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22 ABSTRACT

23

24 Submarine carbonate escarpments, documented in numerous sites around the world, consist of 

25 thick exposures of Mesozoic shallow water carbonate sequences - primarily limestones and 

26 dolomites - with reliefs of >1 km and slope gradients of >70°. Whilst most research efforts have 

27 focused on the processes that shaped carbonate escarpments into complex and extreme terrains, 

28 little attention has been paid to the geomorphology of shelves upslope of carbonate escarpments. 

29 In this study we investigate high resolution geophysical, sedimentological and visual data 

30 acquired from the eastern Malta Plateau, central Mediterranean Sea, to demonstrate that the outer 

31 shelf of a carbonate escarpment is directly influenced by escarpment-forming processes. We 

32 document forty eight erosional scars, six long channels and numerous smaller-scale channels, 

33 three elongate mounds, and an elongate ridge across the eastern Malta Plateau. By analysing their 

34 morphology, seismic character, and sedimentological properties, we infer that the seafloor of the 

35 eastern Malta Plateau has been modified by three key processes: (i) Mass movements – in the 

36 form of translational slides, spreading and debris flows – that mobilised stratified Plio-

37 Pleistocene hemipelagic mud along the shelf break and that were likely triggered by seismicity 

38 and loss of support due to canyon erosion across the upper Malta Escarpment; (ii) NNW-SSE 

39 trending sinistral strike-slip deformation in Cenozoic carbonates – resulting from the 

40 development of a mega-hinge fault system along the Malta Escarpment since the Late Mesozoic, 

41 and SE-NW directed horizontal shortening since the Late Miocene – which gave rise to NW-SE 

42 oriented extensional grabens and a NNW-SSE horst; (iii) Flow of bottom currents perpendicular 

43 and parallel to the Malta Escarpment, associated with either Modified Atlantic Water flows 
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44 during sea level lowstands and/or Levantine Intermediate Water flows at present, which was 

45 responsible for sediment erosion and deposition in the form of channels and contouritic drifts.

46

47 Keywords: submarine landslide; fault; contouritic drift; carbonate escarpment; outer shelf; Malta 

48 Plateau 

49

50 1. INTRODUCTION

51

52 Submarine carbonate escarpments - limestone and dolomite cliffs with relief in excess of 1 km 

53 and slope gradients exceeding 70° – have been documented at numerous sites around the world 

54 (e.g. Apulia (Volpi et al., 2011), Bahamas (Freeman-Lynde et al., 1981), Blake (Paull and Dillon, 

55 1980), Campeche (Paull et al., 2014), Florida (Paull et al., 1990; Twichell et al., 1990), Grand 

56 Banks (Ryan and Miller, 1981), Malta (Micallef et al., in review; Scandone et al., 1981) 

57 Escarpments). Such escarpments expose thick stratigraphic sequences of Mesozoic shallow water 

58 carbonate accumulations. These outcrops have been eroded into complex and extreme terrains - 

59 comprising wide canyons, landslide scars, vertical walls and overhangs – by a variety of 

60 processes (e.g. gravity flows, fluid seepage, submarine landslides, bottom currents and biological 

61 activity (Paull and Dillon, 1980; Paull and Neumann, 1987; Twichell et al., 1996)).

62

63 Such conspicuous landforms have a strong influence on the surrounding seafloor, particularly 

64 abyssal plains. Downslope erosion by gravity flows results in the formation of plunge pools and 

65 turbidite deposits at the base of escarpments (Micallef et al., in review). Slope failures generate 

66 extensive mass movement deposits (Brooks et al., 1986; Halley and Schlager, 1983; Mullins et 
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67 al., 1986; Paull et al., 2014; Twichell et al., 1990), whereas escarpment retreat results in erosional 

68 benches at the base (Paull and Dillon, 1980). Topographic focusing of ocean currents along the 

69 escarpment can form erosional moats (Dillon et al., 1987; Land et al., 1999; Paull and Dillon, 

70 1980), contouritic drifts (Micallef et al., in review), and sediment waves (Gutscher et al., 2016). 

71 Fluid seepage at the base of the escarpment can generate fan-shaped sediment deposits that 

72 include pyrite and sulphide (Commeau et al., 1987; Paull et al., 1992; Paull et al., 1990).

73

74 Very little attention has been paid to the impact of carbonate escarpments on adjacent continental 

75 shelves. In this study we show that the outer shelf of a carbonate escarpment can host a wide 

76 range of morphologies that are predominantly influenced by escarpment-forming processes. We 

77 demonstrate this by analysing high resolution geophysical, sedimentological and visual data 

78 acquired from the eastern Malta Plateau, central Mediterranean Sea, between 2012 and 2014. 

79 Using these data we: (i) document the key landforms across the eastern Malta Plateau, and (ii) 

80 determine the nature and origin of the processes responsible for their formation. 

81

82 2. REGIONAL SETTING

83

84 The Pelagian Platform is a structural unit of the African foreland colliding with the European 

85 plate. It forms a shallow shelf between south Sicily and north-west Libya that separates the deep 

86 Ionian Basin from the Western Mediterranean. The Malta Plateau is a 150 km long and 120 km 

87 wide ridge located in the north-eastern part of the Pelagian Platform (Figure 1). It is characterised 

88 by a smooth and gently sloping seafloor that is predominantly 100-150 m in depth, although it 

89 locally reaches depths of 400 m. The continental basement of the Malta Plateau is overlain by a 
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90 >4500 m thick sequence of limestones, dolomites and volcanic deposits, ranging from Upper 

91 Triassic to late Neogene in age (Jongsma et al., 1985; Torelli et al., 1995). More recent sediments 

92 covering the Neogene succession comprise parallel-bedded units of Plio-Pleistocene terrestrial, 

93 pelagic and hemipelagic sediments that are up to 300 m thick (Max et al., 1993; Osler and Algan, 

94 1999). The basement of these units is the Messinian low-stand erosional surface. 

95

96 During the Early to Middle Jurassic phase, the Pelagian Platform underwent a major extensional 

97 phase, as demonstrated by the widespread occurrence of volcanic rocks dating to this epoch 

98 (Scandone et al., 1981). During the Middle to Upper Cretaceous, the Pelagian Platform was 

99 dominated by quiet tectonic conditions marked by gentle subsidence along former rift zones 

100 (Finetti, 1982; Gardiner et al., 1995). In view of the change in the direction of movement the 

101 African Plate with respect to the Eurasian Plate, the Upper Cretaceous was characterised by 

102 renewed extension, subsidence and widespread volcanic activity. During the Tertiary, the tectonic 

103 regime changed to a compressive one due to the collision between the African and the Eurasian 

104 plates along the Maghrebian thrust front (Lipparini et al., 2009). In spite of this tectonic regime, 

105 the period between the Miocene and Quaternary is characterised by an extensional phase (Finetti, 

106 1982; Gardiner et al., 1995). On the western part of the Malta Plateau, this period is associated 

107 with the development of the Sicily Channel Rift Zone, which entails a system of three NW–SE 

108 trending grabens (Pantelleria, Malta and Linosa Grabens) where water depth reaches a maximum 

109 of around 1700 m (Reuther and Eisbacher, 1985). These grabens are governed by a fault system 

110 that extends throughout the Sicily Channel, from Southern Sicily to Tunisia (Illies, 1981). Rifting 

111 was accompanied by extensive igneous activity, which resulted in the volcanic islands of 

112 Pantelleria and Linosa.  
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113  

114 To the east, the Malta Plateau is separated from the Ionian Basin by the Malta Escarpment, a 290 

115 km long and 3.2 km high cliff that extends southwards from eastern Sicily and that reaches local 

116 slope gradients of 74° (Figure 1). The escarpment is an inherited structural feature from the early 

117 Mesozoic (Casero et al., 1984; Cita et al., 1980; Finetti, 1982; Grasso, 1993; Nicolich et al., 

118 2000; Reuther et al., 1993; Scandone et al., 1981). It is thought to have originated by rifting in the 

