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Abstract 23	
  

The efficiency of the ocean’s biological carbon pump (BCPeff – here the product of particle 24	
  

export and transfer efficiencies) plays a key role in the air-sea partitioning of CO2.  Despite 25	
  

its importance in the global carbon cycle, the biological processes that control BCPeff are 26	
  

poorly known. We investigate the potential role that zooplankton play in the biological 27	
  

carbon pump using both in situ observations and model output. Observed and modelled 28	
  

estimates of fast, slow and total sinking fluxes are presented from three oceanic sites: the 29	
  

Atlantic sector of the Southern Ocean, the temperate North Atlantic and the equatorial Pacific 30	
  

oxygen minimum zone (OMZ).  We find that observed particle export efficiency is inversely 31	
  

related to primary production likely due to zooplankton grazing, in direct contrast to the 32	
  

model estimates.  The model and observations show strongest agreement in remineralization 33	
  

coefficients and BCPeff at the OMZ site where zooplankton processing of particles in the 34	
  

mesopelagic zone is thought to be low.  As the model has limited representation of 35	
  

zooplankton-mediated remineralization processes, we suggest that these results point to the 36	
  

importance of zooplankton in setting BCPeff, including particle grazing and fragmentation, 37	
  

and the effect of diel vertical migration.  We suggest that improving parameterizations of 38	
  

zooplankton processes may increase the fidelity of biogeochemical model estimates of the 39	
  

biological carbon pump. Future changes in climate such as the expansion of OMZs may 40	
  

decrease the role of zooplankton in the biological carbon pump globally, hence increasing its 41	
  

efficiency. 42	
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1. Introduction 48	
  

 49	
  

The biological carbon pump plays an important role in regulating atmospheric carbon dioxide 50	
  

levels (Kwon et al., 2009; Parekh et al., 2006). Phytoplankton in the surface ocean convert 51	
  

inorganic carbon during photosynthesis to particulate organic carbon (POC), a fraction of 52	
  

which is then exported out of the upper ocean. As particles sink through the interior ocean 53	
  

they are subject to remineralization by heterotrophs, such that only a small proportion of 54	
  

surface produced POC reaches the deep ocean (Martin et al. 1987). The efficiency of the 55	
  

biological carbon pump (BCPeff; defined as the proportion of surface primary production that 56	
  

is transferred to the deep ocean (Buesseler and Boyd, 2009) therefore affects the air-sea 57	
  

partitioning of CO2 (Kwon et al., 2009). Greater understanding on the controls of this term 58	
  

may consequently result in more accurate assessments of the BCP’s role in the global carbon 59	
  

cycle. 60	
  

 61	
  

One approach to determine BCPeff over long time scales (millennia) is by assessing the 62	
  

relative proportions of preformed and regenerated nutrients, i.e. the fraction of upwelled 63	
  

nutrients that is removed from surface waters by biological uptake (Hilting et al., 2008). 64	
  

However to assess BCPeff over much shorter timescales (days to weeks) we use the 65	
  

definition of Buesseler & Boyd (2009) where BCPeff is the product of particle export 66	
  

efficiency (PEeff, the ratio of exported flux to mixed layer primary production) and transfer 67	
  

efficiency (Teff, the ratio of deep flux to exported flux). Using these two parameters together 68	
  

allows a more in-depth analysis of the biological processes involved and thus the assessment 69	
  

of the role of zooplankton in setting BCPeff.  Additionally the attenuation coefficients 70	
  

Martin’s b (Martin et al. 1987) and the remineralization length scale z* (Boyd and Trull, 71	
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2007) are useful to quantify how much exported POC is remineralized in the mesopelagic 72	
  

zone.  73	
  

 74	
  

PEeff varies proportionally to primary production, although uncertainty exists as to whether 75	
  

the relationship is inverse or positive (Aksnes and Wassmann, 1993; Cavan et al., 2015; 76	
  

