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Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal
Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for
underground disposal of radioactivewaste. The geological environment should be relatively stable and its behav-
iour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF
can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or
modify its geological environment up to 1 million years into the future. Key processes considered in this paper
include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related pro-
cesses, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates,
critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges
to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame repre-
sents a very short segment of geological time and is largely below the current resolution of observation of past
processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200 ka AP is
highly uncertain, relying on estimating the extremes within which climate and related processes may vary
with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal pro-
gram in the UK to review understanding of the natural changes that may affect siting and design of a GDF.
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1. Introduction

The disposal of radioactive waste represents a significant challenge for
those countries that have utilised nuclearmaterials for defence, power gen-
eration and medicinal purposes. Many countries with developed nuclear
industries, including the UK, have opted for deep geological disposal to ad-
dress this problem. However, geological disposal of radioactive waste dif-
fers from other sub-surface exploitation in that it requires significant
assessment, to understand the impact of potential fugitive radionuclides,
for up to 1 million years into the future. This timescale reflects the length
of time for the radioactivity of typical waste materials to reach an accept-
able risk level solely by natural decay (NDA, 2010). A key component of
deep geological disposal is the emplacement of wastes within an
engineered facility (termedaGeologicalDisposal Facility, GDF), constructed
at depths of hundreds of meters below the surface, making use of the sur-
rounding geological environment as one of the containment barriers (NDA,
2010). A fundamental requirement of the geological environment is that it
should be relatively stable and its behaviour adequately predictable (IAEA,
2011). The need for predictability arises from the requirement tomake sci-
entifically sound evaluations of the long-term radiological safety of a dis-
posal facility.

In considering the long-term safety functionality of a GDF, it is nec-
essary to take into account natural processes that could affect it or mod-
ify its geological environment. However, understanding the inherent
variability of geological process rates, critical thresholds, and the influ-
ence of unpredictable perturbations, represents a significant challenge
to predicting these changes. For instance, when considering the pro-
cesses that may have an impact on the geological environment sur-
rounding a GDF, a one million year time frame represents a very short
segment of geological time that is largely below the resolution of obser-
vation of past plate-tectonic processes. Similarly, predicting climate sys-
tem evolution on such time-scales is also very challenging, relying on
estimating the extremes within which climate and related processes
may vary with reasonable confidence (Näslund et al., 2013).

In regions of the world with active tectonism and/or recent glacia-
tion these considerations are typically assessed on the basis of deter-
ministic evaluation informed by direct observation of their effects (e.g.
Stephens et al., 2015). However, the intraplate setting of the UK, with
its weak tectonic activity (e.g. Ambraseys and Jackson, 1985; Musson
and Sargeant, 2007) and largely glacier-free environment for the last
11.5 kyr (Sutherland, 1993), assessment is necessarily based on devel-
oping consensus amongst the research community based on more cir-
cumstantial evidence, modelling and probabilistic evaluation.

As a pioneer in the development and use of nuclear technology, the
UK has accumulated a substantial legacy of radioactive waste since the
1940s. It will continue to do so for decades to come, in light of the UK
Government's expectation that nuclear power will play a role in the
country's future energy mix, helping to meet the challenge of
decarbonising our energy supply (DECC, 2011). By the end of this centu-
ry, it is forecasted that 1.1 million m3 (2.6 million tonnes) of high level
waste will need to be safely managed (NDA, 2014).

The UK has not yet identified a site to host a GDF, however a new
program to implement geological disposal was launched in 2014
(DECC, 2014) Other radioactive waste disposal programs in northern
latitudes such as Sweden, Finland and Canada, have undertaken assess-
ments of future natural processes as part of their site investigation pro-
grams all of which have some relevance to some situations in the UK's
(for example, SKB, 2011; SKB, 2014; Posiva, 2012). However, the UK's
geographical situation on the north western margin of Europe, com-
bined with its highly varied geology and topography means that is has
distinctive factors that are likely to influence potential future natural
change when compared to these other assessments. The purpose of
this paper is to highlight some of the challenges facing deep geological
disposal programs in such intraplate settings to review understanding
of the natural changes that may affect siting and design of a GDF in
the UK.
2. Earth system processes: rates and feedbacks

In order to gain an appreciation of the challenges around fore-
casting the impact of natural processes, it needs to be understood
that the Earth is a dynamic, evolving systemwithmany complex pro-
cesses interacting at all scales, from global to local, often in a non-lin-
ear way. Many of the processes that impose change on the Earth's
system are understood to be closely interlinked with dynamic feed-
backs (Steffen et al., 2004). For example, secular chemical evolution
of the geosphere over geological time scales, in part facilitated by
mantle convection, has largely controlled the compositional evolu-
tion of the atmosphere as well as driving the major crustal evolution
mechanism of plate tectonics (e.g. Kearey et al., 2013; Schubert et al.,
2004). Atmospheric processes, including climate, have a strong influ-
ence on surface processes, such as rates of erosion and composition
of sedimentary deposits, modifying the topography and
redistributing very significant volumes of sedimentary material.
These may be sufficient to exert dynamic loading or unloading of
the lithosphere which may in-turn drive displacement of the under-
lying asthenosphere and influence rates of plate and mantle process-
es (e.g. Burov and Toussaint, 2007; Koons et al., 2013; Raymo and
Ruddiman, 1992). At the same time, tectonically-induced topo-
graphic contrasts are a necessity for driving erosion and sedimenta-
tion processes and have been proposed to have a strong control on
climate (Gray and Pysklywec, 2012; Raymo and Ruddiman, 1992).
Consequently, there is a positive feedback loop whereby tectonics
have a clear control over surface processes and surface processes
are a forcing factor of tectonics (e.g. Burov and Toussaint, 2007;
Kiraly et al., 2015).

As well as feedbacks within the earth system, there are external
processes that have a strong influence, in particular those associat-
ed with the Earth's orbit, and its patterns of distance and angle to
the sun. This so called ‘orbital forcing’ causes changes in the global
mean temperature and has a dramatic impact on the Earth system
(Hays et al., 1976; Huybers, 2011; Huybers and Wunsch, 2005;
Lisiecki and Raymo, 2007).

The pattern of interaction is further complicated by highly variable
rates of process. For instance, over the past 65 Myr the Earth's climate
has undergone a significant and complex evolution. This includes grad-
ual trends of warming and cooling driven by tectonic processes on time
scales of 105 to 107 years, rhythmic or periodic cycles driven by orbital
processes with 104- to 106-years, and rare rapid climatic aberrations
(for example, catastrophic methane release) with durations of 103 to
105 years (Zachos et al., 2001).

