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Abstract 14 

The provision of nest-boxes is widely used as a conservation intervention to increase the 15 

availability of cavities for hole-nesting birds, particularly in managed forests, but it is 16 

uncertain whether nest-boxes are an appropriate substitute for tree cavities. Tree cavities 17 

and nest-boxes may differ in many aspects, including microclimate, but there are few data 18 

with which to examine this. We measured the air temperature and relative humidity in vacant 19 

tree cavities previously used by breeding marsh tits Poecile palustris (a non-excavating 20 

forest passerine) and in nest-boxes provided for this species that had similar dimensions to 21 

natural nest sites, and we compared values from both with ambient conditions. We examined 22 

how tree cavity characteristics influenced microclimate and if similar conditions were 23 

replicated in nest-boxes. Tree cavities, particularly those in thicker parts of trees, were more 24 

efficient thermal insulators, with temperature extremes dampened to a greater extent relative 25 

to ambient values. In contrast, the nest-boxes provided poor insulation with negligible 26 
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buffering against ambient temperatures. Mean daily relative humidity was high (on average c. 27 

90%) in tree cavities, which all had walls of living wood, and this averaged 24% higher than 28 

in nest-boxes at comparable ambient conditions (mean humidity 76-78%). These results 29 

support previous studies that incorporated various types of tree cavities and nest-boxes, 30 

indicating that the environment within nest-boxes differs significantly from that of tree 31 

cavities. We conclude that providing nest-boxes may affect microclimatic conditions available 32 

for cavity-users, which may have ecological implications for nesting birds. 33 

 34 

Key words: air temperature, relative humidity, Poecile palustris, marsh tit, nest-site 35 

availability 36 

 37 

1. Introduction 38 

Tree cavities are used by many forest organisms, and the availability of tree holes is 39 

fundamental to maintaining forest biodiversity (Gibbons and Lindenmayer, 2002). Retention 40 

of cavity-bearing trees may conflict with forestry management, however, as older or decaying 41 

trees are often removed as a standard practice (Newton 1998, Cockle et al., 2010; 42 

Wesołowski and Martin, in press). In consequence, cavity resource limitation can be a 43 

problem for some species, and non-excavating birds that rely on pre-existing tree holes for 44 

nesting seem to be particularly vulnerable in this regard (reviewed in Newton, 1998). Nest-45 

boxes are a popular management tool to increase nest site availability for hole-nesting birds, 46 

but their provision may have some negative aspects (McComb and Noble, 1981; Mänd et al., 47 

2005; Wesołowski and Martin, in press). Although increasing the availability of cavities by 48 

providing nest-boxes has facilitated the population recovery or increase of several bird 49 

species (reviewed in Newton, 1998; Goldingay and Stevens, 2009; and Lindenmayer et al., 50 

2009), there is uncertainty as to whether nest-boxes can be considered an adequate 51 

functional substitute for tree holes due to apparent variation in the breeding ecology of birds 52 

occupying artificial and natural nest-sites (e.g. Czeszczewik et al., 1999; Mänd et al., 2005; 53 

Lambrechts et al., 2010; Wesołowski, 2011). These differences may involve reduced 54 
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breeding success and survival if predators learn to exploit nest-boxes, or artificially reduced 55 

predation risk if extra protection is added (reviewed in Wesołowski, 2011). Nest-boxes may 56 

also have the counter-productive effect of providing additional nest sites for potential 57 

competitors of the target species (e.g. Mänd et al., 2005; Wesołowski, 2011; Broughton and 58 

Hinsley, 2014). Further understanding of the differences between tree cavities and nest-59 

boxes, and the implications for nesting birds, would inform the conservation and 60 

management strategies directed at such species in managed forests. 61 

The insulating function of nest cavities may be particularly important for altricial 62 

passerines, whose nestlings are initially incapable of thermoregulation (Hansell, 2000). Poor 63 

insulation from ambient temperatures may raise the risk of nestling hypothermia and 64 

increase parental costs of warming eggs or nestlings in cool weather (O'Connor, 1975; 65 

Haftorn and Reinertsen, 1985), or risk hyperthermia and dehydration in hot environments 66 

(Kluijver, 1951; Mertens, 1977; van Balen, 1984; Erbelding-Denk and Trillmich, 1990; 67 

Rendell and Verbeek, 1996; Salaberria et al., 2014). Sufficient humidity can also be 68 

important, for example in preventing excessive water loss (Mersten-Katz et al., 2012), but 69 

heavily saturated air can hinder evaporation and gaseous exchange (Walsberg and Schmidt, 70 

1992). If different thermal and humidity options are available, therefore, birds should seek to 71 

occupy cavities that would favour successful reproduction and minimise the parental 72 

investment of energy. 73 

As the microclimate of tree holes can vary with location and dimensions (e.g. Wiebe, 74 

2001; Paclík and Weidinger, 2007; Coombs et al., 2010; Maziarz and Wesołowski, 2013), it 75 

could be expected that different types of cavity would provide contrasting environments, and 76 

so nesting birds would be able to select on the basis of attributes that were most preferable. 77 

In forest habitats that are least modified by humans, tree cavities are numerous and diverse 78 

(reviewed in Wesołowski and Martin, in press) and so a wide spectrum of microclimatic 79 

conditions may be available for hole-nesting birds. There are few data with which to test this 80 

assumption, however, as there are limited studies of air temperature and humidity in tree 81 

cavities available for nesting birds. The initial cavity microclimate that birds may experience 82 
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when selecting their nest sites have been investigated in Northern flickers (Colaptes auratus; 83 

