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Stable (C and O) isotope data from carbonates are one of the most important methods used to infer genetic pro-
cesses in carbonatites. However despite their ubiquitous use in geological studies, it is suspected that carbonates
are susceptible to dissolution-reprecipitation and isotopic resetting, especially in shallow intrusions, andmay not
be the best records of either igneous or hydrothermal processes. Apatite, however, should be much less suscep-
tible to these resetting problems but has not been used for O isotope analysis. In this contribution, a novel bulk-
carbonatite method for the analysis of O isotopes in the apatite PO4 site demonstrates a more robust record of
stable isotope values. Analyses of apatite from five carbonatiteswithmagmatic textures establishes a preliminary
Primary Igneous Apatite (PIA) field of δ18O = +2.5 to +6.0‰ (VSMOW), comparable to Primary Igneous
Carbonatite (PIC) compositions from carbonates.
Carbonate and apatite stable isotope data are compared in 10 carbonatite samples from SongweHill, Malawi. Ap-
atite is heavy rare earth element (HREE) enriched at Songwe and, therefore, oxygen isotope analyses of thismin-
eral are ideal for understanding HREE-related mineralisation in carbonatites. Carbonate C and O isotope ratios
show a general trend, from early to late in the evolution, towards higher δ18O values (+7.8 to +26.7‰,
VSMOW), with a slight increase in δ13C (−4.6 to−0.1‰, VPDB). Oxygen isotope ratios from apatite show a con-
trary trend, decreasing from a PIA field towards more negative values (+2.5 to−0.7‰, VSMOW). The contrast-
ing results are interpreted as the product of the different minerals recording fluid interaction at different
temperatures and compositions. Modelling indicates the possibility of both a CO2 rich fluid and mixing between
meteoric and deutericwaters. Amodel is proposedwhere brecciation leads to depressurisation and rapid apatite
precipitation. Subsequently, a convection cell develops from a carbonatite, interactingwith surroundingmeteoric
water. REE are likely to be transported in this convection cell and precipitate owing to decreasing salinity and/or
temperature.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Stable C and O isotope ratios are powerful tools for investigating the
evolution of carbonatites, allowing interpretation of either crystallisation
temperature (e.g. Haynes et al., 2003; Demény et al., 2004a) or fluid
PIA, Primary Igneous Apatite;
TREO, total rare earth oxides;
ent; ML-ON, silver phosphate
'Neil et al. (1994). See Methods

s, University of Exeter, Penryn

-Fendley).

. This is an open access article under
composition and evolution (e.g. Andersen, 1987; Santos and Clayton,
1995; Andrade et al., 1999; Zaitsev et al., 2002; Downes et al., 2014;
Moore et al., 2015; Trofanenko et al., 2016). Interpretation of most
carbonatite C and O isotope data revolves around a range of values for
‘Primary Igneous Carbonatites’ (PIC), where ‘primary’ denotes analyses
ofmaterial unaffected byweathering or byhydrothermal alteration. Pub-
lished values for PIC vary, the earliest documented being δ13C=−5.0 to
−8.0‰ and δ18O = +6.0 to +8.5 (vs VPDB and VSMOW, respectively,
throughout the manuscript), based on a similar range of values for
fresh samples frommultiple complexes (Taylor et al., 1967). Slightly dif-
ferent ranges have been suggested by later authors (Deines, 1989; Keller
andHoefs, 1995; Demény et al., 2004b; Jones et al., 2013) and in this con-
tribution the field of Jones et al. (2013) is utilised throughout. These
ranges and the effects of different processes on the C and O isotope
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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composition of carbonatites are summarised in Fig. 1. The processes
affecting the isotope composition include:

1) Rayleigh fractionation, where calcite crystallises in equilibrium
with H2O and CO2 from a fluid/magma, leading to increasing δ13C
and δ18O in subsequently crystallised carbonates (Deines, 1970,
1989; Ray and Ramesh, 2000)

2) Sediment incorporation, which typically increases δ13C and δ18O
(Demény and Harangi, 1996; Demény et al., 1998).

3) Degassing, attributed to carbonatites which have lower δ13C than PIC
through preferential partitioning of heavy carbon into the gas phase
(Suwa et al., 1975; Demény et al., 1994). Modelling indicates that
this can be accompanied by a corresponding decrease in δ18O values
which becomes more extreme as the temperature of degassing
decreases from 500 to 100 °C (Santos and Clayton, 1995).

4) Post-magmatic (secondary) alteration, involving interaction with
fluid after the carbonatite is emplaced in the crust. The nature and
effect of the interaction between carbonatite and a fluid is dictated
by the fluid composition, temperature and chemistry. Three fluids
with which a carbonatite may interact include:
a. Seawater, although this rarely influences carbonatites because they

are generally emplaced in stable continental locations (Woolley and
Kjarsgaard, 2008).

b. Deuteric water, which is assumed to have the same initial δ18O as
PIC. Exchangewith deutericwater can raise the δ18O of a carbonatite
withwhich it interacts, depending on temperature and composition.
If the fluid is around 100 °C then δ18O values of up to 25‰ can
be attained (Deines, 1989; Santos and Clayton, 1995; Ray and
Ramesh, 1999).

c. Meteoric water, which generally has a negative δ18O value (Hoefs,
2008), and a negligible carbon content (except where it has previ-
ously interactedwith sedimentary carbonate). Exchangewithmete-
oric water below approximately 200 °C results in increased δ18O in
the carbonatite, whereas exchange at temperatures higher than
this results in 18O depletion (Deines, 1989).

Post-magmatic fluids are an important factor in carbonatite-derived
rare earth element (REE) mineralisation, especially in near-surface
intrusions (Deines and Gold, 1973). Typically, REE mineralisation asso-
ciated with carbonatites is light (L)REE-rich, although heavy (H)REE-
rich exceptions are known (e.g. Wall et al., 2008; Broom-Fendley et al.,
2016a,b). Where LREE mineralisation has occurred, C and O isotope
ratios invariably extend beyond the PIC field, typically to higher δ18O
and δ13C values, generally associated with post-magmatic fluids
(Andrade et al., 1999; Zaitsev et al., 2002; Marks et al., 2009; Downes
et al., 2014; Moore et al., 2015; Trofanenko et al., 2016). This trend is
similarly followed at the HREE-enriched Lofdal carbonatite, Namibia
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Fig. 1. The principal controls on carbonatite O and C isotope ratios after Demény et al.
(2004b) and Deines (1989). Primary carbonatite fields from Taylor et al. (1967); Keller
and Hoefs (1995); Demény et al. (2004b) and Jones et al. (2013).
(Do Cabo, 2014). Most C and O analyses, however, are from carbonates
which can easily be re-crystallised, even at low temperatures (Malone
et al., 1996; Chakhmouradian et al., 2016). Where multiple fluids have
interacted with a carbonatite, isotopic resetting can occur and it may
not be possible to confidently associate the fluids leading to REE
mineralisation with carbonate C and O isotope ratios. For example, at
the Kangankunde carbonatite, Malawi, dolomite reaches δ18O values
in excess of 20‰ higher than in strontianite associated with REE
mineralisation,with the δ18O increase corresponding to ‘darker’mineral
grains representative of increased alteration (Wall, 2000).

