, 2006) as they permit higher fluid flow, facilitating 344	  

reactions between hydrothermal solutions and cold, oxygenated water necessary for microbial 345	  

growth (Orcutt and Edwards, 2014). Geometry-induced strength could increase the potential 346	  

for sites of large and taxonomically diverse communities of microbial life to exist at greater 347	  

depths and for longer periods. Such deep biospheres have been the focus of recent IODP 348	  



drilling with the discovery that a subseafloor microbial reservoir could outsize that of 349	  

sediments (e.g., Orcutt and Edwards, 2014; Orcutt et al., 2015). 350	  

 351	  
5. CONCLUSIONS 352	  

Our study of vesicular basalt, shows that without changing total sample porosity, rocks can 353	  

have almost an order of magnitude variation in strength, depending on the orientation of the 354	  

applied compressive stress relative to pore shape. It is therefore critically important to 355	  

characterize the true geometry of the pore space, including vesicles and cracks. Pore 356	  

geometry effects have important implications for rock strength in general, in addition to the 357	  

maintenance of open pore space, which in turn contributes to the long-term maintenance of 358	  

permeability in the subsurface.  359	  
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 501	  
FIGURES  502	  

Figure 1. The relationship between pore fraction and the strength of porous materials. (A) 503	  

Porosity versus strength. Grey box highlights experimental data for this study. (B) Plot of 504	  

dry density against porosity (this study) shows a linear inverse relationship. 505	  

Figure 2. (A) Simplified structural elements map of Kilauea volcano south flank, 506	  

showing the study sample site on the Kulanaokuaiki fault, part of the Koa’e fault system 507	  

(KFS). ERZ: East Rift Zone. SWRZ: Southwest Rift Zone. HFS: Hilina Fault System. 508	  

Inset shows relative position of A, on the south coast of Big Island, Hawaii. (B) View 509	  

looking south onto the Kulanaokuaiki fault footwall scarp, showing vertical thickness 510	  

variations and lateral continuity of individual pahoehoe type lavas. 511	  



Figure 3. CT scans and 3-D rose plots for vesicles within lava samples, showing full 512	  

sample data (A,C,E) and representative single vesicle data (B,D,F). Samples were cored 513	  

normal to bedding. Peak strength and porosity values are for the displayed samples. 514	  

Colour bars highlight normalised aspect ratios for the single vesicle data (S) and for the 515	  

entire volume (V). Rose plots show a 3-D oblique view, and views along three orthogonal 516	  

axes, x, y, and z; note that the bright patch (white) relates to the model illumination. The 517	  

z-axis represents the direction of applied compression in UCS tests. The x- and y-axes are 518	  

arbitrary directions orthogonal to compression for reference between the CT scan and the 519	  

rose plots.  520	  

Figure 4. Axial strain results for samples cored (A) vertically (bedding-normal), and (B) 521	  

horizontally (bedding-parallel). Note the very low strengths for vertically cored lava base 522	  

samples. (C-F) Examples of pre- and post-failure samples used for UCS testing. Major 523	  

fractures are highlighted by yellow dashed lines. Cylindrical core samples had diameters 524	  

of 37 mm and lengths of 80 mm. 525	  

Figure 5. Summary of experimental UCS results. (A) UCS versus porosity. (B) Young’s 526	  

modulus versus porosity. (C) Comparison of strength anisotropy ratios for samples tested 527	  

in this study (black) and other crystalline and clastic rock types (greys).  528	  

Figure 6. 2D elastic field models for elliptical pores under uniaxial tension and 529	  

compression, showing total stress within the solid matrix. (A,C,E) Total normal stress 530	  

parallel to the x-axis (σxx) and (B,D,F) total normal stress parallel to the z-axis (σzz). A 531	  

and B show total normal stress induced during uniaxial tension (10 MPa), applied along 532	  

the x-axis. C and D show the total normal stress induced by applying 10 MPa 533	  

compressive stress parallel to the ellipse long-axis. E and F show the total normal stress 534	  

induced by applying 10 MPa compressive stress parallel to the ellipse short-axis.  Note 535	  

that in C-F, a nominal 0.1 MPa is applied to the  x-axis to represent atmospheric pressure, 536	  

as a comparison to experimental UCS tests. 537	  



Figure 7. 2D elastic field models for an elliptical pore under uniaxial tension and 538	  

compression, showing only the pore-induced stress perturbation within the solid matrix 539	  

(stress amplification due to the presence of the pore). (A,C,E) The σxx perturbation and 540	  