Howe et al., 1987; Wiebe, 2001), South Island saddlebacks (Philesturnus c. carunculatus; 84 

Rhodes et al., 2009) and great tits (Parus major; Maziarz and Wesołowski, 2013). The 85 

characteristics of nesting or other tree holes are also seldom reported in the literature; 86 

among 19 papers detailing the microclimate of tree cavities only twelve contained information 87 

on entrance diameter and ten on the state of cavity walls (living vs. dead), with eight 88 

commenting on cavity floor size and five on tree girth at the height of the hole.  89 

The differences in insulation between tree cavities and nest-boxes may affect their use 90 

by birds (reviewed in Goldingay and Stevens, 2009), but variation in microclimate between 91 

these cavities remains poorly documented. The few studies to date suggest that nest-boxes 92 

tend to be less humid than tree cavities, and poorer insulators against ambient temperatures 93 

(McComb and Noble, 1981; Isaac et al., 2008a; Grüebler et al., 2014). Additionally, 94 

compared to tree cavities, nest-boxes deployed in a given area are usually more uniform in 95 

dimensions and location above the ground, and so offer a limited variety of nesting 96 

possibilities for non-excavators (reviewed in Lambrechts et al., 2010). Different types of nest-97 

box also seem to provide a rather similar microclimate in general (Goldingay, 2015; Ellis, 98 

2016), which may lessen the opportunity for birds to find optimal thermal and humidity 99 

conditions. As such, reducing the number and diversity of cavities, by removing cavity-rich 100 

trees and providing nest-boxes, would diminish the cavity microclimate options available to 101 

nesting birds. To test this assumption more studies of tree cavities and nest-boxes are 102 

needed. 103 

Here, we present the first data on air temperature and humidity in tree cavities and 104 

nest-boxes used as nest sites by marsh tits (Poecile palustris), a Palaearctic hole-nesting 105 

species that relies on pre-existing cavities (Cramp and Perrins, 1993; Wesołowski, 1999). 106 

We examine how the tree cavity situation and dimensions influence the initial cavity 107 

microclimate that the birds may experience when selecting their nest sites, and check if 108 

these conditions are replicated in nest-boxes with dimensions approximating those of tree-109 

cavities. We put these data into a wider context by comparing them with the published 110 
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measurements of thermal and humidity properties of tree cavities and nest boxes usable for 111 

birds and mammals. We draw general conclusions on the microclimatic properties of tree 112 

cavities and nest-boxes, and discuss the implications for the ecology and conservation of the 113 

cavity-nesting species that use them. 114 

 115 

2. Materials and Methods 116 

2.1. Study area 117 

The study capitalised on parallel long-term studies of marsh tits carried out in Białowieża 118 

National Park (hereafter ‘BNP’; eastern Poland, 52°40’N, 23°50’E) and at Monks Wood 119 

National Nature Reserve (eastern England, 52 24’ N, 0 14’ W). The 47.5 km2 of strictly 120 

protected old-growth stands within BNP are a relic of the primeval mixed-deciduous forests 121 

which once covered much of lowland Europe (Tomiałojć and Wesołowski, 2004). Monks 122 

Wood in the English lowlands is 155 ha of mature, secondary, deciduous woodland that has 123 

been largely unmanaged for a century (Broughton et al., 2012). 124 

The microclimate of tree cavities in BNP was measured in 2013-2014 within study plots 125 

situated in oak-lime-hornbeam (Tilio-Carpinetum) stands (for detailed descriptions see 126 

Tomiałojć et al.,1984; Wesołowski, 1996; Wesołowski et al., 2015). Tree holes are 127 

superabundant here and birds have a wide array of nesting options, whilst nest-boxes are 128 

not provided (Wesołowski, 2007). Instead, nest-boxes with dimensions specifically designed 129 

to mimic the natural holes of Marsh Tits were already available during 2015 in Monks Wood, 130 

a woodland composed of English oak (Quercus robur), common ash (Fraxinus excelsior) and 131 

field maple (Acer campestre; Broughton and Hinsley, 2014). These nest-boxes had been in 132 

situ and maintained (to remove old nest material) for at least two years previously, during a 133 

population study of marsh tits, and so provided a convenient opportunity to acquire 134 

measurements of temperature and humidity to compare with tree cavities used by this 135 

species in BNP. In both study areas the data were collected in April-May, during the time 136 

corresponding to the incubation period of local marsh tits. 137 

 138 
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2.2. Microclimate measurements 139 

Measurements of air temperature and relative humidity were taken from a respective 24 and 140 

15 tree cavities in BNP, which had been used by marsh tits in previous breeding seasons but 141 

were unoccupied during data collection (due to high abundance of tree holes providing 142 

alternative nest sites; Wesołowski 2006, 2007). Eighteen cavities were used for breeding by 143 

marsh tits one year before the study, and six remaining ones 2-7 years prior to the study, 144 

with all considered to be still usable by marsh tits. As nest material in tree cavities disappears 145 

between consecutive breeding seasons (Wesołowski, 2000; Hebda et al., 2013), the vacant 146 

cavities contained no discernible nest remnants during data collection. The tree cavities were 147 

formed by natural decay in living trunks of limes Tilia cordata (84%) or hornbeams Carpinus 148 

betulus (16%), and the median tree girth at breast height was 68 cm. Cavity dimensions were 149 

measured using a collapsible ruler and flexible torch (for detailed description and explanation 150 

of parameters see Wesołowski, 1996 and Maziarz et al., 2015); the dimensions and other 151 

cavity properties are given in Table 1. 152 

Air temperature and humidity were recorded from a respective 18 and 15 empty nest-153 

boxes in Monks Wood, which were constructed from pine planks to dimensions 154 

approximating tree cavities used by this species (Broughton and Hinsley, 2014; Table 1). The 155 

nest-boxes were in good condition but remained unoccupied in the current year, with either 156 

marsh tits or blue tits (Cyanistes caeruleus) having used them in a previous breeding season 157 

