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Upwelling regions are highly productive habitats targeted by wide-ranging

marine predators and industrial fisheries. In this study, we track the migratory

movements of eight seabird species from across the Atlantic; quantify overlap

with the Canary Current Large Marine Ecosystem (CCLME) and determine

the habitat characteristics that drive this association. Our results indicate the

CCLME is a biodiversity hotspot for migratory seabirds; all tracked species

and more than 70% of individuals used this upwelling region. Relative species

richness peaked in areas where sea surface temperature averaged between 15

and 208C, and correlated positively with chlorophyll a, revealing the optimum

conditions driving bottom-up trophic effects for seabirds. Marine vertebrates

are not confined by international boundaries, making conservation challen-

ging. However, by linking diversity to ocean productivity, our research

reveals the significance of the CCLME for seabird populations from across

the Atlantic, making it a priority for conservation action.
1. Introduction
Upwelling regions are globally important marine biodiversity hotspots. The

mixing of nutrient-rich cool water with warm surface layers fuels primary
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production, driving bottom-up cascades that also support large

communities of upper trophic-level consumers [1]. As a result,

they are attractive foraging grounds targeted by a wide-range

of marine animals throughout the annual cycle [2]. These

characteristics make upwelling regions strong candidates for

protection, but this is challenging as they often cross national

boundaries, occur in international waters and protection may

conflict with fisheries interests [3].

Marine environments are facing unprecedented levels of

anthropogenic-driven pressure; including climate change, pol-

lution and offshore development [4–6]. The foremost threat to

upwelling regions is biodiversity loss through overfishing;

upwellings cover less than 1% of the world’s ocean by area

but provide approximately 20% of global catch [7]. Commercial

capture fisheries deplete stocks, remove top-predators through

bycatch, and alter the trophic structure of ecosystems [8,9]. The

Canary Current Large Marine Ecosystem (CCLME) now incor-

porates one of the most intensively fished areas on the Earth

[8,10], yet also supports large populations of migratory

marine vertebrates from breeding populations across the

Atlantic [11–13].

Considering the increasing industrialization of fisheries

[10], the pervasive threat from bycatch [14] and a paucity

of quantitative information on habitat or space use, under-

standing marine vertebrate distributions in the CCLME and

beyond is a key conservation goal [15]. In this study, we use

miniaturized light loggers to reconstruct the non-breeding

movements of eight migratory seabird species from disparate

regions of the Atlantic that have been previously recorded in

the CCLME [12]. Our aims are: (i) to map the distribution of

these birds and identify areas of high diversity, (ii) to quantify

the extent to which each species uses the CCLME, and (iii) to

determine the oceanographic characteristics that drive this

association. We use our findings to assess the importance of

the CCLME as a biodiversity hotspot and discuss the potential

conflict between fisheries and seabirds in this region.
2. Material and methods
We collated data on the non-breeding movements of eight seabird

species; Cory’s shearwaters (Calonectris borealis); Scopoli’s shear-

waters (C. diomedea); lesser black-backed gulls (Larus fuscus);
northern gannets (Morus bassanus); great skuas (Stercorarius skua);

south polar skuas (S. maccormicki); common terns (Sterna
hirundo) and Sabine’s gulls (Xema sabini). While these species

have been recorded previously in the CCLME, the true importance

of this region for specific populations is unknown. Between

2000 and 2011, 123 birds were tracked using miniaturized light

loggers from 12 breeding colonies from the north (758 N) to the

south (628 S) of the Atlantic (see the electronic supplementary

material). To quantify the extent to which each species uses the

CCLME, we calculated the proportion of time each individual

spent in this region [16]. To identify areas of high species richness

we constructed spatial density maps by binning location data into

200 km diameter tessellated hexagons spanning the Atlantic. We

calculated relative richness by summing the number of species

occurring in each hexagon during the non-breeding period.