119 Upper Permian-Triassic, which was followed by spreading from the Jurassic till the Upper 

120 Cretaceous-early Palaeogene (Catalano et al., 2000a; Grasso, 1993). The escarpment exhibits 

121 both Mesozoic normal block faulting and a more recent sinistral strike-slip component. The latter 

122 is likely related to the conversion of the Malta Escarpment from a passive margin to a mega-

123 hinge fault system in the Late Mesozoic, and from SE-NW directed horizontal shortening since 

124 the Late Miocene (Adam et al., 2000; Reuther, 1990; Reuther et al., 1993; Reuther and Eisbacher, 

125 1985). These changes in the tectonic stress field of the area are attributed to plate convergence 

126 between Africa and Europe, and differences in convergence rates of the Pelagian continental 

127 crust and the adjacent Ionian oceanic crust (Adam et al., 2000; Argnani and Bonazzi, 2005; 

128 Catalano and Sulli, 2006; Gutscher et al., 2016). More recent structural deformation has been 

129 restricted to the segment of the escarpment north of Siracusa (Argnani and Bonazzi, 2005). The 

130 Malta Escarpment is also characterised by erosional scars and a dense network of narrow and 

131 wide canyons. These are attributed to dissolution by fluid seepage, terrestrial fluvial erosion 

132 during the Messinian Salinity Crisis, gravity flow erosion, and multi-scale slope failures 

133 (Micallef et al., in review). 

134
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135 The Malta Plateau is also bound by the Hyblean Plateau of mainland Sicily to the north and a 

136 Plio-Quaternary foredeep of the Maghrebian fold-and-thrust belt to the west (Gela Basin). Direct 

137 evidence of fluid flow and seepage systems have been reported in several parts of the Malta 

138 Plateau (Holland et al., 2003; Max et al., 1993; Micallef et al., 2011; Savini et al., 2009).

139

140 The Pelagian Platform represents a main pathway for Atlantic waters that enter through the 

141 Gibraltar Strait (Modified Atlantic Water, MAW) (Millot and Taupier-Letage, 2005) (Figure 1). 

142 The upper 100-120 m of the water column in the Pelagian Platform consists of the MAW flowing 

143 towards the east. Across the Malta Plateau, the MAW flows in a south-easterly direction at 

144 velocities of up to 25 cm s-1 (Lermusiaux and Robinson, 2001). The more saline Levantine 

145 Intermediate Water (LIW), which originates in the eastern basin, splits into two flows - 

146 westwards below the MAW, and northwards along the eastern flank of the Malta Plateau. In the 

147 latter case, the LIW flow reaches velocities of up to 20 cm s-1 (Lermusiaux and Robinson, 2001).

148

149 FIGURE 1

150

151 3. MATERIALS AND METHODS

152

153 We base our study on six types of seafloor data acquired during the CUMECS (2012) and 

154 CUMECS-2 (2014) research cruises. These include:

155

156 (i) Multibeam echosounder (MBES) data: An area of ~950 km2 of seabed within a depth 

157 range of 100 – 1200 m was surveyed using a Kongsberg-Simrad EM-710 system and 
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158 Reson SeaBat 7150 and 8111 systems. Grids with 10 m × 10 m bin size were derived for 

159 both bathymetry and backscatter (Figure 2). Bathymetry data were processed by 

160 accounting for sound velocity variations and basic quality control using CARIS HIPS and 

161 SIPS. The backscatter data were processed with PRISM (Processing of Remotely-sensed 

162 Imagery for Seafloor Mapping) software (Le Bas and Hühnerbach, 1998). Processing 

163 included radiometric corrections, geometric corrections and mosaicking. Standard 

164 morphometric attributes and morphometric maps (Micallef et al., 2007a) were generated 

165 to map landforms across the study area. 

166 (ii) Sub-bottom profiles: High resolution sub-bottom profiles were acquired simultaneously 

167 with the MBES data. The profiles were collected using a hull-mounted Datasonics 

168 CHIRP-II profiler operating at frequencies of 2-7 kHz.

169 (iii) Single-channel seismic reflection profiles: 120 km of Sparker profiles were acquired 

170 from the central part of the study area using a 1 kJ multi-component Geo-Resources 

171 Geospark 1500 system triggered at 1 s intervals (Figure 3). Seismic data processing was 

172 carried out with Seismic Processing Workshop and Hotshot, and included filtering and 

173 amplitude corrections.

174 (iv)Remotely Operated Vehicle (ROV) surveys: Two dives were carried out using the 

175 PolluxIII system, which has a maximum 600 m operating depth capability and a forward-

176 looking 1/3” Sony Charge Coupling Device colour video camera (Figure 3). The first 

177 survey (ROV1) lasted approximately 5 h, covering a distance of 2.7 km and a depth range 

178 from 300 to 537 m. The second survey (ROV2) lasted approximately 2 h, covering a 

179 distance of 1.4 km and a depth range from 285 to 496 m. 
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180 (v) Dredge samples: Dredge samples were acquired with a cylindrical metallic dredge along 

181 the ROV1 transect at a depth of 320 m. 

182 (vi) Gravity cores: A total of 28 m of sediment cores were obtained from nine sites (Figure 3) 

183 using a 6-m gravity corer configured with a trigger weight and pelican set-up. Analyses of 

184 the sediment cores included the following:

185 The cores were visually logged, photographed, and analysed in terms of sediment 

186 colour, magnetic susceptibility, P-wave velocity, and gamma density using a Geotek® 

187 Multi-Sensor Core Logger at the National Oceanography Centre, Southampton. 

188 Samples from selected intervals in the cores were analysed quantitatively for grain 

189 size distributions with a Malvern Mastersizer 2000 (Malvern Instruments Limited, 

190 Malvern, UK) in combination with a Malvern Hydro G accessory unit and 36-pot 

191 Malvern auto-sampler. The instrument uses laser diffraction to calculate grain 

192 diameters between 0.02 µm and 2000 µm. 

193 Undrained shear strength measurements (in kPa) were obtained from four cores 

194 (CU12_01, CU12_02, CU12_07, CU12_10) at 20 cm intervals using a hand held 

195 shear vane tester. 

196 AMS 14C dating of four samples from two cores (CU12_01, CU12_07) was carried 

197 out by the  Radiocarbon Laboratory. Foraminiferal mixed assemblages of both 

198 Globigerinoides ruber and Globigerina bulloides were used, as there were not enough 

199 individuals for monospecific picking to make up the necessary 5 mg of clean shell 

200 material required for these measurements. 

201 Volcanic ash layers represent valuable stratigraphic tools for geological correlation 

202 and dating when they are distinctive and sufficiently widespread (Lowe (2011) and 
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203 references therein). Tephra layers within the cores were sampled and analysed for 

204 textural and components analyses using a Scanning Electron Microscope (SEM) Zeiss 

205 EVO MA 10 at the Istituto Nazionale di Geofisica e Vulcanologia Sezione di Pisa, 

206 and for geochemical analyses of glass using a JEOL JXA-8600 microprobe (EMP) 

207 equipped with 4 wavelength dispersive spectrometers at IGG-CNR Firenze. 

208

209 FIGURE 2

210

211 FIGURE 3

212
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214 4. RESULTS

215

216 4.1 Seafloor morphology and sub-seafloor character

217

218 The seafloor across the eastern Malta Plateau is predominantly smooth, very gently sloping (0.8° 

219 - 1.8°) towards the east, and characterised by low backscatter response (Figures 2, 3). ROV 

220 imagery shows a terrain predominantly covered by a drape of fine-grained sediment with variable 

221 levels of bioturbation. The shelf break between the eastern Malta Plateau and the upper Malta 

222 Escarpment occurs at depths ranging from 100 m in the north, where it is quite angular and sharp, 

223 to 400 m in the south, where the shelf break is generally more curved and smooth. 