(Broughton and Hinsley, 2014). Joins in the walls and floor were filled and the external walls 158 

were painted with preservative and a marine varnish to seal any cracks. The nest-boxes 159 

were attached to trees and located at least 150 m from the woodland edge, under a mature 160 

tree canopy (Broughton and Hinsley, 2014). The entrance orientation both of nest-boxes and 161 

tree cavities was randomly distributed through the four cardinal directions (respectively χ2= 162 

1.7 and 2.7, df = 3, p > 0.4; Table 1). 163 

For microclimate measurements we used temperature (DS1922L) and temperature and 164 

humidity (DS1923) data loggers (iButtons), tested and calibrated by Dallas 165 

Semiconductor/Maxim Inc. (Maxim Integrated Products, 2011a; 2011b). The operating range 166 
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for DS1922L was -10°C to +65°C, and for DS1923 from -20°C to +85°C and 0% to 100% 167 

relative humidity. Measurement precision for temperature was ±0.5°C and for humidity ±5%. 168 

The measurements were taken simultaneously by paired data loggers of the same 169 

type, positioned inside and outside of each cavity/nest-box, to test the buffering from ambient 170 

conditions. The internal data logger was mounted with a thin wire usually 8-11 cm below the 171 

entrance hole. The external logger was hung in a radiation shelter (tubular white plastic 172 

sleeve of c. 7 cm circumference, open at both sides to permit free air movement and shading 173 

of the sensor) and placed in close proximity to the cavity/nest-box, 2-4 m above the ground 174 

(above ground frosts) to detect relative differences between ambient air and microclimate of 175 

the tree cavity. The mean daily temperatures recorded by the external loggers at tree cavities 176 

(on average 15.4°C, from 9.6°C to 19.2°C) closely corresponded to the mean daily values 177 

received on the same days from the local weather station at BNP (the Institute of 178 

Meteorology and Water Management-National Research Institute in Białowieża; on average 179 

15.3°C, from 9.7°C to 19.2°C; rS = 0.98, p < 0.001). 180 

Both data loggers in a set were programmed to simultaneously initiate recording at the 181 

expected time of their installation at the cavity/nest-box and continue at five-minute intervals 182 

(recording resolution was 0.0625°C temperature and 0.04% humidity). After a minimum 48 183 

hours from installation the loggers were removed and the data were uploaded to a computer 184 

using a 1-Wire adapter and Maxim software. 185 

 186 

2.3. Data analysis 187 

Relative air humidity was recorded to a standardised temperature of 25°C and systematically 188 

inflated when humidity exceeded 70% for extended periods. The humidity values were later 189 

corrected to the actual temperature and for saturation drift following the manufacturer’s 190 

equations (Maxim Integrated Products, 2011b; p. 53). From each sample we selected a 24-191 

hour sequence of records from 00:01 to 24:00 and calculated hourly means to define: (1) 192 

mean, minimum and maximum hourly mean temperature/humidity of a day, (2) the hour of 193 

minimum and maximum hourly mean temperature during the day, (3) daily amplitude, i.e. the 194 
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difference between minimum and maximum hourly mean temperature, and (4) the rate of 195 

temperature change(°C·h-1), i.e. the quotient of daily amplitude and the duration(hours) from 196 

minimum to maximum hourly mean temperature during the day.  197 

To compare thermal conditions between tree cavities and nest-boxes we standardised 198 

observed internal temperature values to varying ambient conditions by using ‘temperature 199 

differences’ (subtracting mean hourly or mean daily ambient values from the corresponding 200 

cavity readings). The relationships between internal and ambient air temperature were 201 

assessed using Spearman’s rank-order correlation, and similarly the relationship between a 202 

cavity’s thermal conditions and its structural characteristics. Additionally, a Multiple Linear 203 

Regression model was used to examine the capacity of the maximum ambient air 204 

temperature and the tree circumference at the hole height (predictor variables) to shape the 205 

maximum cavity-internal air temperature (response variable). In this analysis the maximum 206 

internal and ambient temperature values were the raw data recorded in 5-minute sampling 207 

intervals. Mann-Whitney tests were used to compare differences in thermal and humidity 208 

conditions between tree holes and nest-boxes, and paired t-tests to compare the conditions 209 

inside and outside of tree holes and nest-boxes. Humidity values were logit transformed 210 

before statistical analysis. All statistical calculations followed formulae in R version 3.1.2 (The 211 

R Core Team, 2014). 212 

 213 

3. Results 214 

3.1. Tree cavities  215 

Mean daily temperature in tree cavities was strongly dependent on mean daily ambient 216 

temperature (rS = 0.95, p < 0.001, n = 24), but the pattern of internal temperature change 217 

during a day differed from the ambient (Fig. 1a). The daily minima inside tree cavities 218 

averaged 2.0°C higher and the maxima 2.5°C lower compared to the ambient values (Table 219 

2), resulting in a lower average daily amplitude of 8.8°C in the cavity and 13.3°C outside 220 