Henson et al., 2015; Laws et al., 2000; Maiti et al., 2013; Le Moigne et al., 2016). Potential 77	
  

controls on PEeff include temperature (Henson et al., 2015; Laws et al., 2000), zooplankton 78	
  

grazing (Cavan et al., 2015), microbial cycling (Le Moigne et al., 2016), mineral ballasting 79	
  

(Armstrong et al., 2002; François et al., 2002; Le Moigne et al., 2012) or large export of 80	
  

dissolved organic carbon (Maiti et al., 2013). Teff and POC attenuation coefficients describe 81	
  

how much of the exported POC reaches the deep ocean and how much of it is remineralized. 82	
  

Essentially the attenuation of POC with depth is determined by the sinking rates of particles 83	
  

and how rapidly the POC is turned over (Boyd and Trull, 2007). However, these factors 84	
  

themselves are controlled by various other processes such as: ballasting by minerals 85	
  

(François et al., 2002; Le Moigne et al., 2012), epipelagic community structure (Lam et al., 86	
  

2011), temperature (Marsay et al., 2015), lability of the particles (Keil et al., 2016) and 87	
  

zooplankton diel vertical migration (Cavan et al., 2015). Therefore it is unlikely that any 88	
  

single factor controls BCPeff. 89	
  

 90	
  

The role of zooplankton in controlling the efficiency of the BCP is often overlooked, with 91	
  

greater focus on factors such as biominerals for ballasting (De La Rocha and Passow, 2007) 92	
  

or microbial respiration (Herndl and Reinthaler, 2013). Nevertheless zooplankton have the 93	
  

potential to significantly impact the biological carbon pump as they can consume and 94	
  

completely transform particles (Lampitt et al., 1990). Grazing by zooplankton results in POC 95	
  

either passing through the gut and being egested as a fecal pellet, being respired as CO2 or 96	
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fragmented into smaller particles through sloppy feeding (Lampitt et al., 1990). Further, 97	
  

zooplankton can undergo diel vertical migration, feeding on particles at night in the surface 98	
  

and egesting them at depth during the day (Wilson et al., 2013). Consequently a significant 99	
  

proportion of POC may escape remineralization in the upper mesopelagic zone (Cavan et al., 100	
  

2015), where recycling of POC is most intense (Martin et al. 1987). 101	
  

 102	
  

In this study we combine observations (made using Marine Snow Catchers, MSCs) and 103	
  

model output to investigate the role of zooplankton in setting the efficiency of the biological 104	
  

carbon pump in three different oceanic regions: the Atlantic sector of the Southern Ocean 105	
  

(SO), the Porcupine Abyssal Plain (PAP) site in the temperate North Atlantic and the 106	
  

Equatorial Tropical North Pacific (ETNP) oxygen minimum zone. The ecosystem model 107	
  

used here, MEDUSA (Yool et al., 2013), was chosen as it separates particle fluxes into slow 108	
  

and fast sinking groups. Additionally the only interactions of zooplankton with particles in 109	
  

MEDUSA are through the production of particles (fecal pellets) and by grazing on slow 110	
  

sinking particles only.  Here we compare various indices of BCPeff between the observations 111	
  

and model to infer the role of zooplankton in controlling BCPeff. 112	
  

 113	
  

2. Methods 114	
  

2.1 Site description 115	
  

Three very different sites were chosen in this study: the Atlantic sector of the Southern Ocean 116	
  

Ocean (SO, 45 – 65 °S, 20 – 70 °W), the Porcupine Abyssal Plain (PAP) site in the temperate 117	
  

North Atlantic (49 °N, 17 °W) and the Equatorial Tropical North Pacific (ETNP) oxygen 118	
  

minimum zone (13 °N, 91 °W) (Fig. 1). The SO accounts for ~ 20 % of the global ocean CO2 119	
  

uptake (Park et al., 2010; Takahashi et al., 2002) and is a large high-nutrient-low-chlorophyll 120	
  

region, in part due to limited iron availability (Martin, 1990). Nevertheless, iron from oceanic 121	
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islands and melting sea ice can cause intense phytoplankton blooms, which may lead to high 122	
  