To characterize the marine environment, we extracted winter

seasonal climatology composites (December–March, 2002–2010)

of sea surface temperature (SST, 8C) and chlorophyll a concen-

tration (CHL, mg m23) from the MODIS instrument onboard

the Aqua (EOS PM) satellite (http://oceancolor.gsfc.nasa.gov/)

and calculated mean SST and CHL values for each hexagon.

We also included a measure of null usage that incorporated
both habitat availability and sampling effort, as this was not uni-

form across species or colonies [17] (see the electronic

supplementary material). These data are available via Dryad [18].

We examined correlations between the observed patterns in

relative richness and these covariates using generalized additive

models fitted with the packages mgcv [19] and MuMIn [20] in R

v. 3.1.0 [21]. We log10 transformed CHL prior to use. We included

SST, CHL and null usage as covariates in the global model with

thin plate regression splines fitted with a maximum of 10 knots;

superfluous knots were penalized during model fitting. Variance

inflation factors revealed no multicollinearity between covariates

(VIF , 3). We also included the central X and Y coordinates of

each hexagon as a spatial smooth term implemented with a soap

film boundary [22]. The soap film specifies the extent of the pre-

dicted surface, preventing smoothing across boundary features

such as the Iberian Peninsula. Variograms of model residuals

revealed no spatial autocorrelation in final models. Model selection

was based on Akaike’s information criterion (AIC), with par-

ameters excluded if their inclusion did not improve the model

by more than 2 DAIC relative to the lowest AIC.
3. Results
The eight species tracked from 12 colonies over 10 years

were widely distributed across the Atlantic during the non-

breeding period (figure 1). Highest relative richness was

observed in the CCLME, with other hotspots in the Bay of

Biscay, Mid-Atlantic Ridge, Brazilian coast and Benguela

Current (figure 1). On average, 76.6+28.1% of individuals

from each species visited the CCLME, including all Scopoli’s

shearwaters, Sabine’s gulls, south polar skuas and common

terns, the majority of lesser black-backed gulls and northern

gannets, but only 25% of great skuas (table 1). The proportion

of time each species spent in the CCLME was highest

for Scopoli’s shearwaters (0.35+0.28), northern gannets

(0.26+0.29) and common terns (0.24+0.22). There was a

high degree of variation both within and among species;

individuals may use the CCLME for the entire non-breeding

period, only as a staging area, or not at all (table 1).

Relative richness correlated with SST and CHL; both terms

were retained in the top-ranked model along with the soap film

smooth term and measure of null usage (table 2). Model-

estimates indicated relative richness was highest in areas

with SST between 15 and 208C, and there was a general posi-

tive correlation between relative richness and CHL (figure 1).
4. Discussion
Here, we demonstrate that the CCLME is an area of high

relative species richness for non-breeding seabirds, and detail

the environmental conditions that drive this association.

More than 70% of individuals from eight species, representing

a range of functional groups and originating from breeding

colonies across the Atlantic, visited this upwelling region.

Relative richness correlated with both SST and CHL. By track-

ing birds of known origin, our results illustrate the high

connectivity between seabird breeding populations across the

Atlantic and the CCLME, emphasizing the importance of this

upwelling region as a non-breeding destination and migratory

stopover site.

This study represents the most comprehensive collation

of tracking data for the CCLME to date, but our measure of rela-

tive species richness is limited to those populations included in
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Figure 1. Links between (a) relative richness of eight seabird species tracked from pan-Atlantic colonies between 2000 and 2011; and (b) sea surface temperature
(SST) and (c) chlorophyll a (CHL). Dark line in (a) represents the boundary of the Canary Current Large Marine Ecosystem; blue dots represent colonies of origin for
tracked birds, indicated by arrows. Dark lines in (b) and (c) represent model-estimated response; dashed lines 95% confidence interval; light grey dots indicate the
distribution of data. (Online version in colour.)