224

225 The seismic expression of the sub-seafloor in most of the eastern Malta Plateau comprises an up 

226 to 0.2 s (Two Way Travel Time (TWTT)) thick sequence of continuous, parallel, high amplitude 

227 seismic reflectors (facies 2A) sloping towards the shelf edge (Figure 4a). The sequence becomes 

228 thinner towards the shelf edge. The sequence of parallel seismic reflectors is underlain by an 

229 acoustically transparent facies of variable thickness (facies 3) (Figure 4a). The top of this facies 

230 comprises a low amplitude seismic reflector, which is generally irregular and locally incised by 

231 depressions. At the few sites where the overburden is thin, the seafloor is characterised by a 

232 hummocky topography (Figure 4c). 

233

234 Seafloor shallower than 140 m is characterised by a widespread and distinctive angular 

235 unconformity (unconformity 1, Figure 4b), where high amplitude, parallel seismic reflectors that 
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236 slope towards the Malta Escarpment (facies 2A) are truncated and covered by up to 0.01 s 

237 (TWTT) thick transparent seismic facies that lacks any internal reflectors (facies 1). 

238

239 FIGURE 4

240

241 There are four distinct morphologic elements that characterise the eastern Malta Plateau seafloor 

242 (Figure 5a).

243

244 FIGURE 5

245

246 4.1.1 Erosional scars 

247

248 The southern half of the study area is affected by forty eight scars that range from 0.2 to 70 km2 

249 in area (mean of 2.2 km2) (Figure 5a). The scars have arcuate to elongate planform shapes (both 

250 across- and along-slope). The lateral and upslope limits of the largest scars are characterised by 

251 escarpments with gradients of up to 17°, heights of up to 80 m and high backscatter response 

252 (Figures 6, 7). The downslope limit of all the scars is contiguous with other features, such as 

253 another scar, a depression, or the edge of the Malta Plateau. 

254

255 The largest scars have contrasting morphologies. Scar S1, which is located upslope of Cumecs 

256 Canyon in the southern part of the study area, has a 6.5 km wide and 25 km long crescent 

257 planform shape (Figure 6a). The seafloor within the scar is generally smooth, gently sloping 

258 (1.5°), and characterised by low backscatter (Figure 6b). The escarpment bounding the scar 
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259 displays very high backscatter (Figure 6b). Scar S2, which is also located upslope of the Cumecs 

260 Canyon in the central part of the study area, is 7.7 km long and up to 3 km wide (Figure 7a). It 

261 comprises a series of sub-parallel linear ridges (up to 1.5 km long and 12 m high) and troughs. 

262 The ridges and troughs become less widely spaced and shorter with distance downslope. In the 

263 south-eastern section, the scar leads to a channel (C5) with smooth seafloor and almost flat 

264 bottom. Scar S2 has a predominantly low backscatter response, but some of the ridge flanks 

265 correspond to moderate backscatter (Figure 7c). 

266

267 The other scars are considerably smaller and comprise smooth, near-planar seafloor. 

268 Occasionally, the upslope section comprises a ridge and trough pattern that is significantly 

269 smaller and less pronounced than that in scar S2. Another twenty four scars occur on the upper 

270 Malta Escarpment, and a sediment core was obtained from one of these (CU12_02 from scar S5) 

271 (Figure 8a).

272

273 FIGURE 6

274

275 FIGURE 7

276

277 FIGURE 8

278

279 Seismic reflection profiles show that the sequence of continuous, parallel, high amplitude seismic 

280 reflections characterising the eastern Malta Plateau (facies 2A) is truncated by the scar 

281 escarpments (Figure 7b). Up to 0.1 s (TWTT) of the sub-seafloor has been affected by the scars. 
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282 The seismic signature of the downslope section of the scars is generally hummocky to chaotic 

283 (facies 2D; Figure 8b). Where ridges and troughs occur, the seismic facies is predominantly 

284 characterised by irregular, partly chaotic facies of variable thickness (facies 2C - up to 0.06 s 

285 (TWTT)) (Figure 7b). The base of the irregular, partly chaotic facies is a planar, continuous, high 

286 amplitude reflector. This base reflector is the same one for scars S2 and S3 (Figures 7b; 11); it is 

287 found between 0.02 s and 0.15 s (TWTT) below the seafloor, and its depth decreases towards the 

288 shelf without outcropping across the study area. The imaged scars are draped by an up to 0.006 s 

289 (TWTT) thick sequence of coherent, moderate amplitude reflectors.

290

291 4.1.2 Channels 

292

293 The central part of the study area is incised by six channels that reach the Malta Escarpment 

294 (Figure 5a). The longest of these (C4) is 12 km long, up to 1.6 km wide and 120 m deep (Figure 

295 9a). The channel axis is characterised by medium to very low backscatter. The cross-sectional 

296 profile of the channel is asymmetric, with the northern wall being steeper (+3°) and higher (+100 

297 m) than the southern wall (Figure 9c). The eastern section of the northern wall is characterised by 

298 very steep terrain (>60°) and high backscatter (Figure 2b). The channel walls are affected by 

299 numerous small scars (150 – 700 m in length), all of which slope towards and connect to the axis 

300 of the channel. The scars are shallow (maximum depth of 5 m), smooth, planar and have low 

301 aspect ratios. Seismic reflection profiles intersecting channel C4 show an up to 0.18 s (TWTT) 

302 sequence of continuous, parallel, high amplitude seismic reflectors (facies 2A) that slope towards, 

303 and converge at the channel axis (Figure 9b). The sequence across the southern wall is thicker 
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304 than that on the northern wall. Underlying this sequence is an irregular, discontinuous and low 

305 amplitude reflector, below which the seismic facies is transparent (facies 3). 

306

307 FIGURE 9

308

309 There are other channels in the area but they are shorter and have more subdued morphologies 

310 (Figure 5a). Channels C1 and C2 also show asymmetric profiles like C4, whereas that of C3 

311 breaks the pattern and its southern wall is steeper than the northern wall. The westernmost edges 

312 of channels C2 and C3 are connected by a SW-NE trending escarpment that faces SE and is 50 m 

313 high. The southernmost two channels (C5 and C6) are the shortest and connect scars S2 and S4 

314 with the upper Malta Escarpment (Figure 5a). 

315

316 Numerous smaller scale channels (up to 5.5 km long and 0.2 km wide), characterised by high 

317 backscatter, incise the seafloor in scar S1 (Figure 6b).

318

319 4.1.3 Elongate mounds 

320

321 The northern wall of channel C4 is bound by a W-E oriented, steep (>45°) escarpment (Figure 

322 9a). The latter is 12.5 km long, up to 70 m high and has the morphology of connected 1.5-2 km 

323 wide scarps, giving it a “lacy” appearance. ROV imagery from this escarpment shows steep 

324 carbonate outcrops (Figure 9d). The seafloor between the northern wall of C4 and the escarpment 

325 shows an elongate, convex, mounding topography. The mound is up to 1.3 km wide and 20 m 

326 high (Figures 9c, 10). It has moderately steep sides (up to 6°) and is asymmetric in cross-section 
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327 (Figure 10). Along its northern boundary, the mound is characterised by numerous elongate and 

328 ellipsoidal depressions that are up to 50 m deep (Figure 9a). Three 90 m wide circular 

329 depressions, up to 13 m deep, are also observed in the central part of the mound. ROV imagery 

330 from across the surface of the mound shows gently sloping terrain covered by fine grained 

331 sediments and hosting a wide variety of bioturbation features. 

332

333 FIGURE 10

334

335 The seismic signatures of the mound and escarpment are shown in Figure 10. The mound is up to 

336 0.15 s (TWTT) thick and comprises packages of sub-parallel, convex-upward, high-amplitude 

337 reflectors of variable thicknesses (facies 2B). The base of this package is an irregular, stepped, 

338 semi-discontinuous reflector with highly variable amplitude. Below this reflector, the acoustic 

339 facies is transparent (facies 3). Along the northern boundary of the mound, the acoustically 

340 transparent facies has a steeply sloping (minimum of 25°, assuming P-wave velocity of 1600 m s-

341 1), southward facing edge that is up to 0.12 s (TWTT) high. This facies becomes exposed along 

342 the south-eastern boundary of the mound, where the seafloor is steepest and characterised by high 

343 backscatter (Figure 9a).