2.1. Plate tectonic processes and the impact of seismicity and volcanism

The response of the Earth's lithosphere to convection in the underly-
ing asthenosphere is described by plate tectonic theory (e.g. Wilson,
1966) wherein strong lithospheric ‘plates’ establish relative motions
with respect to each other, riding on a weaker asthenosphere. Many of
the geological and topographic features evident at the Earth's surface
stem from the resulting interactions and high stresses at plate
boundaries.

An understanding of the UK's position with respect to plate bound-
aries is clearly fundamental to identifying those processes that may im-
pact on the long-term safety of a GDF. Also, understanding the rates of
tectonic processes will provide limits to the potential impact on a GDF
site in the time frame considered. A comprehensive seismic hazard as-
sessment, such as that done by SKB for the Forsmark site in Sweden
(SKB, 2011), is a detailed, site specific, assessment that would have to
be carried out for any site in the UK that is considered for the construc-
tion of a GDF in future.

A variety of interactions at active plate boundaries generate dis-
tinct geological processes, structures and landforms. These include
zones of subduction of dense oceanic lithosphere or collision of
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continental lithosphere, both these types of plate boundaries are
marked by linear belts of deformation (major fault zones, crustal
thickening or thinning) and are typically the focus of more frequent,
higher magnitude earthquakes and development of volcanoes and
igneous intrusions. At present, the UK sits in a stable continental set-
ting on the passive continental margin of the Atlantic Ocean and is
not close to a margin where active tectonic processes are happening
(Fig. 1). However, in the future, the Atlantic Ocean will start to con-
tract, subduction will expand along the passive continental margins
and the UK will eventually become closer to an active plate margin.
The timing of the onset of this process and the rate at which it pro-
gresses is clearly the important factor in determining the impact of
tectonic process on a UK GDF. Because ocean closures occur over
10's Myr timescales, and only limited or nascent subduction is cur-
rently occurring in the Atlantic (Duarte et al., 2013), the 1Myr period
of interest to UK GDF safety is probably a highly conservative esti-
mate of when tectonic change is likely to affect the UK, however at
the time of writing this is not backed up by quantitative forward
modelling of Atlantic Ocean closure.

The effects of plate tectonics, in particular earthquakes, igneous
intrusion and volcanoes, present a number of potential hazards for
radioactive waste disposal and for the long-term safety performance
of a GDF. Fault displacement (rupture) hazard caused by reactivation
and movement along pre-existing fractures in response to plate
stresses has the potential to affect a GDF. Earthquakes (seismicity),
the result of instantaneous fault movements, may give rise to vibra-
tory hazard where possible strong shaking may, depending on the
GDF concept and design, cause damage to a GDF.

Hazards associated with a nearby volcanic eruption or igneous in-
trusion includemelting or heating of a GDF and secondary disruption
of groundwater patterns in response to alteration of fracture net-
works. The presence of a heat source would drive hydrothermal cir-
culation. This process would modify the mechanical and chemical
properties of the host rock and surrounding rocks, heat the ground-
water and modify its hydrochemistry, potentially increasing the
Fig. 1.Map showing global plate boundary, volcanic activity
rate of corrosion of the engineered part of a GDF and impacting on
its containment function.

The last volcanic episode to affect the UK ended at around 55Ma and
was related to the opening of the Atlantic Ocean. This episode was re-
sponsible for forming the basalt lava flows of Antrim and the volcanic
centres of the Hebrides (Preston, 2009). The onset of volcanic activity
in the future is expected to occur as the Atlantic contracts and subduc-
tion systems expand.

In the UK, the geological record preserves evidence for complex tec-
tonic history. Overprinting of multiple plate tectonic cycles, where the
UK has been formerly located at active plate margins and in continental
collision zones, has left a legacy of heterogeneous crust including per-
meation by faults and fractures and preservation of regions of complex
strain that will have an impact of the design of a GDF.

Although currently located in a stable intracontinental setting, the
UK is still affected by weak tectonic stresses that can be attributed to
the far-field present day relative movements of tectonic plates. Other
factors that locally modify the stress field include uplift and subsidence
in response to mantle plumes and mantle underplating, glacial isostatic
adjustment and denudational isostasy and are considered later in this
section (e.g. Arrowsmith et al., 2005; Bott and Bott, 2004; Main et al.,
1999). Evidence for the current tectonic stress regime is provided
from focal mechanisms derived from instrumental measurements of
earthquakes and fault-plane solutions. Other stress tensor estimates,
based on well-bore breakouts, drilling-induced fractures and in-situ
stress measurements, can be influenced by additional near surface pro-
cesses. Evidence from earthquake focal mechanisms shows that the
modern UK lies with a broadly northwest-southeast compressive stress
regime (σ1) with southwest-northeast minimum stress (σ3) (Baptie,
2010). This stress field is attributed to plate forces exerted by both sep-
aration of Europe from North America as well as the roughly northerly
movement of Africa relative to Eurasia (Brereton and Müller, 1991).

Although recent sedimentary basins are not preserved onshore in
the UK, post-Miocene strata (younger than c. 10 million years) pre-
served in the North Sea do not record a history of basin inversion,
and earthquake activity (modified after Lowman, 1997).
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indicating that shortening strain associated with the current stress field
is relatively low. However, earthquakes are still felt in the UK as the re-
sult of distributed strain deeper in the crust (Fig. 2).

The seismic hazards related to a GDF are largely controlled by the
alignment of existing fault planes within the current stress field and
their propensity to reactivate. Current good practice in assessing seismic
hazard in stable continental regions utilises a probabilistic approach in
which the likelihood of exceeding peak ground acceleration recorded
over a specified earthquake return period is calculated. This approach
considers the spatial distribution of earthquakes in a given region, the
magnitude and recurrence relationship for those earthquakes and the
likely groundmotions as a function of distance from the seismic source.
The first probabilistic seismic hazard map for the UK was produced by
Musson andWinter (1997). TheUKwas also included in theGlobal Seis-
mic Hazard Assessment Program (GSHAP, Grünthal et al., 1996) and the
Seismotectonics and Seismic Hazard Assessment of the Mediterranean
Basin (SESAME) (Jiménez et al., 2001). Musson and Sargeant (2007)
published seismic hazard maps for the UK for seismic zoning in relation
to Eurocode 8 (Fig. 3). These studies, however, considered ground accel-
eration at surface, not at GDF depths.

Assuming present day seismicity rates, average hazard values of
peak ground acceleration for a return period of 10,000 years are in the
range 0.1–0.15 g (Musson and Winter, 1997), implying that seismic
hazard in the UK is low.