(paired t-test: t = -7.2, p < 0.001). The rate of temperature change in cavities was 221 
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approximately half of that recorded outside (Table 2), with daily extremes lagging 1-4 hours 222 

behind the ambient (Fig. 1a).  223 

The rate of temperature change was significantly lower in those cavities located in 224 

thicker parts of trees (rS = -0.60, p = 0.003, n = 22). In cavities in thicker trees the least 225 

entrance diameter was smaller (rS = -0.52, p = 0.014, n = 22), the greatest floor diameter was 226 

larger (rS = 0.48, p = 0.024, n = 22) and the cavity walls were thicker (rS = 0.91, p < 0.001, n = 227 

22). Mean daily internal-ambient temperature differences were related neither to the hole-228 

height above the ground nor to the internal cavity dimensions (rS < 0.3, p > 0.19, n = 22). In 229 

consequence, the maximum ambient values and the tree thickness at hole height were good 230 

predictors of maximum internal temperatures (R2 = 0.82, residual SE = 1.40, F2,19 = 42.4, p < 231 

0.001; Table 3). 232 

Hourly mean relative humidity in tree cavities was stable throughout the day (Fig. 1b), 233 

often exceeding 90%, whereas mean hourly ambient humidity varied during a day and 234 

averaged 15% lower in absolute terms than inside cavities (Fig. 1b; Table 2). 235 

 236 

3.2. Nest-boxes 237 

Mean daily internal and ambient temperatures of nest-boxes were strongly correlated (rS = 238 

0.95, p < 0.001, n = 18), and the pattern of temperature change throughout the day inside 239 

nest-boxes closely followed that of outside (Fig. 1c). Internal daily minimum and maximum 240 

temperatures were both higher than the ambient by respective averages of 0.3°C and 1.1°C, 241 

and these extremes typically lagged up to 1 hour behind the ambient temperature extremes 242 

(Fig.1c). The average daily amplitude of 13.4°C inside nest-boxes was significantly greater 243 

than the mean 12.5°C outside (paired t-test, t = 3.3, df = 17, p = 0.004), but the internal and 244 

ambient temperatures changed at the same rate (mean 1.3 °C·h-1; Table 2). 245 

The nest-boxes were comparatively warmer than the tree cavities, relative to ambient 246 

conditions. The mean daily internal-ambient temperature differences for nest-boxes (on 247 

average 0.6°C) were significantly greater than those for tree cavities (on average -0.2°C; 248 

Mann-Whitney test, W = 367, p < 0.001). The hourly mean temperatures inside nest-boxes 249 
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slightly exceeded the respective ambient values for most of the day and, as such, hourly 250 

mean internal-ambient temperature differences remained stable, at just above zero 251 

throughout the day (Fig. 2). In contrast to nest-boxes, the hourly mean internal-ambient 252 

temperature differences in tree cavities fluctuated greatly during the 24 hours (Fig. 2).  253 

Hourly mean relative humidity inside nest-boxes was comparatively stable throughout 254 

the day, with a mean daily amplitude of 10% compared to the 39% variation recorded outside 255 

(Table 2, Fig. 1d). The average mean daily humidity of 67% was some 11% lower than the 256 

ambient value (Table 2). The nest-boxes were substantially less humid than tree cavities 257 

despite similar ambient conditions (Table 2); mean daily humidity inside nest boxes was 24% 258 

lower than in tree cavities, which was a highly significant difference (Mann-Whitney test, W = 259 

0, p < 0.001). 260 

 261 

4. Discussion 262 

4.1. Microclimate of tree cavities 263 

Tree cavities used by marsh tits offered a microclimate that was significantly buffered from 264 

outside conditions. Although air temperatures inside the cavities were strongly affected by 265 

ambient temperatures, the internal daily temperature extremes were reduced and typically 266 

lagged several hours behind the ambient. Consequently, the internal temperatures changed 267 

at a lower rate than outside. A thorough literature review revealed a similar buffering effect in 268 

almost all studies incorporating various empty tree cavities (Table 4), indicating that 269 

dampening of the daily temperature fluctuations constitutes an inherent feature of most tree 270 

cavities.  271 

The mean daily temperature amplitude of c. 9°C in tree holes used by marsh tits was 272 

one of the highest recorded in tree cavities so far; it ranged between 1°C and 16°C in other 273 

studies (Table 4). The temperature amplitude of marsh tit cavities was surprisingly large for 274 

holes in living wood, where the amplitude is typically 2-3°C (Table 4). Instead, the high 275 

temperature amplitude in tree cavities of marsh tits was more typical of cavities with walls of 276 

dead wood (Wiebe, 2001; Maziarz and Wesołowski, 2013), which is supposed to have lesser 277 
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heat capacity and, thus, insulate less efficiently than live wood (e.g. McComb and Noble, 278 

1981; Hooge et al., 1999; Wiebe, 2001). As the amplitude of temperature variation inside 279 

marsh tit cavities was also comparatively high (a ratio of 0.7 between the mean internal and 280 

ambient amplitudes; Table 4) this suggests that the greater temperature variation was due to 281 

lower thermal buffering of the marsh tit cavities rather than more variable ambient conditions. 282 

The temperature in tree cavities used by marsh tits changed by an average 0.8°C·h-1, 283 

which was three to four times faster than in tree cavities used by great tits in BNP (average 284 

0.2-0.3°C·h-1; Maziarz and Wesołowski, 2013). The great tit cavities had a floor area twice as 285 

large as those of marsh tits, and were situated in parts of trees that were twice as thick 286 