POC export (Pollard et al., 2009). In the temperate North Atlantic seasonality is high, with 123	
  

phytoplankton blooms occurring in spring and summer (Lampitt et al., 2001). The region 124	
  

contributes disproportionally to global export, accounting for 5 – 18 % of the annual global 125	
  

export (Sanders et al., 2014). In the ETNP region a strong oxygen minimum (OMZ) persists 126	
  

where, between 50 and 1000 m depth, dissolved oxygen concentration can fall below 2 µmol 127	
  

kg-1 (Paulmier and Ruiz-Pino, 2009). In OMZs the low oxygen concentrations may lead to a 128	
  

high transfer efficiency of POC flux (Devol and Hartnett, 2001; Hartnett et al., 1998; Keil et 129	
  

al., 2016; Van Mooy et al., 2002). 130	
  

 131	
  

2.2 Observations 132	
  

Particles were collected using Marine Snow Catchers (MSCs) (Riley et al., 2012) from the 133	
  

three oceanic sites as shown in Fig. 1. In total 27 stations were sampled, 18 in the SO, 5 at 134	
  

PAP and 4 in the ETNP (Table S1). MSCs have the advantage of being able to separate 135	
  

particles intact into two groups dependent on their sinking rate, fast (> 20 m d-1) or slow (< 136	
  

20 m d-1). MSCs were deployed below the mixed layer depth (MLD), which was determined 137	
  

as the depth with the steepest gradient of salinity and temperature, and usually occurred 138	
  

between 20 and 70 m (Table S1). The shallowest MSC was deployed 10 m below the MLD 139	
  

and another 100 m deeper than this for the Southern Ocean (Cavan et al., 2015) and the PAP 140	
  

site. In the ETNP MSCs were also deployed deeper into the water column to a maximum 141	
  

depth of 220 m. 142	
  

 143	
  

Fast and slow sinking particles were collected from the MSC following the protocol by Riley 144	
  

et al. (Riley et al., 2012). Images of fast sinking particles were taken to estimate the 145	
  

equivalent spherical diameter (ESD) of the particles and ESD converted to POC mass via 146	
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conversion factors (Alldredge, 1998; Cavan et al., 2015). Slow sinking and suspended 147	
  

particles were filtered onto ashed (400 °C, overnight) GF/F filters and run in a HNC 148	
  

elemental analyser to determine POC mass. Sinking rates were estimated for fast sinking 149	
  

particles in the SO and at PAP by placing particles into a measuring cylinder filled with in 150	
  

situ sea water and timing how long it took each particle to pass a discrete point (Cavan et al., 151	
  

2015). At the ETNP a FlowCAM was used to measure fast particle sinking rates (Bach et al., 152	
  

2012). All slow sinking particle rates were calculated using the SETCOL method (Bienfang, 153	
  

1981). Fluxes (mg C m-2 d-1) were calculated by dividing the mass of POC (mg) by the area 154	
  

of the MSCs (m2) and the sinking time of the particles (d) (Cavan et al., 2015). Primary 155	
  

production (PP) was estimated from 8-day satellite-derived data using the Vertically 156	
  

Generalised Productivity Model (Behrenfeld and Falkowski, 1997) applied to MODIS data. 157	
  

 158	
  

2.3 Model output 159	
  

The ecosystem model MEDUSA (Yool et al., 2013) was used for this study as it distinguishes 160	
  

detrital fluxes in two pools, fast and slow sinking. In MEDUSA, fast sinking particles are 161	
  

assumed to sink more rapidly than the time-step of the model and are remineralized 162	
  

instantaneously at all vertical levels with the flux profile determined by a ballast model 163	
  

(Armstrong et al., 2002). Slow sinking particles sink at 3 m d-1 and remineralization is 164	
  

temperature dependent, with zooplankton grazing on slow sinking particles but not on the fast 165	
  

sinking particles. Zooplankton DVM is not parameterised. Primary production is modelled as 166	
  

non-diatom and diatom production, which is summed to give the total depth-integrated 167	
  

primary production. The model was run in hindcast mode at ¼ ° spatial resolution and output 168	
  

saved with a 5-day temporal resolution. The model output was extracted at the same locations 169	
  

and times as the observations were made and averaged over 12 years (1994 - 2006) to give 170	
  

the climatological seasonal cycle. The model outputs fluxes of particulate organic nitrogen 171	
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(mg N m-2 d-1) which are converted to POC (mg C m-2 d-1) using the Redfield ratio (Redfield, 172	
  