Themaximummagnitude earthquake that is likely to occur has a strong
influence on both vibratory hazard and is proportional to the amount of
fault displacement, and therefore likelihood of a rupture intersecting GDF
structures, and as such has important implications for GDF design. Howev-
er, estimating the largest earthquake that can be expected in the British
Isles in the current tectonic regime is difficult because of the low seismicity
Fig. 2. Instrumental (red) and historical (yellow) seismicity of the British Isles from the
British Geological Survey earthquake catalogue (Musson, 1996). Earthquake symbols are
scaled by magnitude.

Fig. 3.Hazardmap showing peak ground accelerations (g)with a 10% probability of being
exceeded for a 2500 year return period (Musson and Sargeant, 2007).
rates and the limited history of observation. Predictions from a range of
studies provide maximum values ranging between 5.5 Mw and 6.5 Mw
(Ambraseys and Jackson, 1985; Main et al., 1999; Musson and Sargeant,
2007) and there are only a few global records of intraplate earthquakes
with magnitudes in excess of 7 Mw (e.g. Hough et al., 2000).

The rupture hazard for a GDF developed at between 200 and 1000m
depth in a low seismicity intraplate region such as the British Isles is
very low (Musson and Sargeant, 2007). Published data for larger UK
earthquakes suggest that most events with magnitudes of 4.5 Mw or
greater tend to nucleate at depths of at least 10 km (Musson and
Sargeant, 2007). Fault rupture plane dimensions for the largest recorded
earthquakes in theUK are typically of a fewkilometres, so that, although
a rupture that nucleates at depths of at 10 kmmay propagate upward,
the potential for it to reach the surface is limited. No UK earthquake re-
corded either historically or instrumentally is known to have produced
a surface rupture although a detailed study of potential surface rupture
is likely to be undertaken at any proposed GDF site (Musson, 1996).

Several studies documenting earthquake damage to underground
structures such as tunnels (e.g. Hashash et al., 2001; Pitilakis and
Tsinidis, 2014) conclude that they suffer appreciably less damage than
surface structures. This evidence suggests that the shaking hazard for
a buried GDF is likely to be less severe than for a structure at surface.
For the YuccaMountain site in Nevada, USA, locatedwithin amore seis-
mically active area, it is considered that direct damage from earthquake
shaking to the engineered facility and the packages of waste emplaced
within it is an insignificant probability (Smistad et al., 2001).

Earthquakes are also known to alter hydrogeological systems. Effects
such as changes to water table levels in response to moderate to large
earthquakes are largely transient and unlikely to impact on the long-
term safety of a GDF (e.g. Brodsky et al., 2003; Manga and Wang,
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2007). Similarly, expulsion of small volumes of deeper formationwater,
attributed to fracture dilation and contraction, is thought to have little
overall impact on the safety function of a GDF (Rojstaczer et al., 1995).
In contrast, permanent changes to fracture networks could present a
hazard to the safety function of a GDF. Emerging good practice in Europe
favours GDF development in a low groundwater transmissivity geolog-
ical environment, effectively providing a high level of attenuation for
emitted radionuclides between a GDF and the overlying biosphere.
Propagation of new, permanent fracture systems is response to earth-
quakes has the potential to create high transmissivity pathways with
that could reduce radionuclide attenuation (Ingebritsen and Sanford,
1999).

The generation of tsunami when fault movements rupture the sea-
floor would have negligible impact on the post-closure safety of a GDF
once sealed and protected from water ingress and are not considered
further in this paper.

2.2. Uplift, subsidence and erosion

All points in the lithosphere are subjected to processes that cause
vertical movement and which result in either uplift or subsidence at
surface. These vertical movements of Earth's surface can vary consider-
ably in scale, distribution and rate. Although they are often controlled by
plate tectonics, subsidence and uplift are also linked to other non-exclu-
sive processes affecting the Earth's surface, such as mantle plumes and
mantle underplating, glacial isostatic adjustment and denudational
isostasy. Critical to the North Atlantic region, erosion can also be driven
by glacial loading, and depending on icemass, can over-deepen sub-gla-
cial valleys and depressions to depths significantly below sea level
(Evans, 2014). Uplift and accompanying erosion and subsidence are im-
portant considerations for GDF design. Subsidence and sedimentary
burial would result in increased isolation of thewaste in a GDF, enhanc-
ing its capacity to isolate the waste from the biosphere for the long-
term. Conversely, uplift and erosion, including sub-glacial erosion,
have the potential to degrade GDF isolation barriers, that could ulti-
mately result in exposure of the waste as well as substantially alter
thedirection offlow in any over- and underlying aquifers andnewpath-
ways formed that could potentially transport radionuclides rapidly to
the surface (e.g. McKinley and Chapman, 2009).

Plate tectonic uplift and subsidence are caused by plate-scale forces
of compression and extension. At its most extreme, uplift associated
with collision of continental lithospheric plates gives rise to the devel-
opment of mountain belts, such as the Himalayas, and broader regions
of landscape uplift such as the adjacent Tibetan Plateau. Stretching con-
tinental lithospheric plates at its most extreme leads to thinning of the
crust and subsidence, rifting and, ultimately, the creation of new
ocean basins.

Denudational isostasy encompasses both erosion of uplifted surfaces
as well as subsidence driven by complementary sedimentary loading.
Erosion is driven largely by gravity and the rates are dependent on the
mechanical and chemical properties of the rocks, climate, altitude and
uplift rate. High uplift rates generally correlate with high erosion rates.
Equally, subsidence is generally accompanied or driven by loading of
sediments onto the sinking surface, supplied by material eroded from
the adjacent, relatively uplifted basin flanks (McKinley and Chapman,
2009). Both the processes of deposition and erosion can drive crustal
flexure and are often driven themselves by other uplift/subsidence
mechanisms (e.g. Watts, 2001). In extreme cases, such as in parts of
the Himalayas, some authors have argued that coincidence of high rain-
fall, erosion and uplift rates exerts a control over the location of tectonic
deformation (Whipple, 2014). A compilation of denudation rates of
bedrocks from four climate regions around the world (Table 1) includ-
ingMediterranean type climate (warm temperate), temperate (current
UK type climate), sub-arctic (boreal, periglacial, forest tundra) and polar
(periglacial, permafrost and glacial) shows shat the greatest denudation
rates occur in orogenic environments such as the European Alps
(Vernon et al., 2008) or the San Bernadino Mountains where bedrock
lowering rates of 200 to 700 m Myr−1 and 70 to 1200 m Myr−1 have
been estimated respectively (Binnie et al., 2008). Typically, bedrock ero-
sion rates in non-orogenic settings, such as the UK, are much less than
50 m Myr−1 (Table 1).