(reviewed in Maziarz et al., 2015). Similarly, those marsh tit cavities in thicker parts of trees, 287 

which also tended to have a greater floor diameter and thicker walls, were more efficient 288 

insulators with a lower daily rate of temperature change. Such an effect has also been found 289 

in other studies (e.g. Calder et al., 1983 in Gibbons and Lindenmayer, 2002; Wiebe, 2001; 290 

Isaac et al., 2008b; Rhodes et al., 2009; Coombs et al., 2010; Maziarz and Wesołowski, 291 

2013; Otto et al., 2016), showing that cavities situated in trees of various size may create a 292 

wide spectrum of insulation options for their users. 293 

The mean daily relative humidity in marsh tit tree cavities was high (mean 91%) and 294 

stable throughout the day, in contrast to a much lower (mean 76%) and fluctuating ambient 295 

humidity. A stable humidity throughout the day that averaged c. 90% was also found in other 296 

unoccupied cavities (Sedgeley, 2001; Maziarz and Wesołowski, 2013). Yet, Clement and 297 

Castleberry (2013) reported a daily air humidity fluctuating between 80% and 90% inside tree 298 

cavities, at ambient humidity of 70-95%. McComb and Noble (1981) recorded values as low 299 

as 74% in tree cavities, and O'Connell and Keppel (2016) between 37 % and 56%, but this 300 

was still usually above the ambient humidity. As studies of humidity are mostly from cavities 301 

in living trees, where the air is constantly saturated with water from the surrounding growing 302 

walls, they should not be generalised to cavities in dead wood without further study. It could 303 

be surmised that cavities in living and decaying substrates could exhibit a range of humidity 304 

values, some of which could be relatively dry. 305 
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 306 

4.2. Microclimate in nest-boxes compared to tree cavities 307 

The microclimate in empty nest-boxes designed for marsh tits differed significantly from that 308 

inside the tree cavities used by this species. Compared to the tree holes, the nest-boxes 309 

were warmer and offered negligible buffering against ambient temperatures; indeed, the daily 310 

minima and maxima were both slightly higher than the ambient values. The pattern of 311 

temperature change inside nest-boxes used in this study was generally similar to that found 312 

in all other studies incorporating small to large-sized nest-boxes (3.2-15 cm entrance 313 

diameter, 121-1800 cm2 floor area), whether constructed of wood or sawdust and concrete; 314 

the maximum internal temperatures almost always exceeded the ambient ones, but the 315 

minima were usually slightly lower than outside (Table 5). 316 

As in our study, the temperature amplitudes in other nest-boxes were high, varying 317 

between 6°C and 20°C across studies (c. 13°C in this study), and also had large internal-318 

ambient amplitude ratios ranging from 0.8 to 1.4 (1.1 in marsh tit nest-boxes; Table 5). This 319 

shows that the thermal properties of the marsh tit nest-boxes appear typical of such devices 320 

in general. The low thermal buffering found in nest-box studies is in stark contrast to that of 321 

tree cavities, and appears to override other factors such as situation or internal dimensions. 322 

This may be due to the generally much thinner walls, floors and roofs of nest-boxes, which 323 

are typically constructed of sheets of wood or a moulded sawdust-concrete mix, whereas 324 

tree cavities are encased within a solid tree stem that usually extends many metres above 325 

and below the cavity itself. 326 

At an average 67%, the mean daily humidity in the marsh tit nest-boxes was a mean 327 

24% lower than in the tree cavities, despite similar ambient conditions. This difference 328 

between nest-boxes and tree cavities in the current study was remarkable and much greater 329 

than the 1% disparity reported by McComb and Noble (1981) in other nest-boxes. The 64% 330 

mean relative humidity in wooden nest-boxes measured by Amat-Valero et al. (2014) was 331 

close to that found in the marsh tit nest-boxes, but Erbelding-Denk and Trillmich (1990) 332 

recorded much lower values of 49% and 59% in two empty nest-boxes at midday. Olszewski 333 
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(1971) reported a higher humidity than the current study, averaging 84-85% in sawdust and 334 

concrete nest-boxes despite a similar ambient mean of 79%. Ellis (2016) gave average 335 

values of 86-99% humidity in plywood nest boxes of various dimensions, which was 336 

exceptionally high and comparable to tree cavities, but was still lower than the ambient 337 

humidity. The majority of reported humidity values in nest-boxes, however, fall well below 338 

those recorded in tree holes, demonstrating that nest-boxes are generally much drier places 339 

than tree cavities for nesting birds, with the air in the latter constantly saturated with water 340 

from living walls. 341 

 342 

4.3. Implications of microclimate differences between tree cavities and nest-boxes 343 

The current results provide evidence that nest-boxes differ from tree cavities; they are drier 344 

and less well insulated, which has further implications for cavity-nesting birds. Thus, 345 

providing nest-boxes in areas where the diversity of the tree cavity resource has been 346 

reduced in the course of forest management may change the character of thermal and 347 

humidity options available for nesting birds, and cause further complications. 348 

Effective insulation against harsh ambient conditions is important for endothermic 349 

animals to conserve energy during various stages of reproduction, and the buffering 350 

properties of cavities are potentially important in environments where temperatures fluctuate 351 

greatly within and between days and seasons (O'Connor, 1975; Haftorn and Reinertsen, 352 