1934). 173	
  

 174	
  

2.4 Data manipulation 175	
  

For both the observations and the model output the fast and slow sinking fluxes were 176	
  

summed to calculate the total sinking POC flux. Model output was available at fixed depths 177	
  

of 100 and 200 m, which introduces an offset with our at-sea observations (Table S1). This 178	
  

study is therefore assessing BCPeff in the upper ocean only. Parameters calculated to test the 179	
  

efficiency of the biological carbon pump were the percentage contribution of fast and slow 180	
  

sinking particles to the total sinking flux, particle export efficiency (PEeff), the attenuation of 181	
  

flux with depth expressed as b and z* and transfer efficiency (Teff). 182	
  

 183	
  

PEeff is the proportion of surface produced primary production (PP) that is exported out of 184	
  

the mixed layer (observations) or at 100 m (model) and is calculated by dividing the exported 185	
  

flux by PP. To estimate the attenuation of flux over the upper mesopelagic zone the 186	
  

exponents b (Martin et al. 1987) and z* (Buesseler and Boyd, 2009) were calculated, where 187	
  

fluxes at the export depth and 100 m below were used for observations and fluxes at 100 and 188	
  

200 m from the model. The b exponent is dimensionless and generally ranges from 0 to 1.5 189	
  

with low values indicating low attenuation, thus low remineralization, and higher values 190	
  

representing high attenuation and remineralization. The z* (m) exponent is the 191	
  

remineralization length scale, or the depth by which only 37 % of the reference flux (here at 192	
  

the export depth) remains. Thus a large z* suggests low attenuation and low remineralization 193	
  

of the particle flux. The Teff is another parameter that represents how much flux reaches the 194	
  

deeper ocean and hence is not remineralized. This is simply calculated by dividing the deep 195	
  

flux (125 – 220 m in observations and 200 m in model) by the export flux. All indices are 196	
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dimensionless apart from the proportion of slow and fast sinking flux which is expressed as a 197	
  

percentage and z* which is in metres. 198	
  

 199	
  

3. Results and Discussion 200	
  

3.1 Comparison of fluxes 201	
  

We compare model output with satellite-derived estimates of primary production (PP) POC 202	
  

export and deep (150 - 300 m) fluxes in the upper ocean (Fig. S1). Overall, modelled PP 203	
  

compares well compared to satellite-derived estimates with a strong positive correlation 204	
  

between the two (p < 0.001, r2 = 0.84, Fig. S1 a), although the model slightly overestimates 205	
  

PP. When comparing the total sinking export fluxes and total deep fluxes, most points lie 206	
  

below the 1:1 line, suggesting that the model is overestimating POC flux (Figs. S1 b & c). 207	
  

 208	
  

3.2 Export production 209	
  

The traditional view of export production is that as PP increases, so does POC export out of 210	
  

the mixed layer (Laws et al., 2000). However recent analyses from the Southern Ocean (SO) 211	
  

observe the opposite relationship, that an inverse relationship between PEeff and PP exists 212	
  

(Cavan et al., 2015; Maiti et al., 2013; Le Moigne et al., 2016). We find that for fast sinking 213	
  

particles the model shows PEeff increases with PP (Fig. 2 a) according to a power law 214	
  

function (p < 0.001, r2 = 0.6) while the observations show an inverse relationship (logarithmic 215	
  

function, p < 0.001, r2 = 0.4), even when including sites outside of the SO. 216	
  

 217	
  

However for the slow sinking particles the model shows an inverse relationship between PP 218	
  

and PEeff, similar to that seen in the observations for the fast sinking particles (power law 219	
  

function, p<0.001, r2=0.97, Fig. 2 b). Potential reasons for an inverse relationship between PP 220	
  

and PEeff include the temporal decoupling between primary production and export (Salter et 221	
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al., 2007), seasonal dynamics of the zooplankton community (Tarling et al., 2004) or grazing 222	
  

by zooplankton (Cavan et al., 2015; Maiti et al., 2013; Le Moigne et al., 2016). As previously 223	
  

mentioned one of the differences between the fast and slow sinking detrital pools in the 224	
  

model is that slow sinking particles are grazed on by zooplankton and fast sinking are not. 225	
  