In higher latitude regions, much of the relatively recent uplift and
subsidence has been attributed to glacial isostasy. This describes the rel-
atively short-term uplift and subsidence which are typical lithospheric
responses to loading and unloading during glacial advance and retreat.
The effects of which are increasingly recognised as providing significant
uplift (in some regions of the North Atlantic margin and adjacent conti-
nental hinterland (Ekman, 1991). For example, the maximum amount
of glacial rebound that has occurred because of the decay of the
Fennoscandian ice sheet is approximately 800 m (Mörner, 1979).

Over the last 23Ma, theUK has seen considerable uplift, in particular
an estimated 1 km of exhumation during Neogene times (Blundell,
2002; Hillis et al., 2008; Holford et al., 2008). This has been attributed
to a variety of non-exclusive processes including uplift above mantle
plumes or underplating by mafic magmas associated with Atlantic ex-
tension (Al-Kindi et al., 2003; Bott and Bott, 2004; Brodie and White,
1994; Cope, 2004; Tiley et al., 2004;), late Alpine collisional effects and
‘ridge-push’ from the Atlantic which was spreading at this time, as
well as deglaciation (Cloetingh et al., 2005).

There is an emerging consensus amongst the scientific community
that the present day pattern of uplift in the north of the UK and comple-
mentary subsidence in the south is driven largely by glacio-isostasy (e.g.
Cloetingh et al., 2005; Davenport et al., 1989; Firth and Stewart, 2000;
Lambeck, 1995;Musson, 1996; Peltier et al., 2002). Although other pro-
cesses including lithospheric stretching beneath the North Sea (Barton
and Wood, 1984) and continuation of an Atlantic thermal anomaly
(e.g. Arrowsmith et al., 2005; Bott and Bott, 2004) have also been pro-
posed, some recent earthquake studies have corroborated glacio-iso-
static uplift by observing that contemporary seismicity in the Scottish
Highlands is concentrated in the area of expected maximum glacio-iso-
static uplift (e.g. Davenport et al., 1989; De Luca et al., 1998).

Drivers for uplift during the future 1 Myr period in consideration for
GDF safety function include changes in tectonic stress regime. Although
major changes in the tectonic regime are likely to lie beyond the period
of interest, given the current tectonic configuration in theNorth Atlantic
it is possible to speculate that transient Atlantic ridge push or an in-
creased rate of Africa-Eurasia convergence could propagate an increase
in horizontal compressive stress in the UK and in turn lead to increased
uplift. Because of a paucity of forward tectonic modelling available for
theNorth Atlantic region it is not possible to provide estimates of timing
and rates of these processes and their potential impact. However, in
contrast, future climate models predict that cycles of glacial advance
and retreat are likely to affect the UK within the next 1 Myr which are
likely to drive glacial isostatic adjustment and climate-linked
denudational isostacy depending on the location and extent of the
resulting ice sheets.

2.3. Climate evolution and potential impacts

Even with consideration of anthropogenically-forced climate
change, longer-term projections of climate forecast that the Northern
Hemisphere will experience further cycling between glacial and inter-
glacial periods over the next 100,000 to one million years (see reviews
by Huybrechts, 2010; Fischer et al., 2014; Näslund and Brandefelt,
2014), Therefore, a GDF in the UK is likely to experience glaciation and
or permafrost conditions several times over its life time and hence, pre-
dictions of the duration, thickness and extent of future ice cover are im-
portant for assessing the post-closure safety of a UK GDF. This includes
the impact of permafrost and frozen ground, glacial isostasy and associ-
ated seismic and erosional hazards and eustatic changes in sea-level.

Most climate models use understanding of climate variation in re-
cent geological time, including the extent, duration and interval of



Table 1
Bedrock denudation rates.

Location Climate Setting/geology Authors Method Rate m
Myr−1

Dry Valleys, Antarctica Polar Crystalline Summerfield et al.
(1999)

21Ne 0.26–1.02

Antarctica Polar Sandstone (hyper-arid) Nishiizumi et al.
(1991)

10Be and 26Al 0.1–1.0

S. Norway Sub-arctic Elev. Plain gneiss schist Nicholson (2008) Quartz veins, weathering rinds 0.5–2.2
Eyre Peninsula, Australia Mediterranean Granite (semi-arid) Bierman and Turner

(1995)
0.5–1.0

Pajarito Plateau (NM) Temperate Tuff (temperate) Albrecht et al. (1993) 10Be and 26Al 1–10
N. Sweden Sub-arctic Plain Crystalline Stroeven et al. (2002) 10Be and 26Al 1.6
Canada Polar Plain crystalline Peulvast et al. (2009) Palaeo-surface reconstruction 2–8
Masanutten Ttn, USA Temperate Sandstone, Shale Afifi and Bricker

(1983)
Mass Balance 2–10

S. Piedmont, USA Temperate Piedmont, granite Pavich (1986) Mass Balance 4
Brubaker Mts, USA Sub-arctic Low relief Schist, gneiss Price et al. (2008) Mass Balance 4.5–6.5
Rheinsh Massif, Germany Temperate Sedimentary Meyer and Stets

(1998)

10Be 4.7–6.5

Iceland Sub-arctic Basalt Geirsdóttir et al.
(2007)

Sediment record 5

Namib desert, S. Africa Mediterranean Granite Inselbergs Cockburn et al. (1999) 10Be and 26Al 5–16
Haleakala and Mauna Loa
(HW)

Temperate Basalt (various 0-3 km elevation) Kurz (1986) 7–11

Mt Evans (CO) Sub-Arctic Granite erosion of bare surface Nishiizumi et al.
(1993)

10Be and 26Al 8

S. Piedmont, USA Temperate Piedmont granite Pavich (1989) 10Be and residence time 20
Pacific NW, USA Temperate Orogenic Dethier, 1986 Mass Balance 33
Smokey Mts, USA Temperate Schist, gneiss Velbel, 1986 Mass Balance 38
Boso Peninsula Japana Humid-temperate Sst/mudst. High rates of glacio/eustatic

change
Matsushi et al. (2006) 10Be, 26Al 90–720

European Alpsa Sub-arctic Orogenic Vernon et al. (2008) AFT 200–700
Indiaa Mediterranean Escarpment Gunnell (1998) Functional Relationship model 205–275
San Bernadino Mts,
California, USA