1985; Hansell, 2000; Goldingay and Stevens, 2009). Installing poorly-insulating nest-boxes in 353 

such areas may expose their users to greater extremes of temperature than they would 354 

otherwise experience in tree cavities (Isaac et al., 2008a). For example, mortality of 355 

passerine chicks due to hyperthermia has only been reported from nest-boxes (e.g. Kluijver, 356 

1951; Mertens, 1977; van Balen, 1984; Erbelding-Denk and Trillmich, 1990; Rendell and 357 

Verbeek, 1996), indicating a greater potential for overheating than in generally cooler tree 358 

cavities. This risk could be reduced by placing nest-boxes with improved insulation in shaded 359 

sites (Isaac et al., 2008a; Goldingay, 2015), but hyperthermia and dehydration may still be 360 

difficult to avoid in hot climates (Goldingay and Stevens, 2009, Salaberria et al., 2014). 361 



14 

Nest-boxes that are drier than tree cavities could have some advantages for breeding 362 

birds, such as a lower risk of nest-soaking (reviewed in Wesołowski, 2011; Wesołowski and 363 

Martin, in press), though a low humidity could also carry risks. The relatively dry and warm 364 

environment in nest-boxes can be attractive to nesting Aculeata bees and wasps, which may 365 

be significant competitors of birds that are capable of deterring or usurping nesting 366 

passerines from nest-boxes, but they are rarely found in tree cavities (Broughton et al., 367 

2015). Similarly, the drier and warmer environment of nest-boxes may foster the occurrence 368 

and development of flea larvae in bird nests (Eeva et al., 1994; Heeb et al., 2000), facilitating 369 

flea infestations in nest-boxes but explaining the low occurrence of these ectoparasites in 370 

tree cavities (Wesołowski and Stańska, 2001; Hebda and Wesołowski, 2012). Abundant fleas 371 

in nests can lead to reduced growth of nestlings and increased mortality, or abandonment by 372 

adult birds (reviewed in Mazgajski, 2007). As such, provisioning nest-boxes can lead to 373 

increased ectoparasite loads and competition between nesting birds and social bees and 374 

wasps, both of which can reduce the breeding success of birds. 375 

Accumulation of nest material between breeding seasons is another frequent 376 

phenomenon of nest-boxes that is rarely observed in tree cavities, most probably due to 377 

humid conditions in the latter promoting decomposition of nests over winter (Wesołowski, 378 

2000; Hebda et al., 2013). The accumulation of nesting material in nest-boxes may induce 379 

infestations by overwintering fleas, and also reduce the functional depth of the cavity for 380 

birds, which reduces nest-site safety (Rendell and Verbeek, 1996; reviewed in Mazgajski, 381 

2007). Regular cleaning of nest-boxes is necessary to alleviate these problems, but such 382 

maintenance is labour intensive (Møller, 1989; Rendell and Verbeek, 1996; Wesołowski, 383 

2011). 384 

All of these practical and ecological differences between tree holes and nest-boxes 385 

have implications for nest-box studies of cavity-nesting birds, which are the basis of much of 386 

our understanding of their breeding ecology. Such limitations should, therefore, be 387 

considered if attempting to extrapolate results from nest-boxes to a wider population of birds 388 
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breeding in tree holes, as the conclusions reached could be misleading (Lambrechts et al., 389 

2010; Wesołowski, 2011). 390 

In summary, nest-boxes generally appear to provide a relatively warm and dry 391 

microclimate which is distinct from cool and humid tree cavities. The contrasting microclimate 392 

of nest-boxes and tree cavities is one of several important, often inter-linked, distinctions that 393 

have direct ecological impacts on their use by cavity-nesting species. Providing nest-boxes 394 

should therefore be undertaken with consideration of their limitations and potential 395 

influences. For species conservation, the provision of nest-boxes should be regarded as a 396 

targeted and temporary intervention rather than routine practice. In the long term, the 397 

retention of cavity-bearing trees is a more sustainable, cost-effective and less disruptive 398 

measure (Goldingay and Stevens, 2009; Lindenmayer et al., 2009; Cockle et al., 2010; 399 

Wesołowski and Martin, in press). 400 
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Figures 580 

 581 

 582 

Fig. 1. Daily changes in the mean hourly air temperature and relative humidity in vacant tree 583 

cavities of marsh tits in Białowieża National Park (Poland), respectively: a) n = 24, and b) n = 584 

15 (black dots), and in nest-boxes at Monks Wood (England), respectively: c) n = 18, and d) 585 

n = 15 (black dots) in relation to ambient conditions (white dots). Shown are means (dots) 586 

and SE (whiskers). Measurements in tree cavities were taken in April-May 2013 and 2014, 587 

and measurements in nest-boxes in May 2015. 588 

589 
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 590 

 591 

Fig. 2. Daily changes of mean hourly internal-ambient temperature differences in vacant tree 592 

cavities of marsh tits in Białowieża National Park (Poland) (black dots; n = 24) and in nest-593 

boxes at Monks Wood (England) (white dots; n = 18). Shown are means (dots) and SE 594 

(whiskers). “0” level occurs when internal and ambient temperatures are equal. 595 

Measurements in tree cavities were taken in April-May 2013 and 2014, and measurements in 596 

nest-boxes in May 2015. 597 

 598 

599 
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Figure legends 600 

Fig. 1. Daily changes in the mean hourly air temperature and relative humidity in vacant tree 601 

cavities of marsh tits in Białowieża National Park (Poland), respectively: a) n = 24, and b) n = 602 