Apatite is a relatively resistantmineral to dissolution-reprecipitation
and is effectively closed to isotopic diffusion below 550 °C (Cole and
Chakraborty, 2001). C and O isotopes can be measured in apatite be-
cause CO3

2− substitutes into the PO4 and F/Cl/OH site (Nadeau et al.,
1999; Pan and Fleet, 2002; Yi et al., 2013). However, for oxygen isotope
analysis, oxygen from the PO4 site is normally isolated as it is the least
susceptible to isotopic exchange (O'Neil et al., 1994; Vennemann et al.,
2002; Kohn and Cerling, 2002). Biogenic apatite is commonly analysed
for modern ecological studies (e.g. Kohn and Cerling, 2002) and for
palaeotemperature studies (e.g. using fish teeth, Kolodny et al., 1983;
Lécuyer et al., 2003; phosphorites, Shemesh et al., 1983, 1988; and
mammalian teeth, Grimes et al., 2008). There have been, however, few
studies of oxygen isotopes in phosphates from igneous or hydrothermal
rocks. These are restricted to granites (Farquhar et al., 1993; Burmann et
al., 2013), meteorites (Greenwood et al., 2003), pyromorphite deposits
(Burmann et al., 2013) and limited studies in carbonatites (Conway
and Taylor, 1969; Santos and Clayton, 1995; Tichomirowa et al., 2006).
The latter are from samples which are, texturally, primary magmatic
carbonatites and range in composition between δ18O = +4.2 to
+5.7‰ (Fig. 2). However, they are analyses of O from all the O sites in
apatite, rather than isolating PO4-O.

Despite the limited number of studies, apatite is a goodmineral to de-
termine the O-isotope composition of carbonatites. Advantages include
its ubiquity, apatite typically comprises 2–5% of a carbonatite (Hogarth,
1989); its occurrence throughout different stages of carbonatite evolu-
tion, although it is commonly an early-crystallising mineral (Kapustin,
1980); and, at some carbonatites, elevated HREE concentrations have
been identified in late-stage apatite (e.g. Songwe and Tundulu, Malawi;
Broom-Fendley et al., 2016a,b). It is, therefore, a mineral with good po-
tential for: (1) evaluating the changing O-isotope composition of
carbonatites during their evolution, including crystallisation from low
temperature, post-magmatic, fluids; and (2) understanding the role of
post-magmatic fluids for HREE-enriched apatite mineralisation. In
this contribution a method for analysing δ18O in the apatite PO4 site
(δ18OPO4) is developed and tested to expand our understanding of
these two points.

2. Sample selection and hypotheses

Samples were selected from five globally-distributed carbonatites
with magmatic crystallisation textures and from different paragenetic
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Fig. 2. Compilation of previous O-isotope analyses of apatite from Oka (Conway and
Taylor, 1969), Jacupiranga (Santos and Clayton, 1995), Tiksheozero, and Siilinjärvi
(Tichomirowa et al., 2006), plotted against an estimated PIA a range using the PIC range
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stages of the Songwe Hill carbonatite, Malawi. Samples from the prima-
rymagmatic carbonatiteswere selected to test the validity ofmeasuring
δ18OPO4 while samples from Songwe were used to attempt to finger-
print changing fluid conditions leading to HREE mineralisation.
18O (VSMOW)
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Fig. 3. Carbonatite C and O analyses from Oka (Deines, 1989; Haynes et al., 2003), St
Honoré (Deines, 1989), Jacupiranga (Morikiyo et al., 1990; Santos and Clayton, 1995;
Haynes et al., 2003), Fen (Andersen, 1987), and Kaiserstuhl (Hubberten et al., 1988).
Included for reference is the PIC field after Jones et al. (2013).
2.1. Primary magmatic carbonatites

Five samples from carbonatites with a magmatic crystallisation
texture were acquired from the following well-studied carbonatites:
Oka and St Honoré, Canada (Vallée and Dubuc, 1970; Gold et al., 1986;
Deines, 1970, 1989); Jacupiranga, Brazil (Melcher, 1966; Morbidelli et
al., 1995; Santos and Clayton, 1995; Costanzo et al., 2006); Fen, Norway
(Barth and Ramberg, 1966; Andersen, 1987), and Kaiserstuhl, Germany
(Wimmenauer, 1966; Hubberten et al., 1988; Keller, 1981; Table 1).
These samples were selected to understand (1) if δ18OPO4 values from
magmatic carbonatites fall within a limited field (PIA) and (2) to con-
firm that 18OPO4 is not susceptible to diffusion and isotopic resetting
when interacting with a hydrothermal fluid.

To test ifmagmatic carbonates fall in a limited δ18OPO4 range, samples
from Oka, Jacupiranga, Fen, and Kaiserstuhl were selected as previously
published carbonate C and O data for these carbonatites falls into, or
very close to, the PIC box (Fig. 3). Furthermore, apatite δ18O values
fromOka and Jacupiranga have previously been published. Isotope ratios
from apatite in these samples can be compared to calcite data (consid-
ered as PIC) to check if a range for PIA is comparable with apatite–calcite
fractionation factors (Fortier and Lüttge, 1995).

A sample from the St Honoré carbonatite, Canada, was analysed to
interpret if apatite δ18OPO4 is susceptible to diffusion when interacting
with a hydrothermal fluid. Oxygen isotope data from St Honoré spans
a wide range in carbonate δ18O (Fig. 3), interpreted as a result of inter-
action of different fluid stages (Deines, 1989). Cathodoluminescence
images of sample StH-2 (analysed in this study) clearly show two calcite
generations (cal-1 and cal-2), with cal-2 growing between cleavage
planes in biotite, and incurring intomagnetite grains (Fig. 4). These tex-
tures are indicative of interaction between the early carbonatite and a
late fluid. Apatite grains, however, appear petrographically unaffected.
Table 1
Sample details, mineralogy and stable isotope data.

Songwe samples

Sample Rock type Ap type Mineralogy Whole roc

% PO4

T0178 C4 4 ap, flr, cc, Ksp, xnt, syn 27
T0232 C2 3 ap, cc, ank, flr, MnO 2
T0250 C2 3 cc, gth, ap, ank
T0167 C3 3 ap, flr, ank, str, syn 12
T0202 C2 3 Ksp, ap, zrc, cc, gth 0.3
T0206 C1 1,2,(3) ap, zrc, cc, Ksp, py 1
T0218 C1 1,2 ap, zrc, cc, ank, gth, Ksp 0.2
T0225 C2 3 ap, cc, ank, flr, MnO 5
T0262 C2 3 ap, cc, Ksp, pyro, py, zrc 18
T0227 Mn-Fe-vein 3 ap, gth 26

Globally-distributed, primary magmatic carbonatite samples

Sample Location Mineralogy Whole rock

% PO4 δ

Fen 202/76 Fen, Norway cc, ap, mt, bt 3 +
Jaq-12 Jacupiranga, Brazil cc, ap 29 +
K-Stuhl Kaiserstuhl, Germany cc, ap, mt, bt 2 +
OKA-1 Oka, Canada cc, ap, mt, bt, pyro 3 +
StH-2 St Honoré, Canada cc, ap, mt, bt, pyro 10 +