Temperate Orogenic, qtz-monzonite and granodiorite,
sst, granite

Binnie et al. (2008) 10Be, Apatite (U-Th/He)
thermochronometry

70–1200

a Note that these are areas of active mountain building which consequently have much higher denudation rates than occur in mid-crustal locations such as the UK.
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glacial periods, to make projections of future climate change. Evidence
from the recent geological record indicates a progressive deterioration
of global climate from greenhouse conditions in the early Cenozoic Era
(c.55Ma; e.g. Zachos et al., 2001). Indeed, since around 2.6Ma, the geo-
logical record reveals evidence for multiple oscillations between short-
term glacial and interglacial episodes, as well as the longer period
‘Milankovitch’ cycles influenced by shape of the Earth's orbit around
the sun (Fig. 4, e.g. Grossman, 2012; Lisiecki and Raymo, 2007; Pillans
and Gibbard, 2012; Shackleton, 1987). The Early Middle Pleistocene
Transition (Berger and Jansen, 1994; Head et al., 2008) marks a
prolonging and intensification of glacial-interglacial climate cycles
from an average of 41,000 to 100,000 years (Zachos et al., 2001;
Maslin and Brierley, 2015). This shift represented an increase in the am-
plitude of global ice volume variations (Elderfield et al., 2012; Rohling et
al., 2014) with ice sheets surviving longer and becoming increasing vul-
nerable to catastrophic collapse and resultant rapid deglaciation
(Maslin and Brierley, 2015; Ruddiman, 2003).

Mid-latitude regions, including the UK, have proven particularly
sensitive to these global-scale climatic changes with marked variations
in prevailing climate over comparatively short periods of geological
time (tens of thousands of years; e.g. Candy et al., 2011; Rose, 2009)
as a result of their position relative to southward moving cold polar
air masses (Polar Front), and low latitude warm ocean currents (North
Atlantic Current). It is currently thought that Britain has experienced
over 30 episodes of glaciation, of varying scale, during the Quaternary
(Böse et al., 2012; Lee et al., 2011; Lee et al., 2012; Thierens et al.,
2012) with clear evidence preserved for a Younger Dryas glaciation
(12.5–11.7 ka, Loch Lomond Stadial), preceded by a Weichselian (Late
Devensian) glaciation which have left a strong imprint across the UK
landscape, preceded by the less well recorded Elsterian (Anglian) glaci-
ation (480–430 ka) which extended into southern Britain (Fig. 5; Clark
et al., 2012; Gibbard and Clark, 2011).
2.3.1. Future climate projections
Over the past few decades, understanding of past climate change

forcing processes have been brought together using a range of climate
models and ensembles ofmodel simulations for a range of future green-
house-gas and aerosol emissions (see reviews by Fischer et al., 2014;
Huybrechts, 2010; Näslund and Brandefelt, 2014). Longer-term simula-
tions, up to 100 ka, use simple climate models and earth systemmodels
of intermediate complexity (EMIC) (for example, Archer and
Ganopolski, 2005; Cochelin et al., 2006; Crucifix and Rougier, 2009;
Loutre and Berger, 2000; Pimenoff et al., 2011; Texier et al., 2003).
These models are forced to take account of known variations in orbital
parameters and a range of future anthropogenic CO2 concentrations.
In the absence of human perturbations, the current interglacial is
projected to last for the next 50,000 kyr (Ganopolski et al., 2016), how-
ever, the addition of moderate anthropogenic CO2 emissions of 1000 to
1500 GtC are projected to delay the onset of the next glacial period by
50,000 years (Archer and Ganopolski, 2005; Berger and Loutre, 2002;
Ganopolski et al., 2016; Paillard, 2006) with the next glacial inception
projected to first occur at 100 ka AP (see review by Fischer et al., 2014).

Beyond timescales of 100 ka, model uncertainty becomes increasing
large and model outputs become increasingly less robust. Future levels
of atmospheric CO2 beyond 100 ka are particularly uncertain, however,
it is anticipated that effects of anthropogenic CO2 will have diminished
with a return 100 ka glacial-interglacial cycles (Fischer et al., 2014). Ir-
respective of the timing of inception, the broad pattern of glacial-inter-
glacial cycles is likely to continue (Fischer et al., 2014).

Of direct relevance to a national to regional scale the assessment of a
GDF in the UK, the BIOCLIM model (BIOCLIM, 2001) used the EMIC LLN
2-D NH climate model to simulate global climate change over the next
1 Ma for three atmospheric CO2 scenarios: no CO2 contribution, a low
and high anthropogenic CO2 contribution (210 ppmv and 280 ppmv re-
spectively), corresponding to pre-industrial atmospheric CO2



Fig. 4. British Quaternary chronostratigraphy (modified after Merritt et al., 2003) alongside the Greenland (GRIP Summit ice core) oxygen isotope record.
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concentrations and 210 ppmv is typical of a glacial level (BIOCLIM, 2003,
Fig. 6). Thesewere downscaled to provide regional climate estimates for
selected areas of Europe over the next 200 ka, one of which was central
England.

In both low and high anthropogenic CO2 contributions, the Northern
Hemisphere is projected to remain free of ice for most of the next
200 ka. From 167 ka AP, significant Northern Hemisphere ice sheets
start to accumulate and are predicted to recover to present day equiva-
lents by about 170 ka AP. Beyond 200 ka AP, themodelled effects of an-
thropogenic CO2 were predicted to decline to negligible levels and from
200 ka AP to 1 Ma AP ‘normal’ glacial-interglacial cycling would return
at 100 ka periodicities and persist throughout that time interval
(Texier et al., 2003) (Fig. 7).

2.3.2. The impact of glacial isostatic adjustment
Themass applied and removed during growth and decay of large ice

sheets have a loading effect on the lithosphere, driving changes in rela-
tive surface elevation. In response to this loading, lithospheric flexure
forms a ‘bowl’ of depression below and proximal to the ice sheet, ac-
commodated by asthenospheric flow radially outward from below the
maximum ice load (e.g. Stewart et al., 2000; Peltier, 1998; Adams,
1989). Beyond the ice margin, lithospheric flexure is accommodated
by radial vertical extension within a forebulge region (e.g.; Fjeldskaar,
1994; Lambeck, 1995; Mörner, 1977; Stewart et al., 2000) which may
extend for several hundreds of kilometres beyond the ice margin
(Lund and Näslund, 2009).

This process, known as Glacial Isostatic Adjustment (GIA) has been
extensively studied from previously glaciated Northern Hemisphere re-
gions. Much of the evidence that has been cited has been attributed to
the gradual uplift of depressed lithosphere, subsidence of forebulges,
denudation and landscape evolution that accompanies ice sheet denu-
dation and lithospheric unloading (e.g. Clark et al., 2012). This litho-
spheric recovery is one aspect of GIA and is termed post-glacial
rebound (PGR) and is considered by many researchers as the principal
cause of uplift in former glaciated regions (e.g. Johansson et al., 2002;
Sella et al., 2007, Fig. 8).