344

345 Other mounds, of a much smaller scale but similar morphology and seismic signature, occur 

346 along the top of the 12.5 km long escarpment and on the northern flank of channel C3 (Figure 

347 5a).

348

349
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350 4.1.4 Elongate ridge and adjacent seafloor

351

352 In the central part of the study area and upslope from the Cumecs Canyon head, a 7.5 km long 

353 ridge, up to 400 m wide and 30 m high, is located at a depth of 300-320 m (Figure 11a). The 

354 ridge is oriented N-S, parallel to the shelf edge, has steeply sloping sides (up to 40°) characterised 

355 by high backscatter, and is locally intersected by a 1.6 km wide amphitheatric scar (Figure 11a). 

356 At its southernmost edge, the ridge leads into a 3 km long and 30 m high escarpment sloping at 

357 ~7°. Further south, this ridge connects to a 3 km wide area of hummocky terrain.

358

359 FIGURE 11

360

361 Along its northern section, the topography of the ridge is undulating and divided in two by a 

362 depression (Figure 11a). Seismic reflection profiles crossing the ridge here show a strong, sloping 

363 and irregular reflector that very markedly divides the acoustic character of the ridge into an upper 

364 unit of sub-parallel, convex upward reflectors (facies 2B) and acoustically transparent facies 

365 (facies 3) below (Figure 11b). Either side of the ridge, the acoustically transparent facies appears 

366 vertically offset and downthrown by up to 0.25 s (TWTT) in the west and by 0.15 s (TWTT) in 

367 the east.

368

369 Seismic reflection profiles crossing the southern section of the ridge show it to be comprised of 

370 acoustically transparent facies (facies 3) that is vertically offset along the western flank (Figure 

371 11c). Upslope of the ridge, the shallow stratigraphy consists of parallel to sub-parallel reflections 

372 (facies 2A) that can be sub-divided into two sub-facies on the basis of acoustic character and 
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373 geometry. The upper sub-facies (facies 2A-1) is 0.04 s (TWTT) thick at most, thinning eastwards 

374 and consisting of continuous, parallel, low to moderate amplitude reflectors that converge 

375 towards the ridge and shelf break. The lower sub-facies (facies 2A-2) generally consists of high 

376 to moderate amplitude and parallel reflector package that includes a number of clear, high 

377 amplitude, continuous reflectors. This sub-facies appears to have a relatively constant thickness, 

378 apart from where the underlying irregular surface is V-shaped; here, the sub-facies thickens as it 

379 appears to infill the topography, reaching a maximum thickness of 0.06 s (TWTT). In the 

380 easternmost section of the lower sub-facies and contiguous with the western flank of the ridge,

381 there appears to be an offset in the sub-facies. This offset is associated with an abrupt change in 

382 the thickness of the seismic facies and the upward curvature of reflectors at a depth between 0.03 

383 s and 0.06 s (TWTT) below the seafloor (Figure 11c). A similar offset can be observed further 

384 north (Figure 11d). On its eastern flank, the ridge is partially overlain by a sequence of convex-

385 upward reflectors (facies 2B). To the west of this sequence is a moat-like depression (Figure 

386 11c). The bathymetric data and all the seismic lines that cross the ridge show that this depression 

387 is present along the entire eastern flank of the ridge.

388

389 ROV imagery from across the ridge shows steep bedrock outcrops and carbonate hardgrounds 

390 (Figure 11e) that are occasionally covered by sessile megabenthos, particularly the anthipatharian 

391 Leiopathes glaberrima (Angeletti et al., 2015). Dredged material from the ROV site consists of 

392 carbonate hardgrounds (Figure 11f). 

393

394

395
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396 4.2 Gravity cores

397

398 4.2.1 Sedimentary facies

399

400 The nine sediment gravity cores have been obtained from channel C4 (CU12_05), the adjacent 

401 elongate mound (CU12_06) and upslope of the long escarpment (CU12_07), scar S2 (CU12_08 

402 and CU12_09), adjacent undisturbed seafloor (CU12_10), upper Malta Escarpment scars 

403 (CU12_02 and CU12_03), and undisturbed seafloor upslope (CU12_01) (Figure 3). The sampled 

404 sediment is predominantly clay to silty clay of homogeneous lithology and physical properties. 

405 Five main sedimentary facies (A-E) are identified, with facies A, C and E being further 

406 subdivided into two sub-facies each (Figure 12):

407

408 i. Facies A1: olive grey, clayey mud with low foraminifera content, weakly bioturbated, and 

409 low P-wave velocity, gamma-ray density and magnetic susceptibility.

410 ii. Facies A2: similar to A1 in terms of physical properties, but darker colour (grey) mud 

411 with variable levels of bioturbation. 

412 iii. Facies B: predominantly dark grey clayey mud with dispersed very fine sand and silt; 

413 devoid of foraminifera, with very high magnetic susceptibility, but same P-wave velocity 

414 and gamma-ray density as A1 and A2. 

415 iv. Facies C1: sandy mud, abundant formanifera content, compacted with increased P-wave,

416 gamma-ray density and magnetic susceptibility; no sedimentary structures, only some 

417 indistinct layering and slightly graded.
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418 v. Facies C2: dark grey, silty mud with sandy patches (in some cores even sandier than C1), 

419 increased formaninifera content, ungraded to slightly graded, higher P-wave and gamma-

420 ray density than C1.

421 vi. Facies D: light grey, highly compacted, formanifera-rich mud with shell fragments, with 

422 sharp upper boundary and gradational lower boundary; physical properties similar with 

423 A1, A2 and C but with distinctly higher lightness, making the layer easily identifiable in 

424 the cores where it is present. 

425 vii. Facies E: greenish grey, clayey mud with rare foraminifera that is characterised by erratic 

426 variability of the physical properties, inclined (at 45o) and sheared laminae and/or lighter 

427 olive grey clasts.

428

429 FIGURE 12

430

431 Textural and component analyses of the very fine sand and silt in facies B reveal the presence of 

432 scoria clasts and plagioclase crystals (Figure 13a), which indicate that it is a volcanic ash layer. 

433 The ash is dispersed in the clayey mud and does not form a distinct layer. We performed 

434 microprobe analyses of the glass matrix on samples of the very fine sand and silt material from 3 

435 cores (CU12_01, CU12_07 and CU_10). Limited points for measurements were available 

436 because groundmass is largely devitrified. The results indicate that the tephra have Na-alkaline 

437 affinity (Na2O 3.5-5.4 wt% > K2O 2.3-4.3 wt%), and the Total Alkali Silica classification 

438 diagram (Figure 13b) shows mugearitic composition.  

439

440 Figure 13
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441

442 4.2.2 AMS dates

443

444 Four dates were acquired, two from CU12_01 and two from CU12_07.  The two from CU12_01 

445 bracket facies B at depths of 49 cm and 56 cm (Figure 12). The calibrated, reservoir corrected 

446 ages we get for the two samples are 2140 – 2430 cal BP and 1850 – 2210 cal BP, respectively. 

447 The two CU12_07 ages are from above and below facies C1 at depths of 123 cm and 203 cm, 

448 respectively (Figure 12). The calibrated, reservoir corrected ages are 9740 – 10160 cal BP for the 

449 123 cm sample and 44580 – 50000 cal BP for the 203 cm sample. The latter is at the age limit of 

450 the technique and so the sediment may in fact be older.