Notes: cc, calcite; ap, apatite; mt, magnetite; bt, biotite; pyro, pyrochlore; zrc, zircon; ank, ank
strontianite; syn, synchysite-(Ce); xnt, xenotime-(Y). Refer to text for C1–4 stages.

a ‘ML-ON’ method.
b ‘Tooth’ method.
2.2. Songwe carbonatite

The Songwe Hill carbonatite is a Lower Cretaceous, shallowly
emplaced, multi-stage carbonatite located in the Chilwa Alkaline
Province, Malawi (Garson, 1965; Broom-Fendley et al., 2016c). It com-
prises four separate carbonatite stages (C1–4), progressively increasing
in REE content. Minor coarse-grained calcite carbonatite, present as
clasts, has a distinct magmatic texture (C1), but most carbonatite at
Songwe comprises fine-grained calcite carbonatite (C2) and ferroan
calcite carbonatite (C3) incorporating a significant component of fenite
clasts. Post-magmatic apatite-fluorite veins (C4) andMn-Fe veins cross-
cut carbonatite and represent late stages of mineralisation and fluid al-
teration. Songwe is predominantly a LREE deposit, with an established
(NI 43-101 compliant) probable mineral reserve of 8.4 million tonnes
at 1.6% total rare earth oxide (TREO) (Croll et al., 2014). However, a
particular feature is the substantial amount of theHREE contained in ap-
atite (Broom-Fendley et al., 2016b), which is planned to be a co-product
of the LREE ore mineral, synchysite-(Ce). Multiple apatite types can be
distinguished, texturally and geochemically, ranging from (Broom-
Fendley et al., 2016b; Fig. 5):
k Apatite separate Whole rock

δ18OPO4
a δ18OPO4

b δ18OPO4
a δ13CCO3 δ18OCO3

−0.7 −0.9 −0.1 +26.7
+2.9 −4.0 +19.8

−4.0 +19.7
+1.1 +1.6
+1.9 −3.7 +10.0
+2.2 (±0.25) −3.4 +7.8
+2.5 −4.3 +14.0
+1.7 (±0.17) −4.6 +12.7
+1.5 (±0.05) −2.5 +19.6
+3.0 +2.8

Apatite separate Whole rock

18OPO4
a δ18OPO4

b δ18OPO4
a δ13CCO3 δ18OCO3

4.1 +4.7 −4.8 +7.7
5.4 (±0.11) +5.2 −6.3 +8.0
5.0 −6.6 +8.2
5.3 +5.3 −4.5 +7.7
4.6 (±0.04) +4.4 −5.5 +16.4

erite; gth, goethite; Ksp, K-feldspar; py, pyrite; MnO, Mn-oxide minerals; flr, fluorite; str,
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1. Ap-1, early, ovoid, LREE-rich, magmatic apatite in C1 calcite
carbonatite (samples T0218 and T0206).

2. Ap-2, slightly HREE-enriched overgrowths on Ap-1 in calcite
carbonatite (rims on samples T0218 and T0206).

3. Ap-3, late, anhedral, HREE-rich, hydrothermal apatite in C2 calcite
carbonatite (samples T0202, T0232, T0225, T0250 and T0262); (C3)
ferroan calcite carbonatite (T0167); and Mn-Fe-veins (T0227).

4. Ap-4, late, anhedral, HREE-rich, hydrothermal apatite associated
with fluorite and minor xenotime from apatite-fluorite veins (C4)
(Sample T0178).

Late-stage, HREE-rich, apatite (ap-3 and ap-4) is likely to have
formed under hydrothermal conditions. Evidence for this includes
the cross-cutting nature of many of the apatite ‘stringers’ as well as
a negative yttrium anomaly in the apatite REE distribution (Broom-
Fendley et al., 2016b; Fig. 5B). Furthermore, apatite fluid-inclusion ho-
mogenisation temperatures are low, between 200 and 350 °C, with a
minimum crystallisation temperature of 160 °C constrained by fluid in-
clusions in fluorite. The late hydrothermal conditions at Songwe could
be from a fluid exsolved from the carbonatite or from interaction with
localmeteoric fluids. To understandmore about the, potentially unique,
formation of HREE-enriched apatite at Songwe, samples were selected
to test:

1. Are there variations in isotope ratios at Songwe, and can these be
related to Rayleigh fractionation, fluid alteration or sediment
assimilation?

2. Can the fluid inclusion data be tied with the isotope data to deter-
mine the conditions of the mineralising fluid?

3. Can carbonate and apatite data be reconciled into a general model of
fluid evolution?
A list of the samples and their mineralogy from Songwe is shown in
Table 1. Apatite-rich samples were selected from different paragenetic
stages and with different apatite REE distributions (Fig. 5). Samples
with fluid inclusion data were selected to tie together homogenisa-
tion temperatures, as a proxy for crystallisation temperatures, with
isotope data to obtain information on the isotopic composition of the
mineralising fluid.

3. Methods

3.1. Sample preparation

Whole-rock samples were prepared by crushing carbonatite rock
and grinding to a fine powder using a tungsten carbide TEMA mill.
Crystals of pure apatite were separated from a few carbonatites by
crushing, sieving, removing carbonate by dissolution in 20% acetic acid
at 50 °C for 72 h (a process known not to affect apatite δ18O values;
Koch et al., 1997; Garvie-Lok et al., 2004), and hand picking. The apatite
crystals were then ground in a steel mortar and pestle.

3.2. Carbonate δ13C and δ18O analyses

Whole rock powders were reacted offline in vacuo with 100% phos-
phoric acid at 16 °C for 1 h to ensure dissolution of calcite only (Dean et
al., 2015). The liberated CO2 was cryogenically purified before transfer
to a VG Optima dual-inlet mass spectrometer (VG Isotopes, Winsford,
England), and the calcite δ13C and δ18O values versus VSMOW deter-
mined by comparison with identically treated standards calibrated
against NBS 18 and NBS 19. Duplicate analyses of samples differed by
b±0.2‰ for δ13C and δ18O.

3.3. Silver phosphate preparation

Whole rock powders were first tested for approximate phosphate
content, and the presence of any arsenate. Samples were dissolved in
3 M HCl, pH adjusted to near neutral, and the solutions tested for phos-
phate using method 8048 with colorimeter DR/890, and arsenate using
an EZ Arsenic Test Kit (all HACH Company, Loveland, USA).