The three main lines of evidence for PGR are provided by geomor-
phological evidence for uplift, principally raised palaeo-marine and la-
custrine shorelines, GPS monitoring data as well as faulting activity
related to the emplacement or removal of large qualities of ice glaciers,
ice caps or continental ice sheets, referred to as Glacially Induced
Faulting (GIF) (Lund and Näslund, 2009).

In the Northern Hemisphere, the evidence for both these is most
clearly preserved in Fennoscandia and northern North America where



Fig. 5.Maximum extent of ice cover during the Elsterian (Anglian), Weichselian (Late Devensian) and Younger Dryas (Loch Lomond Stadial) glaciations of the British Isles and limit of
Wolstonian glaciation in eastern England and the North Sea (Modified from Clark et al., 2004).
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deglaciation has been most recent. In these regions, GIF is known from
the occurrence of surface rupture of demonstrably post-glacial faults
aswell as a general co-location of thesewith areas of elevated seismicity
(see review of Munier and Fenton, 2004).

Evidence for proposed PGR in the UK is largely based on heightmea-
surement of uplifted or subsided shorelines. Here, contrasting relative
sea-level changes have been recorded at different locationswith highest
uplift of up to ca. 1.6 mm yr-1 (10 cm per century) centred around the
area of central and northwest Scotland where it is estimated that the
Fig. 6. Projected future climate states for central England under the different scenarios.
Figure based on BIOCLIM (2003). Climate scenario 1: No anthropogenic CO2

contribution. Climate Scenario 2: Low anthropogenic CO2 contribution. Climate scenario
3: High anthropogenic CO2 contribution.
greatest thickness of ice was developed (Ballantyne et al., 1998;
Shennan and Horton, 2002; Shennan et al., 2002). In contrast, relative
land subsidence of up to 5 cm per century has been observed in the
south and east of England (Shennan and Horton, 2002) (Fig. 9).

In theUK, evidence for GIF is based largely on recognition of a cluster
of earthquakes located in northwestern Scotland that are coincident
with the region of maximum expected uplift and thickest ice (Musson,
1996). The stress tensor interpreted from this group of earthquakes
contrasts with the regional tectonic stress in that the interpreted princi-
pal compressive stress (σ1) is vertical and is close in value to the inter-
mediate stress (σ2) with a near East-West extensional component (σ3)
(Fig. 10). This stress field has been interpreted to reflect a modification
of the normal regional tensor by the action of GIA (Baptie, 2010).

A number of studies (see Pascal et al., 2010) have suggested that
earthquake activity levels are highest directly after the ice has
retreated. Consequently, seismicity based on current rates may pro-
vide an inaccurate estimate of the possible levels of recurrence and
magnitude that could occur during future glacial cycles. It should be
noted that the largest stresses occur at the former ice margins, mak-
ing these the most likely source region for seismicity (Lund, 2005).
The implication for a GDF in such a region is that seismicity rates fol-
lowing any future glacial period may be significantly higher than at
present. Given our current maximum magnitude earthquake in the
UK of around 6 it is not unreasonable to expect an increase in the
maximum possible magnitude to 7 following such an event. However,
it should be noted that post-glacial fault stability is dependent on not
only the thickness and extent of the ice sheet, but also on the initial



Fig. 7.Northern Hemisphere future model to 1 Ma APwith low CO2 forcing (210 ppmv). The red line shows the first major glaciation at c. 170–180 ka AP (modified after BIOCLIM, 2001).
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state of stress and the properties of the Earth itself, such as stiffness,
viscosity and density (Lund, 2005).

2.3.3. The impact of sea-level change
Sea-level changes have occurred throughout the Earth's history and

their magnitude and timing are extremely variable (e.g. Lambeck and
Chappell, 2001). Global mean sea-level rise has increased ten-fold
from a few centimetres per century over recent millennia to a few
tens of centimetres per century in recent decades, attributed to climate
change through the melting of land ice and the thermal expansion of
ocean water (Milne et al., 2009). (This may be up to in total c 10 m for
coastal sites in the Baltic, see e.g. analysis in SKB (2014).

Because the present warming trend is expected to continue, global
mean sea level will continue to rise. In the time frame relevant to GDF
Fig. 8.Modelled rate of lithospheric uplift resulting from post-glacial reb
safety case, forward climate modelling predicts that the most likely
driver of sea level change will be thermosteric sea level rise during an
initial period of global warming as well as the effects of melting ice
sheets and glaciers (Milne et al., 2009).Typically, the global expansion
of ice volume leads to a global marine regression as more of the Earth's
water budget becomes locked up in comparatively buoyant ice, referred
to as glacioeustatic regression. This is balanced against localised lower-
ing of the land surface driven by GIA which is predicted to give rise to
complex patterns of regional sea level variation, with local sea-level
stands substantially above and below that observed at the present day
(Lambeck and Chappell, 2001). In theUKQuaternary record, there is ev-
idence for sea-levels that were locally 30m higher than present follow-
ing the Elsterian deglaciation (Shennan et al., 2006). Conversely,
evidence for considerably lower sea levels during the Weichselian
ound (Wahr and Zhong, 2013). Image from http://grace.jpl.nasa.gov

http://grace.jpl.nasa.gov


Fig. 9. Estimates of PGR and present day crustal deformation in Great Britain. (a) Late Holocene relative land-sea-level changes (mm yr−1) in Great Britain. Figures in parentheses are the
trends that take into account modelled changes in tidal range during the Holocene (after and based upon Shennan and Horton, 2002). (b) land which is rising as a result of post-glacial
rebound, stable or near stable land conditions and land which is sinking.
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glaciation is provided by imaging of terrestrial glacial landforms off-
shore from the present day coastline in the North Sea (e.g. Bradwell
et al., 2008; Sutherland, 1993).