451

452 4.2.3 Core correlation

453

454 Facies A is the most extensive facies, making up more than 80% of the total core recovered. The 

455 facies used to correlate the cores are B (layer with high magnetic susceptibility peak because it 

456 contains a tephra layer) and D (layer with characteristic lightness, colour and compaction) 

457 (Figure 12). Facies D layer is not present in the cores in the north. There is a second high 

458 magnetic susceptibility peak in cores CU12_01, CU12_10, CU12_08, CU12_06 and possibly 

459 CU12_05, which is also used as a tie line for the correlation. The second high magnetic 

460 susceptibly peak occurs about 25 cm below facies B. Facies C is found in all but two cores, 

461 CU12_05 and CU12_08. Facies C layers correlate well and are found at the same stratigraphic 

462 level downcore. What varies is the thickness of the beds. The grain size of facies C also varies 

463 across the study area - it is coarsest in the north, particularly in CU12_07 and CU12_06, and finer 
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464 in the south. Core CU12_05 contains two layers of facies E – one above facies B and the other 

465 one below. The only other core where facies E has been recorded is CU12_03.

466

467 4.2.4 Shear strength measurements

468

469 The shear strength measurements from the split cores (Figures 14a-d) were used to derive a 

470 regression equation of the rate of change of shear strength with depth. Figure 14e shows a clear 

471 trend of sediment strength increasing with depth at an average rate of 2.37 kPa m-1.

472

473 FIGURE 14

474

475 5. DISCUSSION

476

477 5.1 Stratigraphic framework

478

479 The seismic stratigraphy across the study area is interpreted using published seismic profiles and 

480 core/well data. Sequences of parallel and high amplitude reflectors (facies 2A) correspond to 

481 conformable, stratified units of Plio-Pleistocene terrestrial, pelagic and hemipelagic sediments 

482 (Max et al., 1993; Micallef et al., 2011; Osler and Algan, 1999; Tonarelli et al., 1993). These 

483 Plio-Pleistocene sediments drape low reflectivity facies (facies 3), which have been interpreted as 

484 carbonate bedrock sequences, the top of which corresponds to the Messinian Salinity Crisis 

485 erosional surface (Bishop and Debono, 1996; Finetti, 1984; Lofi et al., 2011; Micallef et al., 

486 2011). This erosional surface is characteristically irregular and occasionally hosts wide 
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487 depressions. Where the Plio-Pleistocene sediment drape is thin, the seafloor topography is 

488 hummocky because it traces the underlying erosional surface.

489

490 The Plio-Pleistocene sedimentary sequence is characterised by a number of high amplitude 

491 reflectors, likely the result of alternating depositional and erosional processes related to glacio-

492 eustatic oscillations. Because of its widespread distribution and depth of occurrence (seafloor 

493 shallower than 140 m), as well as its resemblance to similarly interpreted features in the central 

494 Mediterranean, we identify the most widespread and distinctive unconformity (unconformity 1; 

495 Figure 4b) as a sequence boundary formed by subaerial erosion during sea level fall associated 

496 with the Last Glacial Maximum (LGM) (Lambeck et al., 2011; Martorelli et al., 2010).  The 

497 acoustically transparent material on top of the sequence boundary (facies 1) is thus interpreted as 

498 a transgressive systems tract of post-LGM deposition.

499

500 The gravity cores inform us about the shallow stratigraphy of the last 50-60 ka. 

501

502 The chemical and component analyses of the tephra material in facies B indicate that the tephra 

503 deposit in all the studies cores is the same, thus allowing internal stratigraphic correlations. 

504 Furthermore, these data show that its composition is in agreement with Etna volcanics (Corsaro 

505 and Pompilio, 2004), and that it can be correlated with those associated with a well-known 

506 historical Plinian eruption produced by Etna in 122 BC (Coltelli et al., 1998) (Figure 13b). 

507

508 The most prevalent facies, A1 and A2, are interpreted as hemipelagites. The ages obtained from 

509 CU12_01 indicate an age reversal. On the basis of the volcanological determination of the ash 
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510 layer matching the 122 BC (2072 BP) Etna eruption, we are fairly confident that the 56 cm 

511 sample 1850 – 2210 cal BP  age is more reliable. We attribute the shallower but older age to 

512 potential sampling of older sediment in a bioturbated interval. Using this age, the sedimentation 

513 rate for facies A1 is estimated at 11.8 cm ka-1; it is not possible to estimate a sedimentation rate 

514 for facies A2 with the available data. The different characteristics of facies A1 and A2 likely 

515 reflect different amounts of primary productivity, climate effects and water mass changes. 

516

517 In view of the absence of terrigenous sources of sand and the oceanographic context in which the 

518 deposits are found, Facies C is interpreted to represent contourites. The different characteristics 

519 of C1 and C2 possibly reflect changes in bottom current activity, either over time or across the 

520 slope. The sedimentation rate of the contourites is estimated based on the dates of CU12_07 at 

521 2.6 cm ka-1, which is a lot slower than hemipelagic sedimentation, likely reflecting the alternating 

522 erosional and depositional processes that take place during contourite formation (Masson et al., 

523 2010).

524

525 Facies D is difficult to interpret - it is either a hemipelagite, reflecting a brief period of very high 

526 productivity, or a debrite. Based on its limited and restricted distribution on the Malta Plateau, we 

527 favour the first interpretation and suggest that this layer represents a brief period of high 

528 carbonate productivity. Through correlation of cores CU12_10, 09 and 01 with CU12_07, we 

529 estimate the minimum age of this layer at around 50 ka BP. This could place the formation of the 

530 layer in early Marine Isotope Stage (MIS) 3, which was characterised by abrupt climatic changes 

531 (Siddall et al., 2008). 

532
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533 The characteristics of facies E, with the inclined and deformed layers and the interspersed clasts 

534 of different lithologies, suggest that they are debrites. Cores recording such facies are found 

535 within scars (CU12_03) or the axis of channel C4 (CU12_05), but not in undisturbed seafloor, 

536 which corroborates our interpretation. 

537

538 5.2 Seafloor geomorphic processes

539

540 The seafloor in the eastern Malta Plateau has been shaped by three main processes (Figure 5b):

541

542 5.2.1 Mass movements

543

544 5.2.1.1 Nature of mass movements

545

546 We interpret the scars documented across the study area as evidence of slope instability. Mass 

547 movements are concentrated along the shelf break and channel C4. They extend over three orders 

548 of magnitude (in terms of area) and entail three styles of deformation: 

549

550 (i) The linear to arcuate steep headwalls, and the smooth and planar scars and slip 

551 surfaces, indicate that the majority of the mass movements appear to be translational 

552 in nature (sensu Locat and Lee (2002)); 

553 (ii) Both the repetitive pattern of ridges and troughs observed in scars S2 and S3 and in 

554 the upslope sections of some of the smaller scars, and the partial deformation of a 

555 sedimentary package (facies 2C) above a planar sedimentary layer, are characteristic 
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556 of submarine spreading (Micallef et al., 2007b). Spreading involves the extension of a 

557 sediment unit and its break up into blocks that slide above a planar slip surface.

558 (iii) The material in the scars has undergone internal deformation to varying degrees, as 

559 indicated by the chaotic seismic signatures (facies 2D) of mass movement deposits 

560 (Figure 8b). This is likely caused by increased plastic deformation due to the 

561 evolution of translational slides into debris flows, particularly across abrupt seafloor 

562 gradient changes that can cause flow transformation in mass movements (e.g. 

563 Georgiopoulou et al., 2010; Piper et al., 1999). This process is corroborated by the 

564 occurrence of debrites in cores located downslope of some slide scars (e.g. CU12_05). 

565

566 The mass movements appear to have generally been very mobile, as all the material appears to 

567 have been evacuated from most scars, apart from S2 and S3. When compared to the undisturbed 

568 seafloor around the scars, it is clear that the material being mobilised is primarily very gently 

569 sloping, stratified Plio-Pleistocene hemipelagic mud. 