3.3.1. ML-ON method
Preparation of silver phosphate followed a method modified from

those of McLaughlin et al. (2004) and O'Neil et al. (1994) (ML-ON
method). For whole rock powders, 2 M HNO3 was added to enough
powder (based on the measured phosphate content) to yield at least
10 mg of silver phosphate; with the amount of acid being just sufficient
to ensure that the pHwas below 2 after all reactive carbonate had been
dissolved. For apatite separates, 2 mL 2 M HNO3 was added to 10 mg
of apatite. After adding an amount of water 10 times the volume of
acid used, the solution was separated, mixed with cation resin (2 mL
Dowex 50W-X8, NO3 form, per 10 mL solution), and shaken overnight.
The solution was separated by filtration, its pH raised to pH 2–3 with
drops of 5 M KOH, and 5 mL 1 MMgCl2·6H2O added, followed by a fur-
ther 1mL 5MKOH to form amagnesiumhydroxideflocculant. The next
stages, treating the resulting flocculant, and the formation and separa-
tion of cerium phosphate, broadly followed the method of McLaughlin
et al. (2004) up to the stage where the solution was separated from
the anion resin after removal of the cerium. Following O'Neil et al.
(1994) an ammoniacal silver nitrate solution was then added, with
ammonia in sufficient excess to raise the pH about 10, and the silver
phosphate crystals were then formed slowly by heating the alkaline
mixture (70 °C for several hours) until all phosphate was precipitated
and the final pH was neutral (near pH 7). Crystals were recovered by
filtering on 0.2 μm polycarbonate membranes, washed several times
with water, dried at 70 °C, weighed, and lightly ground/homogenised
in a steel mortar.
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3.3.2. Tooth enamel method
As a comparison, silver phosphate was prepared from a few whole

rock samples using a different method commonly employed for sepa-
rating phosphate from tooth enamel (Chenery et al., 2012 based on
O'Neil et al., 1994). This method is simpler, but not suited to samples
with low phosphate concentrations.
3.4. Phosphate δ18O analysis

Silver phosphate samples and standards were weighed to be-
tween 380 and 420 μg in silver capsules and placed in a Zero Blank
Autosampler (Costech Analytical Technologies, Valencia, USA) atop
a TC/EA (Thermal Conversion/Elemental Analyser; ThermoFinnigan,
Bremen, Germany) containing graphite at 1400 °C. Carbon monoxide,
produced by thermal decomposition of the phosphate in the presence
of the graphitic carbon, was passed in a stream of helium through a
Conflo-III into a Delta + XL mass spectrometer (both ThermoFinnigan,
Bremen, Germany) where the 18O/16O ratios were compared to those
of a reference gas and an internally run silver phosphate laboratory
standard. δ18O values versus VSMOW are based on calibrating the
laboratory standard against a silver phosphate reference material. In
the absence of an agreed international reference material we utilised
silver phosphate standard ‘B2207’ (supplied by Elemental Microanaly-
sis Ltd., Okehampton, England) which has been measured in an inter-
laboratory comparison study to have a certified δ18O value of 21.7‰
(VSMOW). All samples were run in triplicate, with a typical precision
of 1σ ≤ 0.3‰.
4. Results

4.1. Silver phosphate preparation

Arsenicwas not detected in any of thewhole rock powders, suggest-
ing that As levels were below 3 ppm. This figure is supported by
As levels in Songwe apatite, determined by LA ICP MS, which are
b20 ppm (Broom-Fendley et al., 2016b). We would, therefore, not
expect our results to be compromised by contamination with silver
arsenate (Burmann et al., 2013).

The δ18OPO4 of silver phosphate produced from different rock sam-
ples, using different methods, are shown in Table 1. Most analyses
were performed on silver phosphate prepared from whole rock pow-
ders using the ML-ON method, with duplicate preparations differing
by ≤±0.25‰. Close agreement was also found for the three whole
rock samples prepared using both the ML-ON and the tooth enamel
preparation methods (Table 1). For three rock samples there was no
significant difference between the δ18O values of silver phosphate pre-
pared from apatite separates compared with whole rock powder; and
only a 0.6‰ difference for a fourth sample. These comparisons in
Table 1 give confidence in the use of the ML-ON method.

4.2. Primary magmatic carbonatites

δ18O and δ13C values for carbonate from Jacupiranga, Kaiserstuhl,
Oka and Fen are between −4.5 to −6.6‰ δ13C and +7.6 to +8.2‰
δ18O; values which are broadly within the PIC field of Jones et al.
(2013) and similar to previous analyses from these carbonatites
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(Table 1; Fig. 3). Apatite from these carbonatites, based on analysis of
whole rocks and separates, has δ18OPO4 values between +4.1 and
+5.4‰. The St Honoré carbonatite has apatite δ18OPO4 values and
calcite δ13C values within these same ranges, but the δ18O value for
calcite (+16.4‰) is significantly higher than the range for PIC.

4.3. Songwe carbonatite

One of the C1 carbonatites from Songwe had calcite δ13C and δ18O
values within the PIC field (T0206, δ13C = −3.4‰, δ18O = +7.8‰).
All other samples, however, trended towards much higher δ18O values
(up to +26.7‰) and, for some samples, slightly higher δ13C values
(Fig. 6).

The δ18OPO4 values from Songwe range between +3.0 and −0.7‰
and are plotted in Fig. 7, arranged in approximate paragenetic order.
All of the samples have δ18OPO4 values lower than those for the primary
magmatic carbonatites above. The highest δ18OPO4 value at Songwewas
found for apatite in the Mn-Fe vein. For all other samples there appears
to be a trend for the δ18OPO4 value to decrease as the carbonatite
evolves.

5. Discussion

5.1. Towards a Primary Igneous Apatite field

If the post-magmatic isotope geochemistry of apatites is to be
understood, we must first establish the probable range of δ18OPO4

values for Primary Igneous Apatite (PIA). An estimate of the range of
PIA δ18O values can bemade by applying an apatite-calcite fractionation
to the accepted range of PIC δ18O values. Fortier and Lüttge's (1995)
experiments between 500 and 800 °C yielded a best fit fractionation
of:

1000 lnαap–cc ¼ −0:68− 1:60� 0:26ð Þ � 106T−2 ð1Þ

where αap–cc=(δ18Oap+1000)/(δ18Occ+1000)
If we assume a formation temperature of 600–700 °C (the range

established for the carbonatite solidus in a range of synthetic systems
(Wyllie, 1966; Jago and Gittins, 1991)), then Eq. (1) yields
1000lnαap–cc = −2.78 to −2.37. For a PIC δ18OCC range of +5.3 to
+8.4‰ (Jones et al., 2013), the range for PIA δ18Oap is calculated to be
+2.5 to +6.0‰.

Carbonatite samples from Oka, Jacupiranga, Tiksheozero, Siilinjärvi,
Kaiserstuhl and Fen can all be texturally considered as primary
carbonatites as they contain ovoid apatite forming at grain boundaries
and/or in flow-banded clusters (Kapustin, 1980; Le Bas, 1989; Hogarth,
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1989). Published values for apatite from Oka, Jacupiranga, Tiksheozero
and Siilinjärvi (Conway and Taylor, 1969; Santos and Clayton, 1995;
Tichomirowa et al., 2006; Fig. 2) all fall in the range δ18Oap = +4.2 to
+5.7‰ (n=20), and our new analyses for Oka, Jacupiranga, Kaiserstuhl
and Fen in the range δ18OPO4=+4.1 to+5.4‰. These values are within
the calculated PIA range, supporting the notion that it can be interpreted
in a similar manner to the PIC field. Using more restricted ranges for the
PIC field would accordingly narrow the PIA range. However, for this
current dataset we believe it is better to keep a wider range of +2.5 to
+6.0‰ until constrained by further data.
5.2. Is δ18OPO4 susceptible to diffusion and isotopic resetting when
interacting with a hydrothermal fluid?