Future sea-level changes to 150 ka AP have been modelled by lin-
ear regression of past sea-levels and BIOCLIM simulated ice volume
under a range of anthropogenic CO2 contributions (Fig. 11, Goodess
et al., 2004). For all of the CO2 forcing scenarios, sea-level is envisaged
to rise for about the next 50 ka, after which it drops sharply coincid-
ing with the beginning of the modelled growth of Northern Hemi-
sphere ice sheets with falls of global sea-level of between around
80–120 m at a glacial maximum between 110 and 125 ka AP. This
is followed by a rapid sea-level rise associated with widespread
deglaciation. For the highest modelled anthropogenic CO2 levels, the
rapid fall in sea-level is ameliorated and only begins shortly before
the glacial maximum.
Fig. 10. Best-fitting stress tensors for two different subsets of the data, suggesting that there is
Scotland (right). The 95% confidence intervals are indicated by the shaded areas. From Baptie (
In regions where glaciation is likely to occur, such as northern and
central parts of the UK, changes of relative sea-level could mean that a
GDF site is further from or nearer to the coast, or even beneath the sea
bed. This may lead to erosion or deposition around the surface or very
shallow parts of a GDF and is likely to change the groundwater flow
paths and reduce groundwater driving heads.

2.3.4. The impact of permafrost
Glacial advances affecting the UK over the next 1 Ma are likely to re-

sult in many areas experiencing permafrost conditions, that is ground
that is ‘permanently frozen, or that remains below freezing temperature
for two ormore consecutive years (Williams, 1970). The primary factors
governing its development and depth are surface temperature, the ther-
mal capacity of the geological strata and the local geothermal gradient
(French, 2007; Williams and Smith, 1989).
a significant difference in the stress state in in England and Wales (left) and in northwest
2010).



Fig. 11. Future eustatic sea-level change (m) for low (left) (AN1, 3, 5, 7) CO2 forcing scenarios and thenatural (NAT) simulation high (right) CO2 forcing (AN2, 4, 6, 8) (Goodess et al., 2004).
“High” and “low” scenarios usedwere those of Sundquist (1990). The different scenarios assumed that the anthropogenic effects tailed off at 30 (AN1&2), 50 (AN3& 4), 100 (AN5&6) and
150 ka AP (AN7 & 8). NAT assumes no anthropogenic effect.
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Permafrost forms predominantly in periglacial and ice-marginal en-
vironments under sub-arctic to polar tundra climates (Rudlof, 1981). A
wedge of permafrost is expected to exist beneath the margin of an ad-
vancing ice sheet but melts as it is overridden and effectively insulated
by the overlying ice (Zhang et al., 1999). In addition, the presence of
an overlying ice sheet can serve to increase the subglacial groundwater
pressure by around two orders of magnitude, so that the freezing point
can decrease to such a degree that the subglacial ground is kept unfro-
zen (Busby et al., 2016). At present, about 25% of the Earth's land area
is underlain by permafrost (Anisimov et al., 1996).

At its most extreme, permafrost in northern Canada, reaches to
depths of 500–700m (Ruskeeniemi et al., 2004)while in northern Swe-
den, discontinuous permafrost, is reported to be 100–350 m thick at an
altitude of 1500 m above sea level (Isaksen et al., 2001). Modelling of
potential permafrost depths at Prudhoe Bay, Alaska, has shown that it
could extend to 600 m deep within 50 ka at surface temperatures only
slightly lower than today (Lunardini, 1995). In northern Europemodel-
ling estimates of permafrost depths for proposed GDF sites range from
400mat Forsmark in Sweden (SKB, 2014) to 215m in northern Belgium
(Govaerts et al., 2011). Recent modelling of permafrost thickness by
Busby et al. (2015, 2016) across Great Britain range from 20 to 180 m
for the average estimate climate and 180–305 m for the cold estimate
climate (Table 2). The depth of permafrost is highly site specific and
will be dependent on a number of factors including location, presence
and thickness of ice/snow cover, groundwater chemistry, hydrogeology
and geothermal gradient. The impact of permafrost in crystalline ter-
rains, for example the safety assessment of the SR-Site in Sweden
Table 2
Maximummodelled depths of permafrost at the ten locations resulting from average (a minim
mean annual air temperatures of−18 °C relative to present day) estimate climates (Busby et

Location Geology

Dartmoor Permian granite pluton
Weald Mesozoic argillaceous, arenaceous and limestone rocks
East Anglia Chalk and Mesozoic argillaceous rocks overlying Lower Palaeozoi

basement
South Midlands Argillaceous Jurassic and Triassic rocks overlying Lower Palaeozo

basement
Mid-Wales Silurian mudstone, sandstone, siltstone and conglomerate
South Yorkshire Carboniferous Coal Measures overlying Millstone Grit
Stainmore Trough Carboniferous sedimentary rocks of mixed lithologies
Southern Uplands Silurian greywacke
Midland Valley Carboniferous Coal Measures and Clackmannan Group limestone

sandstone and mudstone
Northwest Highlands Precambrian psammite
summarised in SKB (2014), has been studied in detail but this is not
yet the case for the UK.

If permafrost were to extend to the depth of a GDF, it could reduce the
performance of the engineered components (McEwen and de Marsily,
1991). However, Posiva (e.g. Schatz and Martikainen, 2010) and SKB
(e.g. Birgersson and Karnland, 2015) have shown that clay based back-
fill/buffer regains its properties after thawing. Similarly, even at greater
depths than permafrost penetration, there would be possible impact on
theperformance of the geological barrier of aGDF. These couldbe because
of brine formation and migration, intrusion of freshwater from melting
permafrost or gas hydrate formed beneath the permafrost layer
(Rochelle and Long, 2009), and cryogenic-pore pressure changes associat-
ed with volume change during the water-ice phase transition.

At shallower depths, permafrost development could also directly af-
fect the hydrogeological properties of rocks, often significantly affecting
groundwater flow and recharge and discharge (see for example the SKB
studies for Forsmark (SKB, 2014). Frozen ground will create barriers to
groundwater flow, but once thawed permeability may be increased
leading to temporary or permanent changes to groundwater flow
paths. However, in glaciated regions near icemargins, hydrogeologically
processes aremore complex and transient than those beneath or further
away from the ice margins (Scheidegger and Bense, 2014).

2.3.5. The impact of glacial erosion
Erosion and deposition by glaciers can have a dramatic effect on land-

scapes, with high rates of erosion reshaping upland areas, overdeepening
and oversteepening pre-existing valleys and modifying pre-existing
ummean annual air temperatures−12 °C relative to present day) and cold (a minimum
al., 2015).

Max depth of permafrost (m) (average) Max depth of permafrost (m) (cold)

80 220
65 245

c 65 245

ic 30 180

105 215
90 180
20 205

150 305
, 110 215

180 235
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drainage patterns and depositing large quantities of sediment underneath
glaciers and in large spreads beyond their limits (Boulton, 1982; Boulton,
1996). During periods of climate change, alterations in the landscapemay
be both fast and unpredictable, especially in the very active hydrological
regime that occurs at the margin of a retreating ice sheet where complex
sequences of river terraces may be formed.