Table 1. Summary statistics for tracking by seabird species. (Values represent mean+ s.d. For full methods and description of winter period, see the electronic
supplementary material.)

species N
% visiting
CCLME

winter period
(days) no. locations

locations
in CCLME

proportion
in CCLME

lesser black-backed gull 7 71.4 208.4+ 27.4 151.1+ 20.8 21.0+ 24.0 0.09+ 0.10

northern gannet 34 58.8 93.6+ 13.4 89.6+ 15.4 25.7+ 29.8 0.26+ 0.29

great skua 16 25 92 91.9+ 0.4 11.1+ 21.8 0.12+ 0.24

Cory’s shearwater 19 57.9 133.9+ 29.9 131.5+ 27.4 13.8+ 23.2 0.10+ 0.18

Scopoli’s shearwater 9 100 104.5+ 40.8 102.3+ 39.6 35.4+ 36.9 0.35+ 0.28

Sabine’s gull 7 100 287.9+ 12.7 228.6+ 18.6 22.3+ 3.1 0.08+ 0.01

south polar skua 19 100 237.2+ 35.1 176.3+ 21.6 8.7+ 14.3 0.04+ 0.07

common tern 12 100 254.3+ 67.0 181.3+ 64.0 62.8+ 51.8 0.24+ 0.22
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the study. While many other species also visit this region [12],

modern developments in biologging are revealing a diversity

of migration strategies [23] and highlighting other important

areas across the Atlantic. Our measure of relative species rich-

ness represents the maximum across the study period and is

likely to vary over the annual cycle in response to seasonal

differences in environmental conditions. For example, Southern

Hemisphere migrants following the austral summer overlap
only briefly with Northern Hemisphere migrants in the

CCLME (electronic supplementary material, table S1). While

our study highlights the CCLME as a hotspot for migratory sea-

birds, further work is required to understand the significance of

other areas across the Atlantic and beyond.

These findings provide evidence of the links between

biodiversity and ocean productivity in an eastern boundary

upwelling region. Relative richness was highest between 15

http://rsbl.royalsocietypublishing.org/


Table 2. Model selection testing correlations between relative richness and
sea surface temperature (SST) and chlorophyll a (CHL). (The full model
included a soap film smooth term (XY) and measure of habitat availability
(null). Models shown are those within 6 DAIC of the best-supported
model. Adj R2 of best-supported model ¼ 0.60.)

rank parameters d.f. AIC DAIC

1 SST þ CHL þ XY þ null 173 5573 0.00

2 SST þ XY þ null 175 5576 2.84

3 SST þ CHL þ XY 171 5578 4.47

4 SST þ XY 173 5579 6.28
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and 208C, and correlated positively with CHL; corroborating

previous work on the oceanographic drivers of marine pred-

ator diversity in the California Current [2]. This suggests that

primary productivity in the CCLME has bottom-up effects

that are highly relevant to apex predators. The mechanisms

by which animals may target these regions are currently

unknown, but frontal density in the CCLME is high

and these visible indicators of productivity are known to

aggregate marine predators such as seabirds [11,24].

The CCLME attracts some of the highest global fishing

effort [8,10], yet there is a paucity of information on the inter-

actions between seabirds and fisheries in this region [15].

Fisheries impact seabirds in three ways; either competing

directly for fish, providing food in the form of discarded fish,

or posing the threat of bycatch mortality [14,25,26]. More

research into fine-scale, species-specific fisheries interactions

in the CCLME is required, especially given recent evidence of

direct take of seabirds in the region (K. Camphuysen 2013, per-

sonal communication); the substantial under-reporting of catch
in this area by China’s distant-water fleet [27]; and the preva-

lence of illegal, unreported and unregulated fisheries [28].

Integrating data across multiple species and years

highlights the importance of the CCLME as a seabird

biodiversity hotspot. Furthermore, environmental conditions

such as SST and productivity may offer insights into how

distributions could shift in response to global climate

change. As marine vertebrates forage across dynamic pelagic

systems and are not confined by international boundaries,

effective conservation will require multilateral cooperation.

Nevertheless, while site fidelity to persistent upwelling regions

such as the CCLME could aid conservation, it is unlikely that

both a large diversity of marine vertebrates and intense

fisheries exploitation can be sustained in this region in the

long term.
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