Re-equilibration of minerals with subsequent fluids is a function of
crystal geometry and structure, solution chemistry, pressure and tem-
perature (Dodson, 1973; Cole and Chakraborty, 2001). While apatite
readily exchanges O at higher temperatures, especially along the
c-axis of the grain, it is relatively resistant to volume diffusion at lower
temperatures compared to calcite (Farver and Giletti, 1989; Cole and
Chakraborty, 2001). The apatite PO4 site is, therefore, not likely to be
susceptible to alteration from low-temperature fluids in carbonatites.
A good example of this is apatite from the St Honoré carbonatite.
Here, CL images show that the carbonatite has experienced at least
two carbonate crystallisation stages, with early, euhedral, calcite (cal-
1) overprinted by later anhedral carbonate(s) (cal-2) (Fig. 4). Apatite
forms at grain-boundaries of cal-1, suggesting both minerals formed
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in, or close to, equilibrium (Fig. 4). However, cal-2 forms along grain
boundaries and within biotite cleavage planes, indicating later forma-
tion, out of equilibrium with apatite and the other major minerals in
the sample. Oxygen isotope ratios from bulk carbonate analyses reach
high values, up to 23‰ in the literature (Deines, 1989) and 16.4‰ in
sample StH-2 (Fig. 3, Table 1). Such elevated δ18O values are interpreted
as representative of the later cal-2 stage recrystallising from interaction
with low-temperaturefluidswhich occur late in the carbonatite emplace-
ment (Deines, 1989). Apatite from St Honoré, however, shows little tex-
tural evidence of interaction with cal-2 and the low-temperature fluid
incursion. Its δ18OPO4 value falls into the PIA field, retaining the earlier,
magmatic, record of the sample, while the δ18O value from the carbonate
records subsequent re-equilibration with lower temperature fluids. This
is interpreted as evidence that apatite, once past its closure temperature,
provides a good record of the isotopic conditions at crystallisation. Thus,
any apatitewhich crystallised below 550 °C is likely to preserve the isoto-
pic conditions of the crystallising fluid, rather than any subsequent
fluid(s).

5.3. Using C and O isotopes to track the evolution of Songwe — carbonate
data

Songwe carbonate δ18O and δ13C data show a broadly positive rela-
tionship ranging from T0206, in the PIC field, towards T0178, samples
which are, respectively, early and late in the paragenesis of Songwe
(Fig. 5). This is a common trend in carbonatites, and has been observed
in carbonatites at Catalão (Santos and Clayton, 1995), Barro do Itapirapuã
(Andrade et al., 1999), Ondurakorume, Kalkfeld, Dicker Willem, Spitskop
(Horstmann and Verwoerd, 1997), Amba Dongar (Ray and Ramesh,
2006), Tamazeght (Marks et al., 2009), Lofdal (Do Cabo, 2014), Cummins
Range (Downes et al., 2014) and Wicheeda (Trofanenko et al., 2016).
These isotopic shifts could be caused by (Fig. 1): (1) sediment assimila-
tion, (2) Rayleigh fractionation, or (3) low temperature alteration. A num-
ber of other processes, such as degassing, can still affect the final isotopic
composition.

Sediment assimilation causes increased δ13C due to incorporation
of heavier carbon, from carbonate-bearing sediments, into water
interacting with carbonatite. This process is unlikely to increase δ13C
in samples from Songwe as the country rock is a mixture of granulite
and gneiss, with only very minor calc-silicate bands (up to a few cm)
(Garson, 1965). None of these calc-silicate bands are found in immedi-
ate proximity to the carbonatite. Thus, the average carbon concentration
in the country rock is low, and to cause large isotopic shifts through as-
similation, the δ13C ratio of the incorporated carbonwill have to be very
high. No carbon isotope data exist for marble bands from Malawi, but
values from the continuation of the Mozambique Belt, in Mozambique,
have ratios between −3.5 and −2.0‰ (Melezhik et al., 2008). Values
of δ13C from T0178 are higher and it seems highly unlikely that country
rock assimilation could cause the increased carbonatite carbon isotope
ratios.

Rayleigh fractionation of calcite from a fluid containing both CO2

and H2O leads to increased δ18O and δ13C. Models for this process
have been developed (Ray and Ramesh, 2000 and Santos and Clayton,
1995), and respective values for δ13C and δ18O for this process do not
usually reach higher than −2‰ and 12‰, respectively (Ray and
Ramesh, 2000). Thus, to reach the high δ18O in the Songwe carbonatites,
Rayleigh fractionation is, alone, an unlikely candidate. Furthermore, the
general trend of δ18O against δ13C caused by Rayleigh fractionation in
carbonatites is that of a positive correlation with a gradient of approxi-
mately 0.4 (Deines, 1989). This is a far higher gradient than observed in
the Songwe stable isotope data (Fig. 6).

Low temperature alteration is capable of much larger changes in
δ18O than Rayleigh fractionation and has been suggested as the cause
of high δ18O in many carbonatites. The role of low-temperature alter-
ation can be evaluated using models. Changes in C and O isotope ratios
during low-temperature fluid-rock interaction between calcite, H2O,
and CO2 can be defined as a function of two mass-balance equations
(Santos and Clayton, 1995; Ray and Ramesh, 1999):

δ13Cfinal
rock ¼

FC
RC

� �
δ13Cinitial

fluid þ ΔC
rock–fluid

� �
þ δ13Cinitial

rock

1þ FC
RC

� � ð2Þ

and:

δ18Ofinal
rock ¼

2rþ 2
3r

� �
FC
RC

� �
δ18Oinitial

fluid þ ΔO
rock–fluid

� �
þ δ18Oinitial

rock

1þ 2rþ 1
3r

� �
FC
RC

� � ð3Þ

where:

FC moles of carbon in the fluid
RC moles of carbon in the rock
ΔC

rock–fluid difference in carbon isotopes between the rock and thefluid
r molar ratio of CO2 to H2O in the fluid

and:

ΔO
rock–fluid ¼ 103 lnα18Occ–CO2

þ 103 ln 1þ 2rð Þ−103 ln 2rþα18OH2O–CO2

� � ð4Þ

where α18Occ–CO2
and α18OH2O–CO2

are fractionation factors between
calcite–CO2 and H2O–CO2, at a given temperature. Here, calcite is as-
sumed to represent a bulk carbonatite rock. Fractionation factors for cal-
cite–CO2 are taken from Chacko et al. (1991), while H2O–CO2 is taken
from Richet et al. (1977). Calculating Δrock–fluid

O using calcite-H2O frac-
tionation factors (following Santos and Clayton, 1995, and Demény
and Harangi, 1996), from Friedman and O'Neil (1977), results in a sim-
ilar model output (Supplementary Fig. 1).