15 (black dots), and in nest-boxes at Monks Wood (England), respectively: c) n = 18, and d) 603 

n = 15 (black dots) in relation to ambient conditions (white dots). Shown are means (dots) 604 

and SE (whiskers). Measurements in tree cavities were taken in April-May 2013 and 2014, 605 

and measurements in nest-boxes in May 2015. 606 

 607 

 608 

Fig. 2. Daily changes of mean hourly internal-ambient temperature differences in vacant tree 609 

cavities of marsh tits in Białowieża National Park(Poland) (black dots; n = 24) and in nest-610 

boxes at Monks Wood (England) (white dots; n = 18). Shown are means (dots) and SE 611 

(whiskers). “0” level occurs when internal and ambient temperatures are equal. 612 

Measurements in tree cavities were taken in April-May 2013 and 2014, and measurements in 613 

nest-boxes in May 2015. 614 

 615 

 616 
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Tables 617 

Table 1. The location and dimensions of vacant tree cavities previously used by marsh tits in 618 

Białowieża National Park, Poland (n = 22), and nest-boxes targeted at this species in Monks 619 

Wood, England (n = 18). For tree cavities the wall thickness was assessed indirectly as half 620 

of the difference between tree diameter at hole-height and greatest cavity floor diameter. 621 

Shown are medians (and ranges). For detailed description of assessment of cavity 622 

characteristics see Wesołowski (1996) and Maziarz et al. (2015). 623 

Cavity parameters Tree cavities Nest-boxes 

Entrance diameter (cm):   

least 2.3 (2-7) 2.6 (–) 

greatest 6.8 (3-10) 2.6 (–) 

shape ellipse circular 

Floor diameter (cm):   

least 7.0 (5-14) 7.8 (–)  

greatest 9.0 (6-15) 7.8 (–) 

shape ellipse square 

Depth (cm) 18.0 (10-30) 15.0 (–) 

Wall thickness (cm) 6.0 (2.3-19.2) 2.2 (–) 

Tree girth at hole height (cm) 67.0 (38-158) – 

Height above ground (m) 1.5 (0.8-4.5) a 1.8 (1.5-2.0) 

Entrance orientation (% of nest-

sites): 

  

northern 42.9 a 36.1 

eastern 14.3 a 27.8 

southern 17.9 a 16.7 

western 25.0 a 19.4 

a measured for 14 tree cavities624 
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Table 2. Comparison of internal and ambient daily air temperatures and relative humidity of vacant tree cavities previously used by marsh tits in 625 

Białowieża National Park (Poland) and nest-boxes targeted at this species in Monks Wood (England). The values shown refer to hourly means. 626 

Variable Tree-cavities 
 

Nest-boxes 

 Internal  ambient 
 
paired t-test 

 
internal  Ambient 

 
paired t-test 

 mean (SD) Range  mean (SD) range 
 

t p  mean (SD) range  mean (SD) range 
 

t p 

Daily temperature (°C) n = 24 cavities  n = 18 boxes 

mean 14.8 (3.0) 9-19  15.0 (2.9) 9-19  -1.6 0.117  10.6 (3.0) 7-14  10.1 (3.3) 7-14  6.7 <0.001 

minimum 10.4 (4.2) 0-16  8.4 (3.9) -1-13  8.3 <0.001  4.6 (4.1) 0-9  4.3 (4.3) -1-9  3.9 0.001 

maximum 19.2 (3.1) 15-25  21.7 (3.8) 16-27  -5.9 <0.001  18.0 (3.1) 13-23  16.9 (3.7) 13-21  4.1 <0.001 

rate of change (°C·h-1) 0.8 (0.4) 0-2  1.5 (0.6) 0-3  -6.5 <0.001  1.3 (0.5) 1-2  1.3 (0.5) 1-2  -0.2 0.863 

Daily relative humidity (%) n = 15 cavities  n = 15 boxes 

mean 91.4 (3.1) 86-96  75.9 (8.3) 62-87  9.5 <0.001  67.4 (6.0) 58-77  78.0 (5.5) 72-84  -6.6 <0.001 

minimum 86.3 (6.9) 68-95  52.1 (14.8) 29-72  12.1 <0.001  62.9 (7.2) 50-75  54.9 (9.3) 42-65  3.3 0.005 

maximum 94.4 (2.1) 91-97  92.7 (3.0) 88-97  2.3 0.040  73.1 (5.6) 63-81  93.8 (1.3) 92-97  -17.0 <0.001 

627 
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Table 3. The results of the Multiple Linear Regression model to predict the maximum daily air 628 

temperature in marsh tit tree cavities. The response variable was the maximum internal 629 

temperature recorded during 5-minute sampling intervals, and predictor variables were 630 

corresponding maximum ambient temperature and the tree circumference at hole height.  631 

Parameter Estimate SD error t p 

Intercept 7.78 1.94 4.02 0.0007 

Maximum ambient 

temperature 
0.65 0.08 8.45 < 0.0001 

Tree circumference -0.05 0.01 -4.04 0.0007 

 632 
 633 
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Table 4. A review of relationships between daily thermal conditions inside (in) and outside (out) of vacant tree cavities. Time lag is the number 634 

of hours after which the internal daily minimum and maximum temperatures followed the ambient extremes; n = sample size. 635 

Former occupants n State of 
walls 

Daily temp. (°C)  Temp. amplitude (°C) Time lag Source 

  min max  in out in/out (hours)  

None 2 living in > out in < out  7 10 0.7 1-2 McComb and Noble (1981) 