(B,D,F) the σzz perturbation. A and B show the normal stress perturbation induced during 541	  

uniaxial tension (10 MPa), applied along the x-axis. C and D show the normal stress 542	  

perturbation induced by applying 10 MPa compressive stress parallel to the ellipse long-543	  

axis. E and F show the normal stress perturbation induced by applying 10 MPa 544	  

compressive stress parallel to the ellipse short-axis.  Note that in C-F, a nominal 0.1 MPa 545	  

is applied to the x-axis to represent atmospheric pressure, as a comparison to 546	  

experimental UCS tests. 547	  

Figure 8. CT scans and 3-D rose plots for vesicles within lava base samples 4B and 5B, 548	  

showing full sample data (A,C) and representative single vesicle data (B,D). Samples 549	  

were cored parallel to bedding. Peak strength and porosity values are for the displayed 550	  

samples. Colour bars highlight normalised aspect ratios for the single vesicle data (S) and 551	  

for the entire volume (V). Note that the bright patch (white) relates to the model 552	  

illumination. The z-axis represents the direction of applied compression in UCS tests. The 553	  

x- and y-axes are arbitrary directions orthogonal to compression for reference between 554	  

the CT scan and the rose plots. 555	  

Supplementary File 556	  
Data exported from BLOB-3D micro-CT analysis for a selection of Base, Core, and Top 557	  

samples in horizontal and vertical sample-core orientations. Plots for the data include the 558	  

Corey Shape Factor, which measures pore sphericity; the K parameter, which defines the 559	  

object shape between oblate, plane strain, and prolate ellipsoids; and the Flinn plot, which 560	  

shows the intensity of the K-parameter shape. 561	  

  562	  



Lava 
component 

Bulk 
densit

y 
(g/m3) 

Effectiv
e 

porosity 
(%) 

Strength (MPa) Young’s Modulus (GPa) 
Strength 

Anisotropy 
Ratio 

Peak Mean Media
n E Mean Media

n 
Media

n Mean 

Upper 
flow 
top 

H 2.13 28.20 63.32 
63.00 63.32 

21.25 
21.93 21.25 

1.17 1.07 

H 2.10 30.45 66.78 25.72 
H 2.09 30.09 58.90 18.81 
V 2.09 29.36 48.81 

58.99 54.18 

22.04 

22.95 22.07 
V 2.19 22.41 82.30 26.46 
V 2.19 23.40 45.32 21.19 
V 2.08 30.81 59.54 22.10 

Lower 
flow 
top 

H 2.45 17.79 78.45 
75.35 75.35 

18.90 
18.28 18.28 

1.39 1.37 
H 2.42 17.97 72.24 17.65 
V 2.21 25.93 42.38 

55.01 55.01 
15.20 

15.86 15.86 
V 2.35 21.52 67.63 16.51 

Flow 
core 

H 2.64 12.52 106.04 106.04 106.04 18.51 18.51 18.51 

1.16 1.17 
V 2.63 13.19 91.14 

90.86 91.14 
17.14 

16.88 17.14 V 2.63 13.26 84.10 15.53 
V 2.63 12.18 97.35 17.96 

Flow 
base 

H 2.51 16.92 59.67 

81.12 78.11 

16.10 

20.19 20.00 

1.81 2.04 

H 2.56 15.81 67.25 18.00 
H 2.44 19.60 66.40 14.90 
H 2.56 15.18 78.11 17.90 
H 2.48 17.46 61.79 12.90 
H 2.53 14.95 99.37 24.10 
H 2.52 16.09 102.81 27.50 
H 2.47 17.72 99.52 25.20 
H 2.44 12.35 90.11 21.50 
H 2.44 16.59 75.76 20.00 
H 2.50 16.81 91.54 24.00 
V 2.53 15.99 15.83 

39.83 43.20 

5.40 

11.60 12.20 

V 2.47 18.67 28.85 7.70 
V 2.46 19.12 21.84 6.64 
V 2.51 15.66 43.99 10.40 
V 2.50 16.42 47.08 11.70 
V 2.53 15.89 51.78 13.60 
V 2.47 17.83 48.80 11.50 
V 2.50 16.94 44.39 12.70 
V 2.52 16.13 39.87 12.80 
V 2.50 14.92 61.94 17.20 
V 2.51 15.08 31.23 14.30 
V 2.50 17.03 42.41 15.20 

Table 1. Summary of sample physical and mechanical properties. Lava components are listed 563	  

for vertical cores (V) and horizontal cores (H). Strength aspect ratio is the maximum divided 564	  

by the minimum value for the median values and the mean values. 565	  
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