Thus when zooplankton graze on particles in the model an inverse relationship between PEeff 226	
  

and PP exists and when zooplankton grazing is not accounted for, the opposite occurs. This 227	
  

highlights the importance of zooplankton in determining the efficiency of the BCP. 228	
  

 229	
  

The observed slow sinking PEeff were generally very low (< 0.05) and thus had little 230	
  

influence on the PEeff for total sinking POC flux, which also had a non-linear inverse 231	
  

relationship with PP (p < 0.001, r2 = 0.4, Fig. 2 c). It is important to note that high values of 232	
  

PP (> 1000 mg C m-2 d-1) were only present at PAP, and that the SO had the greatest range of 233	
  

PP, so drives a large part of the inverse relationship. Therefore measuring PEeff in other 234	
  

regions with large PP ranges is fundamental to see if this relationship holds outside the sites 235	
  

from this study. 236	
  

 237	
  

3.3 Contribution of fast and slow sinking POC fluxes 238	
  

Particles naturally sink at different rates, with one operational definition being that slow 239	
  

sinking particles sink at < 20 m d-1 and fast sinking particles at > 20 m d-1 (Riley et al., 2012). 240	
  

Most sediment traps cannot separately measure fluxes of fast and slow sinking particles and 241	
  

are unlikely to capture much of the slow sinking flux due to their deployment in the lower 242	
  

mesopelagic and bathypelagic zones (Buesseler et al., 2007; Lampitt et al., 2008). Slow 243	
  

sinking particles sink too slowly and are remineralized too quickly to reach the deep ocean 244	
  

unless they are formed there. Hence the MSC is a useful tool to analyse the two sinking 245	
  

fluxes separately. 246	
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 247	
  

In both the model and the observations, the slow sinking flux was consistently smaller than 248	
  

the fast sinking flux and generally only contributed < 40 % of the total flux (Fig. S2). 249	
  

However in the model the proportion of slow sinking flux always decreases with depth (Figs. 250	
  

S2 a-c) whereas observations at the PAP site showed the proportion of slow sinking fluxes 251	
  

increased with depth (Figs. S2 e). Increases in slow sinking particles with depth must be from 252	
  

the fragmentation of larger fast sinking particles either abiotically (Alldredge et al., 1990) or 253	
  

from sloppy feeding by zooplankton (Lampitt et al., 1990). Sloppy feeding results in 254	
  

zooplankton fragmenting particles into smaller particles resulting in a larger surface area to 255	
  

volume ratio increasing colonization by microbes and thus remineralization (Mayor et al., 256	
  

2014). Zooplankton do not graze on fast sinking particles in the model hence neither sloppy 257	
  

feeding nor abiotic fragmentation are represented (Yool et al., 2013). This likely explains 258	
  

why the contribution of slow sinking particles can only decrease with depth in the model, 259	
  

unlike the observations in which slow sinking particles may increase with depth. 260	
  

 261	
  

3.4 Attenuation of POC with depth 262	
  

The attenuation of POC through the water column describes how quickly POC fluxes are 263	
  

remineralized, with a high attenuation indicating high POC remineralization. We used the 264	
  

parameters b (Martin et al. 1987) and z* (Boyd and Trull, 2007) to describe the attenuation of 265	
  

flux with depth. A recent study suggests POC remineralization is temperature dependent 266	
  

(Marsay et al., 2015) hence we compared the attenuation coefficients with temperature. 267	
  