None 2 –a in > out in > out  8 9 0.9 1-2 Calder (1983) in Gibbons and 
Lindenmayer (2002) 

None 24 living in > out in < out  2 9 0.3 2-3 Sedgeley (2001); knot-holes 

None 11 living in > out in < out  5 10 0.5 2-3 Sedgeley (2001); trunk holes 

None 12 – in > out in < out  4 12 0.4 2-4 Ruczyński (2006) 

None 70 dead b in > out –  – – – – Paclík and Weidinger (2007) 

None 14 living in = out in > out  9 7 1.3 0-1 Isaac et al. (2008b) 

None 34 living c in > out in < out  2 4 0.5 – Rhodes et al. (2009) 

None 104 – in > out in < out  11 43 0.3 2-6 Coombs et al. (2010) 

None 45 – in > out in < out  3 8 0.4 1-2 Clement and Castleberry (2013) 

None 21 living in > out in < out  3 5 0.6 1-2 Grüebler et al. (2014) 

None 1 – in > out in < out  16 23 0.7 1-2 O’Connell and Keppel (2016) 

Birds           

Aegotheles cristatus 11 – in > out in < out  12 15 0.8 – Doucette et al. (2011) 

Colaptes auratus 1 – in > out in > out  13 14 0.9 -6-2 Howe et al. (1987) 

Colaptes auratus 86 dead b in > out in < out  11 26 0.4 2-5 Wiebe (2001) 

Philesturnus c. carunculatus  34 living c in > out in < out  1 4 0.4 – Rhodes et al. (2009) 
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Parus major 35 living in > out in < out  3 9 0.3 3-6 Maziarz and Wesołowski (2013) 

Poecile palustris 24 living in > out in < out  9 13 0.7 2-3 this study 

Mammals           

Trichosurus vulpecula 10 living in > out in ≥ out  7 7 1.0 0-1 Isaac et al. (2008b) 

Eptesicus fuscus 19 – in > out in < out  8 12 0.7 2-4 Willis and Brigham (2007) 

Nyctalus noctula/leisleri 12 – in > out in < out  4 12 0.4 4-5 Ruczyński (2006) 

Plecotus auritus 6 – in > out in < out  3 7 0.5 2-6 Otto et al. (2016) 

Chalinolobus tuberculatus 24 living in > out in < out  2 9 0.2 4-5 Sedgeley (2001); knot-holes 

Ch. tuberculatus 11 living in > out in < out  3 10 0.3 5 Sedgeley (2001); trunk holes 

Myotis bechsteinii 6 – in > out in < out  2 7 0.2 4-7 Otto et al. (2016) 

M. nattereri 6 – in > out in < out  2 7 0.3 3-8 Otto et al. (2016) 

M. nattereri 3 living in > out in < out  2 10 0.2 2-3 Smith and Racey (2005) 

Procyon lotor 2 living in > out in < out  2 10 0.2 2-5 Stains (1961) 

a data unavailable; b c. 50% of cavities in dead trees; c 20% of cavities in dead trees 636 
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Table 5. A review of the relationship between daily thermal conditions inside (in) and outside (out) of vacant nest-boxes. Time lag is the number 638 

of hours after which the internal daily minimum and maximum temperatures followed the ambient extremes; values below “0” indicate that 639 

internal extremes preceded the ambient ones; n = sample size. 640 

Studied 
occupants 

n Entrance 
diameter 
(cm) 

Floor 
diameter 
(cm) 

Material Daily temp. (°C)  Temp. amplitude (°C) Time lag Source 

 min max  in out in/out (hours)  

None 2 13 x 13 30 x 60 wood in = out in > out  10 9 1.1 0-1 McComb and Noble (1981) 

None 1 3.3 x 3.3 11 x 11 wood in ≤ out in > out  17 12 1.4 -1-0 Olszewski (1971) 

None 1 4.7 x 4.7 13 x 13 wood in ≤ out in < out  10 12 0.8 -1-0 Olszewski (1971) 

None 1 4.7 x 4.7 13 x 13 sawdust 
concrete 

in ≤ out in > out  15 12 1.3 0-1 Olszewski (1971) 

None 4 10 x 10 26 x 25 plywood in ≤ out in > out  20 16 1.3 0 Ellis (2016) 

None 4 10 x 10 25 x 25 plywood in ≤ out in > out  20 16 1.3 0 Ellis (2016) 

None 4 6 x 6 20 x 25 plywood in ≤ out in > out  20 16 1.3 0 Ellis (2016) 

None 4 8 x 8 25 x 25 plywood in ≤ out in > out  20 16 1.3 0 Ellis (2016) 

None 4 15 x 10 26 x 25 plywood in ≤ out in > out  20 16 1.3 0 Ellis (2016) 

None 4 5 x 5 31 x 15 plywood in ≤ out in > out  20 16 1.3 0 Ellis (2016) 

Athene noctua 18 6.5 x 6.5 18 x 83 wood in ≤ out in > out  6 5 1.2 0-1 Grüebler et al. (2014) 

Coracias garrulus 17 6 x 6 21 x 21 wood –a –  14 13 1.1 – Amat-Valero et al. (2014) 

Poecile palustris 18 2.6 x 2.6 8 x 8 wood in > out in > out  13 13 1.1 0-1 this study 

Passer montanus 3 3.2 x 3.2 11 x 11 woodcrete – –  18 – – – García-Navas et al. (2010) 

P. montanus 3 3.2 x 3.2 12 x 12 wood – –  15 – – – García-Navas et al. (2010) 

a data unavailable 641 
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