The extent and depth of glacial erosion is dependent on the speed of
flow and thickness of the ice, as well as the nature of its bed with en-
hanced rates of erosion occurring in areas of fast flowing ice, such as
ice streams, which drain the more stable areas of the ice sheet. The
areas where deep erosion occurs will be localised and dependent on
where active ice streams, major glacial meltwater drainage routes and
major fluvo-glacial outflow incisions occur. In, and adjacent to, upland
areas these are likely to be mainly controlled by the location of existing
valleys which will control where future glacial and fluvial erosion is
likely to occur. The eventual depth that the valleys and channels attain
will depend on factors such as ice thickness and sea level.

In upland areas, ice streams can erode channels with parabolic cross
sections (troughs and fjords) up to depths of 2 km (Talbot, 1999).Within
most of the UK landmass few incisions exceed 200 m in depth after mul-
tiple past glaciations. For example, whereas denudation rates of most
hard rock types under non-orogenic conditions are likely to be well
below 50mma−1 (Table 1) and river incision resulting from the isostatic
change in the UK after glacial re-adjustment, has been found to reach
around160m in the Thames river systemover the durationof theQuater-
nary (Bridgland, 2000; Bridgland, 2010; Bridgland andWestaway, 2007)
whereas over-deepening of glacial troughs may extend to around 200 m
(for example, Glen Avon, Hall and Glasser, 2003). In low land areas, such
as Norfolk, buried valleys are known to have reached a depth of 100 m,
and it has been suggested that they were formed by sub-glacial streams
incising into the chalk (Woodland, 1970), demonstrating the depths to
which glacial meltwater erosion can occur.

The greatest eroding forces are those connectedwith the presence of
ice sheets and glaciers. Infrastructure associated with a GDF in the near
surface environment, such as backfilled access shafts and drifts, could
therefore be affected by erosion processes. Although a GDF itself
would not be impacted by this degree of erosion (because of its
depth), incision or other erosional process occurring directly above a
GDF will result in the thickness of cover rock being reduced. Erosion
rates, therefore, need to be considered as part of a GDF siting process,
where a conservative approach to siting could be to avoid existing val-
leys and glacial troughs that are likely to be re-occupied during future
glacial advances.

2.4. Summary

Understanding and predicting the long-term changes in the natural
environment significantly contributes to the evidence underpinning the
safety case of deep geological disposal facility. The purpose of this con-
tribution has been to illustrate the challenge of assessing the impact of
long-term changes, in particular those mediated by plate tectonics and
climate variation, on developing such a safety case. The main thesis is
that, in contrast with tectonically active or recently deglaciated regions
of theNorthernHemisphere, such as Finland and Sweden,where similar
projects are at an advanced stage, the lower latitude, geologically vari-
able but stable intraplate locations such as the UK pose a different
challenge.

In the more dynamic tectonically active or recently deglaciated
areas, much of the hazard and risk assessment can made against obser-
vation of process and more deterministic means. However, in stable in-
traplate settings, this is necessarily based onmodelling and probabilistic
assessments. Absence of active process, and consequently a lack of con-
temporary observational information, is compounded by the nature of
natural processes that have complex patterns of interaction at all scales.

We have illustrated the nature of natural processes and their poten-
tial impact for a GDF in the UK. As the UK is located on the current
passive Atlantic margin, active plate margin tectonic processes, such
as fault rupture and volcanism, are assumed to have little impact during
the next 1 ma as they are dependent on major changes in Atlantic plate
configuration for which there are no detailed forward estimates. Simi-
larly, overall changes in the stress tensor and a potential increase in seis-
micity are controlled by the same far field processes, although, in
common with many safety-critical civil engineering projects, probabi-
listic assessment of seismic hazard, based on the distribution and mag-
nitude of events in the earthquake record, is typically undertaken. Allied
to these processes, uplift/subsidence and erosion/burial are ever present
processes that are accelerated during times of active tectonism and cer-
tain climatic conditions. In the UK, the observed pattern of uplift and
subsidence is largely attributed to glacio-eustacy, although some re-
searchers argue that North Sea lithospheric stretching and a north At-
lantic thermal anomaly are contributing factors.

Understanding the impact of climate change in the longer-term is
predicated on models which simplify the main components of the cli-
mate system, known future variation in orbital parameters and for a
range of anthropogenic CO2 contributions, whose uncertainty is large
on these timescales (Fischer et al., 2014). Any future assessment of cli-
mate impact on a GDF in the UK must therefore take account of a
range of possible future climate scenarios to account for this uncertainty
(Näslund et al., 2013). This is pertinent for the UK, whose mid-latitude
position has proven particularly sensitive to such global-scale climatic
changeswithmarked variations in prevailing climate over comparative-
ly short periods of geological time (tens of thousands of years; e.g.
Candy et al., 2011; Rose, 2009) as a result of its position relative to
southward moving cold polar air masses (Polar Front), and low latitude
warm ocean currents (North Atlantic Current).

Longer-term models typically predict a return to glacial conditions
between around 90 ka AP and 170 ka AP, however levels of atmospheric
CO2 and the impact of the resulting global warming may result in the
next cold phase not occurring or being much less intense. For those
areas in thenorth of theUK that are likely to become ice covered, thede-
gree of glacial erosion is a clear consideration, while further south in the
UK, aswell as in areas subsequently overridden by ice, the depth of pen-
etration of permafrost and its impact on engineered components of the
GDF becomes a consideration. Estimates of future permafrost penetra-
tion between about 215 and 320 m deep for northern Europe therefore
become important consideration in GDF design. The impact of changing
patterns of seismicity associated with syn- to post- and peri-glacial iso-
static movements are also significant and it is not unreasonable that
higher magnitude earthquakes than observed to date in the UK may
also occur around ice margins around the time of glacial loading and
unloading.

In the UK, national-scale assessments are being used to inform and
guide the site selection process for underground geological disposal of
radioactive waste. As the site selection process moves forward and
sites are identified for detailed study, site specific studies will need to
be undertaken because much of the understanding future natural
change required for the safety case of the site is site specific. These
will take account of the geological characteristics of the host rock and
surrounding formations, and how they are likely to respond to the
aforementioned natural changes and indeed how they might have
been affected by such processes in the past. This information will be
used to build an integrated understanding of the evolution of the sub-
surface environment of an area, in particular during the last tens of
thousands to a fewmillion years. The level of information and associat-
ed understanding of the evolution of an area will determine the confi-
dence that can be applied to these uniquely long-term predictions and
associated risks.
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