570

571 5.2.1.2 Timing of mass movements

572

573 Most of the scars’ headwalls and sidewalls have smooth edges, whilst all the scars crossed by 

574 seismic reflection profiles appear covered by a hemipelagic drape. This indicates that the mass 

575 movements are not recent events. Two debrites have been recorded in the axis of channel C4. The 

576 more recent debrite is younger than the 122 BC Etna eruption, whereas the older debrite has an 

577 age of ~17 ka (based on a sedimentation rate of 11.8 cm ka-1). The debrite at the bottom of core 
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578 CU12_03 (upper Malta Escarpment slide scar) is older than this event. This suggests that 

579 different parts of the eastern Malta Plateau were unstable at different times. 

580

581 5.2.1.3 Pre-conditioning factors and triggering mechanisms of mass movements

582

583 As the mass movements appear to have detached along glide planes parallel to the stratigraphy, 

584 we conclude that they are stratigraphically-controlled. The planar slip surface coincides with 

585 specific stratigraphic layers that are locally shared by different slope failure events. It is clear that 

586 a specific sedimentary layer (or layers) has acted as a weak layer, yet it is difficult to determine 

587 the nature of the slip surfaces and why they were prone to failure. 

588

589 In the upper Malta Escarpment slide scar (S5; Figure 8), the stratigraphic position of the ~17 ka 

590 old debrite (facies E) coincides with the stratigraphic position where the light-coloured and 

591 compact layer was expected (facies D). The base of the debrite was not sampled by core 

592 CU12_03, but in core CU12_02 we find a thin sandy layer. The sequence below it does not 

593 correlate with the sequence in the equivalent stratigraphic depth in core CU12_01, and the 

594 gamma-ray density log suggests that this sequence is denser than other cores at this depth 

595 downcore. We interpret this to indicate that the thin sandy layer in core CU12_02 is a thin 

596 turbidite deposit on an erosional surface. This was likely generated by the passage of a debris 

597 flow that left no debrite deposit in the location of CU12_02; however, a thin turbidite could have 

598 been deposited by either an accompanying turbidity current or by local flow transformation of the 

599 debris flow into more dilute conditions. It is unknown how deep the debris flow eroded, but the 

600 gamma-ray density measurements suggest that this sequence belongs to a much deeper 
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601 stratigraphic unit that has been subjected to higher compaction. The light-coloured compact layer 

602 (facies D) is missing in core CU12_03, either because it lies below the debrite and the core did 

603 not reach it, or it was incorporated in the slope failure. It is likely, given its contrasting properties 

604 to the surrounding hemipelagic material, that it formed the weak layer for the slide. The 

605 difference from the encasing hemipelagic mud, in terms of geotechnical properties, has the 

606 potential to generate a strength contrast and provide a potential focus for a rupture surface (Locat 

607 et al., 2014). It is not clear whether differences in geotechnical properties between volcanic ash 

608 layers and hemipelagic mud could also have led to the development of a weak layer. On one 

609 hand, ash layers have been shown to promote translational sliding due to compaction and 

610 overpressure generation during large earthquakes, as demonstrated offshore Central America 

611 (Harders et al., 2010). On the contrary, others have shown that volcanic ash needs to be strongly 

612 altered to facilitate slope failure, and this process tends to take place at considerable depths (>800 

613 m) below the seafloor (Wiemer and Kopf, 2015).

614

615 Sediment loading and associated excess pore pressure development are not considered a key 

616 preconditioning factor in the eastern Malta Plateau, in view of the low sedimentation rates 

617 recorded in our cores and reported in the literature (Max et al., 1993; Osler and Algan, 1999). 

618 Excess pore pressure may also be induced by fluid flow. Deep fluid flow systems, sourced by 

619 Late Mesozoic sedimentary units and transferred via faults in Cenozoic carbonate sequences, 

620 have been documented in parts of the eastern Malta Plateau (Micallef et al., 2011). The 90 m 

621 wide, circular depressions identified on the elongate mound of channel C4 may be pockmarks, 

622 and thus evidence of fluid flow and escape at the seafloor. However, such evidence is not 

623 extensive across the study area and further investigation would be needed to determine whether 
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624 the flow rates and characteristics of the fluid are adequate to precondition parts of the eastern 

625 Malta Plateau seafloor to failure.

626

627 We propose two potential triggers of slope instability across the eastern Malta Plateau. The mass 

628 movements display three levels of retrogression and are located upslope of other mass 

629 movements, channels, canyons or escarpments. These indicate that loss of support plays a key 

630 role in triggering slope instability in the study area. Processes shaping the seafloor in the upper 

631 Malta Escarpment – canyon erosion and associated slope failures – have been particularly 

632 important in this regard. We consider channels C5 and C6 as erosive channels developed by the 

633 upslope retrogression of heads of canyons incising the Malta Escarpment that could have 

634 potentially triggered slope failure in scars S2 and S4. The second trigger is seismicity. Although 

635 recent seismic activity has mostly been restricted to the northern section of the Malta Escarpment 

636 (Argnani and Bonazzi, 2005), ground shaking associated with distal earthquakes could still have 

637 played a role in triggering slope instability across the study area. 

638

639 5.2.1.4 Seismic activity as a potential trigger of mass movements

640

641 We use slope stability modelling to explore the hypothesis that large and infrequent seismic 

642 ground shaking events are responsible for triggering mass movements in the eastern Malta 

643 Plateau. Our stability model is based on the mass movement associated with scar S2 because it is 

644 the major slope instability feature that has been sampled in our study area. We model the stability 

645 of the intact slope sediments by drawing on information from seismic reflection data by 

646 developing a composite bathymetric profile in the downslope direction of failure. Long profile 
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647 geometry and Sparker profile 9 indicate that failure occurred at a depth of 80 m below the 

648 seafloor (using a P-wave velocity of 1600 m s-1 for depth conversion). Since most of the 

649 landslides are stratigraphically-controlled translational failures, we define the failure surface at 80 

650 m below and parallel to the seafloor. We assume a free face on the downslope boundary of the 

651 slope model, as observed on the intact shelf edge. 

652

653 A static limit equilibrium slope stability model based on this planar failure model, the material 

654 strength parameters derived from shear vane testing (Figure 14) and the Bishop methods of slices 

655 (implemented in Rocscience software SLIDE 5.0) results in a factor of safety (Fs) = 3.3. A Fs = 

656 1.0 signifies a slope in equilibrium and any Fs > 1.0 indicates that under present conditions the 

657 slope is stable (unfailed). In the case where Fs > 1.0, an external perturbation is required for 

658 failure to occur (e.g. ground shaking due to earthquakes). 

659

660 To assess the potential for earthquake-related failure, a horizontal earthquake load is considered 

661 in the model. A range of values for the horizontal seismic coefficient are trialed to assess the 

662 stability of the slope. The horizontal seismic coefficient represents a horizontal seismic force 

663 directed out of the slope (i.e. in the direction of failure). The seismic coefficient is a 

664 dimensionless coefficient that represents the (maximum) earthquake acceleration as a fraction of 

665 the acceleration due to gravity. This is related to Peak Ground Acceleration (PGA), which is 

666 often used to model earthquake energy for submarine landslides but is immediately comparable. 

667 Seed and Idriss (1971) suggest applying an empirical dampening relationship to the seismic 

668 coefficient derived from pseudo-static stability modelling to make it comparable with PGA 

669 values (Strozyk et al., 2010). Testing a range of seismic coefficient values indicates that a seismic 
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670 load of 0.085g (where g is the acceleration due to Earth’s gravity) is required to reduce the 

671 stability of the slope to unity or Fs = 1.0 (Figure 15a). Applying the empirical dampening 

672 relationship of Seed and Idriss (1971) delivers an equivalent PGA value of 0.13g. To assess the 

673 time period over which this level of ground acceleration could be generated, a probabilistic 

674 seismic hazard curve was compiled for the site (Figure 15b). This model indicates that the 

675 required PGA would be exceeded at a Return Interval of just less than 1500 years. By taking into 

676 consideration seismic monitoring and hazard assessments of the Maltese Islands and central 

677 Mediterranean Sea, it appears that only ground shaking associated with distal earthquakes of 

678 EMS-98 intensities >VIII has the potential of triggering slope failures in eastern Malta Plateau at 

679 present (Agius and Galea, 2011; Amato and Mele, 2008; Galea, 2007). During the Plio-

680 Pleistocene, the sources of earthquakes may have been more proximal to the seafloor affected by 

681 slope instability, and the earthquake recurrence intervals could have been lower, in view of the 

682 more widespread strike-slip fault activity upslope of the Cumecs Canyon during this period (see 

683 section 5.2.2).