These equations can be used to model the final isotopic composition
of carbonate, under certain fluid conditions, in a closed system. They
can only be used as a guide for interpretation as there are 6 unknowns:
δ18Orock

initial, δ13Crock
initial, δ18Ofluid

initial, δ13Cfluid
initial, temperature, and r. Some of

these unknowns can be reasonably assumed. Initial δ18O and δ13C is as-
sumed to be fromwithin the PICfield,while the fluid composition, if it is
magmatically derived, would have a composition in equilibrium with
the magma, but if it were meteoric, would have lower δ18O values.
Other assumptions cannot easily be made but the effects of different
temperatures and CO2/H2O ratios can be incorporated onto different
graphs and evaluated (see below).

Threemodels are presented in Fig. 8. The first two represent interac-
tion of a PIC with deuteric fluid and meteoric fluid. Deep crustal fluids
(e.g. metamorphic fluids) were discounted on the basis that the
metamorphic country rock around Songwe is predominantly dry, with
few hydrous mineral phases, and the shallow depth of intrusion at
Songwe (Broom-Fendley et al., 2016c). The initial isotope values for
the PIC (δ13Crock

initial, δ18Orock
initial) were chosen as δ18O = +6‰,

δ13C = −5‰ because these values lie within the centre of the PIC
field of Jones et al. (2013), and close to the values of T0206which is tex-
turally and isotopically the most primitive Songwe sample. For the
deuteric fluid, the assumed isotopic composition was the same PIC
values. The selected δ18O value for meteoric fluid was −5‰, approxi-
mating meteoric water from a palaeo-latitude of around −45°
(Bowen and Wilkinson, 2002; Bowen, 2010) which was the approxi-
mate position of Malawi at 130 Ma (Supplementary Fig. 2). A CO2/H2O
ratio (r) of 0.001, representing a fluid with a low CO2 activity, was
selected following Santos and Clayton (1995). A higher ratio of 1000,
representing a CO2-rich fluid, has also beenmodelled in Fig. 8C for com-
parison. Intermediate values of r, representing mixed CO2 and H2O,
cause steep changes in δ13C and small changes in δ18O, leading to
large δ13C increases not observed in the data. For reference, these effects
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are sketched onto Fig. 8. The isotopic ratios are modelled between 900
and 100 °C, spanning the most-likely temperature range of the system
with the lower limit constrained by a minimum temperature of 160 °C
from fluid-inclusion data (Broom-Fendley et al., 2016b). Three different
fluid/rock ratios (FC/RC) have been included in Fig. 8: 0.1, 1 and 5,
representing minor, moderate and complete alteration, respectively.

The models indicate that when deuteric water starts to cool below
400 °C, the δ18O values of the rock increase from the PIC field. For low
degrees of alteration (i.e. low F/R ratios), this is accompanied by negligi-
ble δ13C change, while at higher degrees of alteration modest changes
(up to approximately −2‰) in δ13C occur (Fig. 8A). Meteoric fluid
alteration above 200 °C leads to lower δ18O than PIC for all degrees of
alteration. At temperatures below 175 °C, δ18O increases to values
higher than the PIC field, accompanied by little δ13C change at low de-
grees of alteration, but higher δ13C with complete alteration (Fig. 8B).
A CO2-rich fluid, conversely, results in lower δ18O values of the rock, ac-
companied by decreasing δ13C above 200 °C and increasing δ13C at
lower temperatures. Increasing degrees of alteration lead to lower
δ18O values and more extreme variation in δ13C (Fig. 8C).

Based on the above models, it is clear that low temperature alter-
ation, from either deuteric or meteoric water, can cause large increases
in δ18O, while alteration from a CO2-richfluid leads tomoderately lower
δ18O values (Deines, 1989; Santos and Clayton, 1995; Ray and Ramesh,
1999; Fig. 8). It is clear that the model for a CO2-rich fluid does not best
represent the carbonate data, suggesting these values are caused by
alteration from a CO2-poor fluid of meteoric or deuteric origin. Deuteric
alteration at high temperatures causes minimal changes to the isotopic
ratios of the final carbonate while meteoric water at high temperature
can shift δ18O to lower values. It is important to note, however, that
these closed-system models represent only the extreme of what
can occur in carbonatites (i.e. 100% meteoric water or 100% deuteric
water). Furthermore, they do not represent open-system processes,
although these can be qualitatively assessed from interpretation of the
model output (see Section 5.5).

Low-temperature alteration also increases δ13C towards lower tem-
peratures. This is a function of increasing carbon isotope fractionation
between the carbon in the fluid (assumed to be a dissolved species)
and the precipitating carbonate mineral. At lower temperatures, and
at higher C concentration in the fluid, the effect of this fractionation is
greater and thus the δ13C value of the final product is higher than the
initial model composition (−4‰ for both meteoric and deuteric
water). Carbonate stable isotope data from Songwe broadly plot along
the line of alteration from a deuteric fluid at decreasing temperature
(Fig. 8A), although it should be noted that above 200 °C, the O isotope
fractionation between calcite and CO2 is negative and the isotopic com-
position of crystallising calcite would be below that of the modelled
fluid (Chacko et al., 1991).

5.4. Using O isotopes to track the evolution of Songwe — apatite data

The results for δ18OPO4 in Fig. 7 are plotted in paragenetic order. This
is perhaps a subjective order in which to present the data, and samples
T0202–T0262 could be rearranged depending on re-interpretation of
the other minerals in the sample. Nevertheless, samples T0218, T0167
and T0178 are paragenetically well constrained as they all contain apa-
tite which clearly belongs to a particular type: T0218 contains Ap-1 and
Ap-2 from early magmatic calcite carbonatite; T0167, contains Ap-3
from Fe-rich carbonatite; and in T0178 the apatite is Ap-4, from Chenga
Hill, outside the Songwe carbonatite (Broom-Fendley et al., 2016b). Ap-
atite in T0206 is also predominantly Ap-1/2, similar to T0218, but the
sample also contains a small percentage of Ap-3. Samples T0202–
T0262 are all Ap-3 -bearing samples from calcite carbonatite. Thus,
although T0202–T0262 can be rearranged, the samples in Fig. 7 are
still in the order of Ap-1, 2, 3, 4.

Excluding sample T0227, samples which have crystallised from
more evolved fluids at Songwe show lower δ18OPO4 values, in contrast
to increasing carbonate δ18O (Fig. 7), and are lower than the PIA values.
Few mechanisms reduce the δ18O value of a mineral crystallising in a
carbonatite. It is rarely documented, and has only been observed
in rocks at the Igaliko dyke swarm (syn. Igaliku), Gardar Province,
Greenland (Pearce and Leng, 1996); in rødberg (calcite or calcite–
dolomite carbonite with hematite alteration) from Fen, Norway
(Andersen, 1984); and in the Arshan carbonatite, Transbaikalia, Russia
(Doroshkevich et al., 2008).