Calculated mean b and z* values for total (fast + slow) sinking POC from the model were 268	
  

similar at all sites (Figs. 3 a & b) with no correspondence with temperature, even though slow 269	
  

sinking particles are remineralized as a function of temperature in the model. Hence slow 270	
  

sinking b and z* increase and decrease respectively with temperature (Table S2). The 271	
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observations (for total sinking particles) show a non-linear relationship with temperature that 272	
  

deviates away from the Marsay et al. (Marsay et al., 2015) regression, such that 273	
  

remineralization increases (high attenuation) at temperatures greater than 13 °C. The 274	
  

variability is much greater in the observations than the model, a feature that is consistent 275	
  

across all indices (3 a & b). Apart from at the ETNP where the model and observations agree, 276	
  

the observations consistently show slower POC attenuation compared to the model. The 277	
  

active transfer of POC to depth via diel vertical migration (DVM) of zooplankton (Wilson et 278	
  

al., 2008) may contribute to the observed slower rates of POC attenuation. Cavan et al. 2015 279	
  

showed that high Southern Ocean b values were a result of DVM, a process not 280	
  

parameterized in the MEDUSA model. Although active transfer via DVM is a complex 281	
  

process that may be difficult to model, it is potentially important to include in 282	
  

biogeochemical models, as it has been shown to account for 27 % of the total flux in the 283	
  

North Atlantic (Hansen and Visser, 2016).  284	
  

 285	
  

The strong alignment of the modelled and observed attenuation at the ETNP is likely because 286	
  

of the lack of particle processing by zooplankton, by design in the model and naturally in 287	
  

oxygen minimum zones (OMZs). The daytime depth of vertically migrating zooplankton is 288	
  

reduced in OMZs due to low dissolved oxygen concentrations (Bianchi et al., 2013), which at 289	
  

the ETNP reach < 2 µmol kg-1 by 120 m. Further the population of zooplankton below this 290	
  

depth is almost non-existent in OMZs (Wishner et al., 2013) and those that are there feed on 291	
  

particles at the surface, not in the OMZ core (Williams et al., 2014). Thus zooplankton 292	
  

consumption and manipulation of particles is greatly reduced in OMZs and is non-existent in 293	
  

the MEDUSA model. 294	
  

 295	
  

3.5 Efficiency of the biological carbon pump 296	
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To calculate BCPeff (proportion of mixed layer primary production found at depth, here 150 -297	
  

300 m) we replicated the BCPeff plots of Buesseler & Boyd (2009) by plotting PEeff against 298	
  

transfer efficiency (Teff) for fast, slow and total sinking particles (Fig. 4). According to the 299	
  

observations, the SO had the highest total sinking BCPeff at 40 %, similar to the maximum 300	
  

observed by Buesseler & Boyd (2009) in the North Atlantic. The SO observations showed a 301	
  

higher BCPeff than the model by about 10 % across all sinking fluxes (Fig. 4). This 302	
  

difference was largely due to a very high Teff (> 1) estimated from observations, which 303	
  

implies fluxes increased at depth. This could be due to active fluxes by vertically migrating 304	
  

zooplankton, possibly krill (Cavan et al., 2015). Active fluxes could account for high 305	
  

observed Teff in the slow sinking particles, as well as fragmentation of larger particles at 306	
  

depth (Mayor et al., 2014). 307	
  

 308	
  

Even though the PAP site had the highest PP, the BCPeff was lowest (< 15 %). There were 309	
  

also large differences (up to 15 %) in the BCPeff between the model and the observations at 310	
  

the PAP site driven by large discrepancies in PEeff. Observations of fast sinking PEeff were 311	
  

much lower than predicted by the model (Fig. 4 a), which we suggest could result from active 312	
  

grazing and fragmentation of fast sinking particles by zooplankton. Teff of fast sinking 313	
  

particles were low and consistent with model predictions, suggesting that active transfer via 314	
  

DVM (not parameterized in the model) plays a relatively minor role at the PAP site. 315	
  