684

685 FIGURE 15

686

687 5.2.2 Faulting

688

689 We interpret the northern channels (C1-C4) as structurally-controlled channels. They consist of a 

690 drape of stratified Plio-Pleistocene hemipelagic sedimentary sequences that traces the underlying 

691 carbonate basement, which has been shaped into an irregular and stepped topography by 

692 subaerial erosion during the Messinian Salinity Crisis and normal faulting, respectively. Most 
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693 fault scarps have been buried, except where the fault scarp was very steep (e.g. eastern part of the 

694 northern wall of C4); the latter may indicate that the fault is still active and displacement has 

695 occurred recently in this region. The orientation of the faults is not consistent, varying from NW-

696 SE in the north, to W-E in the south. Vertical displacement reaches up to 170 m (as in the case of 

697 the elongate mound north of C4). The channels and associated faults define the boundaries of a 

698 horst and graben system in the central part of the study area (Figure 5b). Lack of offset seismic 

699 reflectors above the Messinian low-stand erosional surface in our seismic reflection data indicates 

700 that the system appears to have been inactive since the Messinian Salinity Crisis. Evidence of 

701 channel erosion across the seabed is lacking, apart from small mass movements across the walls 

702 of the largest channel. 

703

704 The N-S oriented elongate ridge located upslope from the Cumecs Canyon is interpreted as a 

705 horst block, resulting from either antithetic normal faulting or vertical uplift associated with 

706 transpressive strike-slip faulting. Erosion of the central section of the ridge by a large slope 

707 failure scar indicates that the formation of the horst predates the latest development of the upper 

708 Malta Escarpment canyons further east. Offset and convex-upward horizons in the Plio-

709 Pleistocene sedimentary cover in the eastern Malta Plateau, adjacent to the southern section of the 

710 ridge (Figure 11c,d), are indicative of transpressive deformation due to strike-slip faulting. No 

711 displacement appears to have occurred along these faults in recent times, in agreement with 

712 Argnani and Bonazzi (2005) and the lack of recent seismic activity along the Malta Escarpment 

713 (Agius and Galea, 2011; Amato and Mele, 2008).

714
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715 The NW-SE and N-S faults across the eastern Malta Plateau share a similar orientation with a 

716 number of known faults in the area (Figure 1). The described fault system is also extremely 

717 similar to that documented along eastern Sicily further north (Adam et al., 2000; Argnani and 

718 Bonazzi, 2005; Grasso, 1993). Between Augusta and Siracusa, NW-SE oriented extensional 

719 grabens have developed in association with NNW-SSE-trending sinistral strike-slip fault activity. 

720 Transpression associated with the latter is responsible for the topographic highs of the Monte 

721 Tauro, Santa Panagia and Maddalena Horsts. In view of this similarity, we infer that the tectonic 

722 context for all these faults systems is the same.

723

724 An alternative explanation for the N-S oriented elongate ridge is that it has a biogenic origin. It is 

725 morphologically similar to deep-water mounded carbonate structures, which have been described 

726 offshore NW Europe and Florida and interpreted as resulting from in situ deep-water coral 

727 growth, sediment build up and cementation (e.g. (Dorschel et al., 2005; Freiwald et al., 1997; 

728 Paull et al., 2000; Wheeler et al., 2007). However, such structures are generally located in water 

729 depths exceeding 500 m and the base of the coral growth is visible on the seismic reflection 

730 profiles. Neither of these characteristics is shared by the elongate ridge on the eastern Malta 

731 Plateau.

732

733 5.2.3 Bottom currents

734

735 The morphology and seismic signature (facies 2B) of the elongate mounds are typical of 

736 mounded contouritic drifts (Rebesco and Stow, 2001; Stow et al., 2002). The depressions 

737 contiguous to the drifts are thus interpreted as moats. The contouritic drifts are likely the result of 
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738 the interaction of bottom currents with the topography created by faults (structurally-controlled 

739 channels, horst blocks). Bottom current flows may have also played a role in channel incision – 

740 in fact, the core taken from the axis of channel C4 (CU12_05) is devoid of contourites. The 

741 bottom currents responsible for the development of the contourites must have been stronger 

742 across the longest mound in the north, and weaker across the small mounds in the south, as 

743 evidenced by the differences in the thickness of the contourite layers and grain size in cores 

744 CU12_07 and CU12_01. 

745

746 Our interpretation is corroborated by the occurrence of contourite layers in sediment cores 

747 (Figure 12). It appears that during MIS 2 and 3, bottom currents were active in the area of 

748 channel C4 and the associated mound area, but their sedimentation was slow.  Based on the 

749 difference in accumulation rates between the contourites and the hemipelagites, we infer that the 

750 contouritic drift along the northern wall of the channel C4 contains surfaces of erosion and non-

751 deposition, and/or that the finer sediment was winnowed and the contouritic sediment was 

752 continuously reworked. The latter scenario is supported by the sandier nature of facies C in 

753 comparison to facies A. In view of all this, it would be wrong to assume that contouritic 

754 deposition started 45 ka ago, as the base might be erosional too. What we can say with some 

755 confidence is that contourite deposition subsided around 9740 BP. It is likely that the bottom 

756 currents building contourites either ceased to flow or shifted position, because their effect is no 

757 longer captured in the cores. This change may be associated with post-LGM sea level rise and a 

758 resulting increase in sedimentation in the area, which is anticipated in carbonate producing 

759 regions (Schlager et al., 1994). 

760
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761 The location of these deposits allows us to infer long-term flow of benthic currents both 

762 perpendicular and parallel to the Malta Escarpment. The bottom currents responsible for these 

763 deposits may be associated with either Modified Atlantic Water flows during sea level lowstands 

764 or Levantine Intermediate Water flows at present (Millot, 2005). In the present day, the action of 

765 bottom currents in proximity of the southern mounds is confirmed by the occurrence of 

766 suspension feeders, such as anthipatharian assemblages (Angeletti et al., 2015). We think that the 

767 contouritic drifts, particularly those in channel C4, provide an excellent record of 

768 palaeoceanographic variability in the Sicily Channel since the Messinian Salinity Crisis, and are 

769 therefore worth sampling and analysing in detail.

770

771 6. CONCLUSIONS

772

773 Analyses of geophysical, sedimentological and visual data from the eastern Malta Plateau, central 

774 Mediterranean Sea, have shown that the outer shelf of a submarine carbonate escarpment bears 

775 evidence of widespread geologic and geomorphic activity, most of which is directly linked to 

776 escarpment-forming processes. The smooth and gently sloping seafloor of the eastern Malta 

777 Plateau hosts forty eight erosional scars (up to 70 km2 in area), six channels (up to 12 km in 

778 length) and numerous smaller-scale channels, three elongate mounds (up to 12.5 km in length), 

779 and an elongate ridge (7.5 km in length) across an area of 650 km2. We propose three key 

780 processes to explain the origin of these morphologies:

781

782 (i) Mass movements - in the form of translational slides, spreading and debris flows – 

783 that mobilised stratified Plio-Pleistocene hemipelagic mud. These retrogressive mass 



36

784 movements extend over three orders of magnitude, cluster along the shelf break, and 

785 the majority are not recent events. Loss of support, due to canyon erosion and 

786 associated slope failures in the upper Malta Escarpment, and seismicity are the most 

787 plausible triggers.