At Igaliko, high fluorine (F) contents are carried by fluids with lower
δ18O values, and the F content could be the cause of δ18O suppression
(Pearce and Leng, 1996; Pearce et al., 1997). At Fen, post-magmatic hy-
drothermal oxidation by meteoric water is proposed as the mechanism
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for lowering the δ18O of ferrocarbonatite, forming rødberg (haematite-
carbonatite; Andersen, 1984). In rødberg, δ18O is lower than
ferrocarbonatite by 2‰ and formed at an estimated temperature of
250–300 °C. This reduction in δ18O is calculated to have been caused
by a fluid with a δ18O value lower than 0.8‰; a composition reconcil-
able with meteoric water, but not deutreric water (Andersen, 1984).
At Arshan, calcite is texturally recrystallised, this is reflected in its
δ18O values which lie between−4‰ and−7.2‰. Isotope data from al-
tered bastnäsite-(Ce), allanite-(Ce) and phlogopite form a continuum
between the PIC field and the calcite data and Doroshkevich et al.
(2008) estimate that the composition of an altering fluid would have
been between −10 to −15‰ at a temperature of 345–397 °C. These
compositions correspond to meteoric water values.

High concentrations of F in the mineralising fluid at Songwe cannot
be ruled out and if high F concentrations have a strong effect on δ18O,
then the role of fluorine cannot entirely be discounted. However, recent
experimental work on the solubility of REE fluorideminerals (Migdisov
and Williams-Jones, 2014), and the low F contents in REE mineralised
rocks from Kangankunde (Wall, 2000), suggests a less significant role
for F in the process of hydrothermal REE transport than has previously
been considered. It is unlikely that a change in the apatite O-isotope
ratio was caused by low-temperature exchange with groundwater,
post-emplacement, as apatite is not susceptible to low temperature
dissolution-reprecipitation.

To aid in the interpretation of the apatite isotope data, the models
derived for isotopic variations in carbonates can be used as a guide
(Fig. 8). These models indicate that one way of achieving carbonate
with δ18O values lower than primary carbonatite is through invoking a
meteoric water component (modelled as δ18O = −5‰) at a tempera-
ture above 200 °C.Meteoricwaterwith a lower initial δ18O valuewill re-
duce the δ18O of the carbonate at lower temperatures. These principles
can be used to help understand the δ18OPO4 data. Values for δ18OPO4

decrease later in the paragenetic sequence but, if the composition of
the fluid remains the same during this sequence, the only explanation
would be increasing fluid temperature. This is not plausible and a
more likely interpretation is that decreasing δ18OPO4 is due to an increas-
ing proportion of meteoric water in the fluid towards the late stages of
crystallisation. This requires open-system evolution of carbonatites, in-
corporating more meteoric water as they cool.

An alternative cause for the lower δ18O values in the apatite could be
through interaction with CO2-rich fluids, rather than H2O-rich fluids.
Fractionation between calcite and CO2 is negative and decreases be-
tween 500 and 100 °C, with values for 103lnαcc–CO2 between −6 and
−12‰ (Chacko et al., 1991; Chacko and Deines, 2008). Thus, assuming
fractionation between apatite and CO2 is similar to calcite and CO2, ap-
atite crystallising from a cooling CO2-rich fluid will have progressively
lower δ18O values (Santos and Clayton, 1995). Interaction with CO2-
rich fluids (i.e., those with a high CO2/H2O ratio, e.g. 1000) can be
modelled similarly to H2O-rich fluids, as indicated on Fig. 8C. Compari-
son of the apatite data-range with these models indicates that, in addi-
tion to a meteoric water input, increasing degrees of fluid-rock
interaction with a cooling CO2-rich fluid could cause the δ18O values
observed in the apatite data.
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5.5. Reconciling calcite δ18O and apatite δ18OPO4 data

Diverging trends for δ18OPO4 in apatite and δ18O in calcite cannot be
accounted through equilibrium fractionation between the twominerals
at different temperatures. Even if fractionation occurs at 0 °C, the frac-
tionation factor between apatite and calcite is below 10‰. Fractionation
at higher temperatures results in a smaller fractionation factor (Fortier
and Lüttge, 1995). Thus, offsets in δ18O of approximately 25‰ between
calcite and apatite, as is observed in T0178, cannot be produced by equi-
librium fractionation and, thus, the twominerals are not in equilibrium.
This is further supported by the ambiguous textural relationship
between apatite and calcite, where calcite appears to form both before,
during, and after apatite crystallisation (Fig. 5).

One way to reconcile the diverging apatite and calcite data is
through an open-system, meteoric mixing model which effectively
combines themodels of Fig. 8A and B. In such amodel, an initial deuteric
fluid, with C and O isotope ratios in equilibrium with carbonatite, grad-
ually mixes with meteoric water as temperature drops. Isotopic varia-
tion in the apatite requires cooling of a fluid from a high temperature
and further incorporation of meteoric water, while for calcite, the
model requires the same, but at cooler temperatures. It is difficult to
quantitatively reconcile these divergent trends but it is possible to
show, conceptually, that a cooling fluid, incorporating an increasing
proportion of meteoric water can first, at high temperatures, shift the
isotopic composition of the products to lower δ18O isotope values,
before, at lower temperature, trending towards higher δ18O (Fig. 9A).
Such a model is based on many assumptions and should only be
used as a rough guide. The most critical assumption, for which few
constraining factors are available, is the rate at which meteoric water
and deuteric water mix, and the relationship of this with temperature.
A linear relationship between temperature andmeteoric water concen-
tration has been selected for simplicity:

%Meteoricwater ¼ −0:2Tþ 100 ð5Þ

While it is logical to assume that over time, and thuswith decreasing
temperature, the percentage of meteoric water in a carbonatite system
will increase, there is no geological justification for a linear relationship
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between these two factors. Perhaps more likely, given the high degree
of brecciation at Songwe Hill, is that of a sudden influx of meteoric
water, and a rapid decrease in temperature— akin to a depressurisation
event (Broom-Fendley et al., 2016c). This is, however, difficult to model
as it requires a judgement of when (at what temperature) to place the
influx of meteoric water. Therefore, a simple linear relationship has
been retained until this can be better constrained. Other assumptions
in the model include treating the composition of the fluid (r) and the
fluid/rock ratio (Fc/Rc) as constant. Of course, if meteoric water was
mixing with magmatic water, the CO2 concentration in the water
would decrease and the degree of alteration would progressively in-
crease. Both of these variables were kept constant in the conceptual
model to show only the effects of temperature and isotopic composi-
tion. Despite the assumptions made in the models, they clearly show a
common trend when mixing meteoric and deuteric water. First, δ18O
values decrease before, at lower temperatures, extending to higher
values. This trend suggests that open-systemmixing betweenmeteoric
and deuteric water may cause the observed divergent isotope data in
the different minerals.