Therefore mineral ballasting (Armstrong et al., 2002), which drives Teff in the model, may be 316	
  

the main driver of Teff at PAP. The modelled and observed slow sinking BCPeff were similar 317	
  

at PAP (~ 1 %) despite a large difference in Teff (Fig. 4 b). Fragmentation of fast to slow 318	
  

sinking particles (not included in the model) at depth could explain the difference in slow 319	
  

sinking Teff. 320	
  

 321	
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Finally the BCPeff for the ETNP is very similar between the model and observations for all 322	
  

sinking fluxes (Fig. 4). The similarity in the BCPeff here echoes the similarity shown for 323	
  

POC attenuation with depth. This reiterates our hypothesis that the model and observations 324	
  

agree on BCPeff only in areas of the global ocean where processing of particles by 325	
  

zooplankton is reduced due to very low dissolved oxygen concentrations. 326	
  

 327	
  

4. Conclusions 328	
  

We have used observations and model output from the upper mesopelagic zone in 3 329	
  

contrasting oceanic regions to assess the influence of zooplankton on the efficiency of the 330	
  

biological carbon pump. We separately collected in situ fast and slow sinking particles, which 331	
  

are also separated into discrete classes in the MEDUSA model. The model has limited 332	
  

processing of particles by zooplankton with only slow sinking detrital POC being grazed 333	
  

upon. 334	
  

 335	
  

Our results highlight the crucial role that zooplankton play in regulating the efficiency of the 336	
  

biological carbon pump through 1) controlling particle export by grazing, 2) fragmenting 337	
  

large, fast sinking particles into smaller, slower sinking particles and 3) active transfer of 338	
  

POC to depth via diel vertical migration. Comparisons of the model and observations in an 339	
  

oxygen minimum zone provide strong evidence of the importance of zooplankton in 340	
  

regulating the BCP. Here extremely low dissolved oxygen concentrations at depth reduce the 341	
  

abundance and metabolism of zooplankton in the mid-water column. Thus the ability of 342	
  

zooplankton to degrade or repackage particles is vastly reduced in OMZs, and as such it is 343	
  

here that the model, with limited zooplankton interaction with particles, shows the strongest 344	
  

agreement with observations. 345	
  

 346	
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We recommend that grazing on large, fast sinking particles and the fragmentation of fast to 347	
  

slow sinking particles (either via zooplankton or abiotically) is introduced into global 348	
  

biogeochemical models, with the aim of also incorporating active transfer. Future changes in 349	
  

climate such as the expansion of OMZs may decrease the role of zooplankton in the 350	
  

biological carbon pump globally, increasing its efficiency and hence forming a positive 351	
  

climate feedback. 352	
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 518	
  

Fig. 1. Map showing study areas. Blue rectangle is location of sites in the Southern Ocean, 519	
  

red is the North Atlantic Porcupine Abyssal Plain and orange the equatorial north Pacific 520	
  

oxygen minimum zone. 521	
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Fig. 2. Primary production against particle export efficiency (PEeff) for (a) fast sinking, (b) 543	
  

slow sinking and (c) total sinking particles. Blue circles are Southern Ocean, red squares PAP 544	
  

and orange triangles equatorial Pacific. Filled circles and solid black lines show model output 545	
  

and open circles and dashed lines are observations. All fitted lines are statistically significant 546	
  

to at least the 95 % level (see text for details). 547	
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Fig. 3. Total sinking POC attenuation coefficients (a) b and (b) z* with temperature. Blue 567	
  

circles are Southern Ocean, red squares PAP and orange triangles equatorial Pacific. Filled 568	
  

points show model output and open points are observations. Solid line is Marsay et al. (2015) 569	
  

regression. Error bars are standard error of the mean and only plotted on the observations as 570	
  

the error is too small in the model. See Table S2 for attenuation coefficients of fast and slow 571	
  

sinking particles.  572	
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Fig. 4. Efficiency of the biological carbon pump for (a) fast, (b) slow and (c) total sinking 593	
  

particles. Particle export efficiency (PEeff) is plotted against transfer efficiency (Teff). 594	
  

Contours represent BCPeff (proportion of primary production at depth). Blue circles are 595	
  

Southern Ocean, red squares PAP and orange triangles equatorial Pacific. Filled points show 596	
  

model output and open points are observations. 597	
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