788 (ii) The development of NW-SE oriented extensional grabens and a NNW-SSE oriented 

789 horst in association with NNW-SSE trending sinistral strike-slip deformation in 

790 Cenozoic carbonates. The tectonic framework responsible for this deformation 

791 entailed the development of a mega-hinge fault system along the Malta Escarpment 

792 since the Late Mesozoic, and SE-NW directed horizontal shortening since the Late 

793 Miocene. The faults associated with such deformation were active up to the Plio-

794 Pleistocene.

795 (iii) Sediment erosion and deposition by bottom currents - either Modified Atlantic Water 

796 flows during sea level lowstands or Levantine Intermediate Water flows at present – 

797 flowing perpendicular and parallel to Malta Escarpment was responsible for the 

798 development of contouritic drifts and channels.

799

800 Outer shelves comprise an important yet neglected element in the overall evolution of carbonate 

801 escarpments. A more comprehensive investigation of such settings is thus warranted, also in 

802 terms of the hazard they pose to nearby coastal communities and seafloor infrastructures, as well 

803 their value as archives of palaeo-environmental change. 

804
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1041

1042 9. FIGURE LEGENDS

1043

1044 Figure 1: Location map of the north-eastern section of the Pelagian platform and western Ionian 

1045 Basin, central Mediterranean Sea. The map displays the principal morphological features, faults 

1046 (solid white lines, adapted from Casero et al. (1984) and Gardiner et al. (1995)), and the main

1047 pathways of Modified Atlantic Water (MAW) and Levantine Intermediate Water (LIW) in 

1048 eastern Sicily Channel (Béranger et al., 2004; Ciappa, 2009). The background bathymetry is from 

1049 EMODnet bathymetry (http://www.emodnet-bathymetry.eu). Inset map is from 

1050 www.geomapapp.org.
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1051

1052 Figure 2: Multibeam (a) bathymetry and (b) backscatter data from study area. Location of figures 

1053 3, 4a-c, 5, and 6 is shown.

1054

1055 Figure 3: Location of gravity cores (pink dots), ROV transects (green dots) and Sparker seismic 

1056 reflection profiles (blue lines) acquired from study area. Location of figures 7a,c, 8b, 9a and 11a 

1057 is shown.

1058

1059 Figure 4: Seismic stratigraphy of the eastern Malta Plateau. (a) Sparker profile 1 showing a thick 

1060 sequence of continuous, parallel, high amplitude seismic reflectors (facies 2A) above an 

1061 acoustically transparent seismic facies (facies 3). V.E. stands for vertical exaggeration. (b) Sub-

1062 bottom profile 253 showing a distinct unconformity (unconformity 1) comprising seismic facies 

1063 of tilting parallel reflectors (facies 2A) truncated along the western boundary and overlain by a 

1064 thin, acoustically transparent facies (facies 1). (c) Sub-bottom profile 030 showing hummocky 

1065 topography where acoustically transparent facies (facies 3) is close to the seafloor. Location of 

1066 profiles shown in figure 2. (d) Description of the six key seismic facies identified in seismic 

1067 reflection profiles across the study area.

1068

1069 Figure 5: (a) Map of principal morphologic elements identified across the southern half of the 

1070 study area. (b) Interpretation map of seafloor geomorphic processes across the southern half of 

1071 the study area. The continental shelf break is denoted by a dashed black line.

1072

1073 Figure 6: (a) Multibeam bathymetric map of scar S1. (b) Backscatter map of a section of scar S1.
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1074

1075 Figure 7: (a) Multibeam bathymetric map of scar S2. (b) Sparker profile 9 intersecting scar S2. 

1076 Location of profile shown in figure a. The base reflector for scar S2 is the same as for scar S3 

1077 (Figure 11d).  The failure depth utilised in section 5.2.1.4 is marked. (c) Multibeam backscatter 

1078 map of scar S2.

1079

1080 Figure 8: (a) Multibeam bathymetric map of scars S3 and S5, showing location of cores 

1081 CU12_01, 02 and 03. (b) Sparker profile 6 displaying chaotic seismic facies at the location of 

1082 cores CU12_01 and CU12_03. Location of profile shown in figure a.

1083

1084 Figure 9: (a) Slope gradient map of channel C4. (b) Sparker profile T1 intersecting the upslope 

1085 section of depression C4. Location of profile shown in figure a. (c) Topographic profile across 

1086 depression C4. Location of profile shown in figure a. (d) ROV image of steep carbonate outcrops. 

1087 Location of image is shown in figure a.

1088

1089 Figure 10: Sparker profile 2 intersecting the mound located along the northern flank of 

1090 depression C4. Location of profile in figure 9a.

1091

1092 Figure 11: (a) Multibeam bathymetry map of elongate ridge along the outer Malta Plateau. 

1093 Location of figure is shown in figure 3. (b) Sparker profile 3 intersecting the northern section of 

1094 the ridge. Profile shows a strong reflector that separates an upper unit of sub-parallel, convex 

1095 upward reflectors (facies 2B) from acoustically transparent facies (facies 3) below. Either side of 

1096 the ridge, the acoustically transparent facies appears vertically offset. Location of profile is 
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1097 shown in figure a. (c) Sparker profile 8 intersecting the southern section of the ridge. Profile 

1098 shows the ridge to be characterised by acoustically transparent facies (facies 3) that is vertically 

1099 offset along the western flank. Upslope of the ridge, the shallow stratigraphy comprises parallel 

1100 to sub-parallel reflections (facies 2A) that can be sub-divided into two sub-facies. The deeper of 

1101 these (facies 2A-2) is offset in the eastern part. Location of profile is shown in figure a. (d) 

1102 Sparker profile 6 intersecting scar S3 and the central section of the ridge. Location of profile is 

1103 shown in figure a. (e) ROV image of carbonate hardground. Location of image is shown in figure 

1104 a. (f) Dredged sample of carbonate hardground from ROV transect. Location of sample is shown 

1105 in figure a. 

1106

1107 Figure 12: Gravity core correlation panels from (a) the northern part of the study area, at channel 

1108 C4, (b) the central area, at scar S2, and (c) the southern area, at scar S5. (d) Correlation panel 

1109 across the three areas based on the three cores that were taken from undisturbed seafloor, i.e. 

1110 outside the influence of scar or channel. The soldi lines represent confident correlations and the 

1111 dashed lines possible correlations. Note (i) the amount of time “locked” in facies C1 in core 

1112 CU12_07 in panel (a), (ii) the lack of slide deposits in the cores from scar S2 in panel (b), (iii) the 

1113 relative stratigraphic positions of facies D and the facies E in panel (c), and (iv) the sharp 

1114 increase in density (and changes in the other properties) in core CU12_02 below the thin sandy 

1115 layer, which we interpret as a turbidite-draped erosional surface. For core locations see figure 3.

1116

1117 Figure 13: (a) Scanning electron microscope image of the ash from core CU12_01. (b) Total 

1118 Alkali Silica classification diagram (Le Bas et al., 1986) showing glass compositions of the 

1119 studied samples (in red) and glass compositions of the 122 BC tephra recovered in MS6 core in 
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1120 Augusta Bay, Ionian Sea (Smedile et al., 2011), Priolo Reserve site (OPR-S6 and OPR-S10 

1121 cores; (De Martini et al., 2010)) and from Etna flanks (122 BC glass) for comparison. Dashed 

1122 line includes the composition of Etna volcanics (Corsaro and Pompilio, 2004).

1123

1124 Figure 14: (a-d) Plots of undrained shear strength (Cu) data from vane shear testing against depth 

1125 down core (below seafloor) for cores CU12_01, 02, 07 and 10. (e) Plot for data from all these 

1126 cores (excluding anomalously high values of undrained shear strength (>10 kPa) from core 

1127 CU12_02) clearly indicates an increase of shear strength with depth and an average strength

1128 increase rate of 2.37 kPa/m.

1129

1130 Figure 15: (a) Regression curve for analysis of pseudostatic slope stability indicating required 

1131 seismic coefficient to reduce the factor of safety for the slope to 1.0. (b) Seismic hazard curve for 

1132 the landslide site from model available at 

1133 http://www.efehr.org:8080/jetspeed/portal/HazardMaps.psml. 
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