An alternative to a deuteric-meteoric mixing model could be a
change in fluid composition: from CO2-rich to H2O-rich. A CO2-rich
fluid is capable of lowering apatite δ18O values from the PIC field as it
cools (Fig. 8C). A depressurisation event, as previously mentioned,
could also cause rapid degassing of a carbonatite fluid, corresponding
with a sudden decrease in the CO2/H2O ratio. Such a sudden change in
the CO2/H2O ratio would mean that the role of CO2 in the fluid becomes
negligible and that H2O causes later changes in δ18O at lower tempera-
tures. This would result in subsequently crystallising minerals having
higher δ18O values, as modelled for carbonates in Fig. 8A. Similarly
to the deuteric-meteoric fluid mixing, it is possibly to conceptually
model the process of degassing by combining themodels demonstrated
in Fig. 8A and C (Fig. 9B). In the illustrated model, degassing is assumed
to occur at 200 °C although a similar trend would occur over a much
wider temperature range. This degassing is conceptually modelled as
an instantaneous change from a CO2-rich fluid to a H2O-rich fluid,
with r changing from 1000 to 0.001. The conditions for the CO2-rich
fluid are the same as in Fig. 8C, but the conditions for the H2O vary
based on the final fluid composition of the CO2-rich fluid. These models
illustrate that a sudden change from a CO2-rich to a H2O-rich fluid could
account for the range of δ18O values observed in the apatite and carbon-
ate data. Apatite, crystallising earlier than calcite, records a ‘CO2-rich sig-
nal’while recrystallisation of subsequent carbonates records a ‘H2O-rich
signal’. These models, however, illustrate a single stage process and it is
highly likely that multiple stages of fluid influx could occur. Late influx
of meteoric water could account for the extremely elevated δ18O values
in sample T0178.

5.6. Compositional estimates for mineralising water

Combining the isotope data with homogenisation temperatures
from fluid inclusions enables calculation of the composition of water
crystallising HREE-enriched apatite. Sufficiently reliable homogenisa-
tion temperatures in apatite were obtained from samples from Fe-rich
carbonatite (T0167, 200 °C) and from apatite-fluorite veins from
Chenga (T0178, 160 °C; Broom-Fendley et al., 2016b). The isotopic
composition of water in equilibriumwith apatite at these temperatures,
calculated using the apatite-water data from Zheng (1996), is
δ18OH2O = −4.0‰ for T0167 and −7.8‰ for T0178. These values
further suggest an increased role for meteoric water later in the parage-
netic sequence.

5.7. A model for the mineralising fluid

Using the new isotope data, amodel for the transport and deposition
of the HREE is proposed (Fig. 10). A PIA value for Songwe is likely to be
between 4 and 6‰ for O, using the PIA data from the other carbonatites.
Apatite in this stage is LREE-enriched, typical of magmatic apatite
(Broom-Fendley et al., 2016b).

Ap-2 represents the first stages of HREE enrichment at Songwe. It is
difficult to estimate the isotopic composition of the fluid which Ap-2
formed from as Ap-2 is mixed with Ap-1. If Ap-1 is between 4 and
6‰, then Ap-2 must have δ18OPO4 values lower than 2.5‰ to balance
the proportion of Ap-1with lower δ18OPO4 in these samples. This cannot
be resolvedwith the current dataset and requires spatially-resolved sta-
ble isotope data. Nevertheless, the combined values of Ap-1 and Ap-2
are clearly lower than might be expected from PIA. These values are
interpreted as influenced by a cooling CO2-rich fluid or an indication
of the first effects of an influx of meteoric water.

Ap-1 and Ap-2 are only found in clasts of C1 calcite carbonatite, indi-
cating that brecciation took place after the formation of these apatite
types (Broom-Fendley et al., 2016c). Brecciation could have been caused
by depressurisation of CO2 from a dissolved fluid, or overpressure of a
fluid trapped in the carbonatite. After brecciation, calcite carbonatite
(C2) containing Ap-3 is widespread. In a few samples, it can be found
in association with Ap-1 and 2, but typically it forms large anhedral
masses interpreted to be formed in a hydrothermal environment. The
HREE-bearing fluid was initially likely to be predominantly CO2-rich,
with an O isotope ratio between 0 and 5‰. This fluid transported
the REE, preferentially carrying the LREE, away from the carbonatite
(cf. Downes et al., 2014; Cooper et al., 2015; Broom-Fendley et al.,
2016a). Depressurisation would cause the fluid to become rapidly
H2O-rich, and the low solubility of apatite would cause it to crystallise
early, at a relatively high temperature (Broom-Fendley et al., 2016b),
retaining the low δ18O values of the fluid. After brecciation it would be
easier for meteoric fluids to interact with the carbonatite, and it is sug-
gested that a convection cell was established soon after brecciation oc-
curred (Fig. 10). Such a convection cell could be driven by the cooling
of the neighbouring Mauze nepheline syenite (Broom-Fendley et al.,
2016c). As the convection cell becomes increasingly diluted withmete-
oric water, the salinity, temperature and O-isotope ratio of the fluid de-
creases. These changes cause other LREE minerals to crystallise later in
the paragenetic sequence. In areas where the Ca concentration is low,
such as outside the main carbonatite, there is insufficient Ca to form
apatite, and thus xenotime forms instead (e.g. T0178).

As the system cools, dissolution-reprecipitation of calcite continues
to lower temperatures, causing the O-isotope ratios in the calcite to in-
crease to values up to 27‰. At these lower temperatures, however, the
fluid does not affect the isotopic composition of the already-crystallised
apatite, and the high-T low δ18O values are preserved.

6. Conclusions

A new method for analysing oxygen isotopes in apatite has been
presented. This method has been used, in combination with conven-
tional O and C isotope analyses of carbonates, to measure the isotopic
ratios of apatite and carbonate from several different carbonatites
with magmatic textures.

The newmethod of determining O isotope ratios in apatite is a bulk-
rock technique where oxygen is analysed from the more stable apatite
PO4 site. To check the validity of this new bulk-powder technique, five
carbonatite samples were prepared as hand-picked apatite separates
and analysed in the same way as the bulk powder samples. The
results showed no significant difference, falling within 2σ analytical
uncertainty.

When interpreting O isotope data from carbonatites it is common to
evaluate the data relative to a PIC range. Since no data exists for the ap-
atite PO4 site from PIC, a range for PIA has been calculated and tested by
analysing the PO4 site of four apatite samples from globally distributed
carbonatites which display primary crystallisation textures. The prelim-
inary range determined for PIA is 2.5 to 6.0‰.

Ten samples from the SongweHill carbonatitewere analysed, with 9
apatite and 8 carbonate analyses carried out in total. Carbonate C and O
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isotope results show a general trend, from early to late in the paragenet-
ic sequence, towards higher δ18O values, with a slight increase in δ13C.
Oxygen isotope ratios from apatite show a contrary trend, with values
decreasing from the PIA field towards more negative values. The large
increases in δ18O in the carbonate results are interpreted as the result
of low temperature fluid interaction, derived from either a meteoric or
deuteric source. Modelling shows that both fluid sources are possible
and it is suggested that the changes in calcite stable isotope ratios are
caused by a contribution from each reservoir. The decreases in δ18OPO4

in the apatite are interpreted as a preserved record of earlier interaction
with a CO2-rich deuteric fluid, or from an early influx of hot meteoric
water. This interaction has been preserved due to the lower susceptibil-
ity of apatite, relative to calcite, to alteration from low temperature
fluids. The diverging trends are conceptually reconciled with simple
mixing models between deuteric, meteoric water, and CO2-rich fluids.

Based on the isotope data, a model is proposed where HREE
mineralisation occurs rapidly after brecciation and depressurisation. Sub-
sequently, a convection cell develops, interacting with the surrounding
meteoric water. It is proposed that the LREE are transported in the fluids
of this convection cell and precipitate through further mixing with
meteoric water, due to decreasing salinity and/or temperature.
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