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HIGHLIGHTS

e Land-use regression (LUR) models for NO, were evaluated using a dispersion model.

e The number of monitoring sites improved LUR model performance, but not > ~30 sites.
e Networks including sites in populated areas better estimated across residential NO,.

e Roadside sites needed to better characterise the high end of residential NO,.

e No specific monitoring site design estimated both overall and high NO, levels well.
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ABSTRACT

Land-use regression (LUR) models are increasingly used to estimate exposure to air pollution in urban
areas. An appropriate monitoring network is an important component in the development of a robust
LUR model. In this study concentrations of NO, were simulated by a dispersion model at ‘virtual’
monitoring sites in 54 network designs of varying numbers and types of site, using a 25 km? area in
Edinburgh, UK, as an example location. Separate LUR models were developed for each network. The LUR
models were then used to estimate NO; concentration at all residential addresses, which were evaluated
against the dispersion-modelled concentration at these addresses. The improvement in predictive
capability of the LUR models was insignificant above ~30 monitoring sites, although more sites tended to
yield more precise LUR models. Monitoring networks containing sites located within highly populated
areas better estimated NO, concentrations across all residential locations. LUR models constructed from
networks containing more roadside sites better characterised the high end of residential NO, concen-
trations but had increased errors when considering the whole range of concentrations. No particular
composition of monitoring network resulted in good estimation simultaneously across all residential
NO; concentration and of the highest NO; levels. This evaluation with dispersion modelling has shown
that previous LUR model validation methods may have been optimistic in their assessment of the

model's predictive performance at residential locations.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

2005; Jerrett et al., 2005). Over the years, land use regression (LUR)
modelling has demonstrated better or equivalent performance to

The assessment of long-term exposure to air pollution for
epidemiological and health burden studies has been a challenge
because of the high spatial variation of pollutant concentration in
the urban environment, particularly nitrogen dioxide (NO) (Briggs,
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other geostatistical methods (Hoek et al., 2008), and therefore has
become popular in health studies to estimate long-term exposure
to ambient NO; (Beelen et al.,, 2014; Jerrett et al, 2009). LUR
modelling is a stepwise multiple regression method that regresses
the pollutant concentration at the measurement sites against the
land-use variables within buffer areas around the measurement
sites (Jerrett et al.,, 2007). The derived empirical relationship be-
tween pollutant concentration and surrounding land use is then
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applied to un-sampled locations to provide a spatially-resolved
seasonal or annual average pollution field.

The selection of monitoring sites to build the LUR model has
been identified as one of the factors affecting the quality of the LUR
model, but a rigorous method to determine the number and dis-
tribution of monitoring sites is lacking (Hoek et al., 2008). One
study (Kanaroglou et al., 2005) aimed to develop a formal method
to locate air quality monitors for LUR model development. How-
ever, the method has been rarely applied due to its complexity and
the extensive prior knowledge required on the population and
pollutant distributions. A few studies (Basagana et al., 2012;
Johnson et al., 2010; Wang et al., 2012) evaluated the effect of
number of monitoring sites on LUR model performance, but the
effect of the distribution of monitoring sites remains to be
investigated.

Evaluation of an LUR model has always been limited to the
measurements available in a monitoring campaign (Hoek et al.,
2008). The ultimate goal of exposure assessment is to accurately
predict the exposure of hundreds or thousands of study subjects,
but evaluation of an LUR model at this level through measurements
is practically impossible. However, with the use of a dispersion
model it is possible to simulate a pseudo-measured concentration
at every residential address, which can then be compared with an
LUR-model estimated concentration to assess the validity of the
latter.

The aim of this study was to evaluate a large suite of LUR models
built from different monitoring network designs by using disper-
sion modelled concentration at each home address to assess the
predictive power of the LUR models. This modelling study used as
its basis the city of Edinburgh (population ~460,000) in the east of
Scotland, UK (55.94° N, 3.18° W). The outcome of the evaluation is
to recommend sampling strategies and to highlight how particular
monitoring network designs may lead to potential exposure
misclassification.

2. Method

The evaluation of the performance of a monitoring network for
constructing an LUR model for estimating concentration at home
addresses was carried out in four stages. An overview of the
methodology is presented first, with details described in subse-
quent sub-sections. A schematic of the overall workflow is shown
in Supporting Information (SI) Fig. S1.

The ADMS-Urban model v3.4 (CERC, 2015) was used to simulate
NO, concentrations for each of the population home addresses
(centre points of residential buildings) in a 5 km x 5 km study area
in Edinburgh (Fig. 1). This area covers the commercial (city centre)
and residential areas of the city and encompasses 7445 residential
buildings housing a total population of 144,715. The dispersion
modelled NO, concentration is considered to be the reference, on
which the subsequent LUR model development and evaluation are
based. Next, three different types of monitoring networks were
designed (comprising different numbers of monitoring sites) based
on household density and proximity to road. The NO, concentra-
tion at each monitoring site was modelled with ADMS-Urban using
the same setup as the modelling of residential NO, concentration.
The third stage was to develop a separate LUR model for each
monitoring network, which was then applied to residential address
to provide an LUR-model estimate. Finally, the LUR-model-
estimated residential concentration was compared with the
dispersion modelled residential concentration. The extent of
agreement between the two indicates the performance of the LUR
model and, in turn, the performance of the monitoring network
from which the LUR model was constructed.

2.1. Stage 1 — dispersion modelling of residential NO, concentration

2.1.1. Data preparation

All the Geographic Information System (GIS) data, including
buildings and road networks for the City of Edinburgh, were ob-
tained from EDINA Digimap Ordnance Survey Service (Ordnance
Survey, 2015) as ESRI Shapefiles. Annual average daily traffic
(AADT) of traffic for the major roads in 2013 were downloaded from
the Department for Transport (DfT, 2015). The population of each
postcode area for the 2011 census was distributed to the buildings
within the polygon area based on the volume of the building
(building polygon area x building height). The centre of the
building polygon with assigned population was used as the home
address.

2.1.2. ADMS-urban setup

The model domain (12 km x 12 km) covered most of the City of
Edinburgh where all the emissions of NOx and NMVOC (non-
methane volatile organic compound) were modelled (Fig. 1).
Within this larger domain, a 5 km x 5 km subset was chosen to
output the concentration at each home address. To allow the re-
ceptors on the edges of the inner domain to be modelled smoothly,
a 1 km buffer zone was added to the 5 km x 5 km output area,
within which all the major and minor roads were explicitly
modelled as road sources, whereas emissions outside the buffer
zone were modelled as a 1 km x 1 km gridded area source. NOx and
NMVOC emissions were downloaded from the UK National Atmo-
spheric Emissions Inventory (NAEI) for 2012 (NAEI, 2015) with a
resolution of 1 km?. Road emissions were calculated by dividing the
total emissions for the major or minor road subsector by the total
length of the corresponding roads within each 1 km? grid. For grids
in which road emissions were explicitly modelled, the road emis-
sions were subtracted from the grid total emission. Measured
meteorological data for the model, including wind speed/direction,
cloud cover and temperature, were obtained from a WMO station
to the west of the model domain (Gogarbank: 55.93° N, 3.35° W)
(Met Office, 2012). An urban canopy file was prepared to account
for the variation in the vertical profiles of wind speed and turbu-
lence caused by the presence of buildings. Background concentra-
tions of hourly-average NO,, NOy and O3 were obtained from a rural
national-network monitoring station to the south of the model
domain (Bush Estate: 55.86° N, 3.21° W). For 2012, 0.8% and 23% of
03 and NOx measurements, respectively, were missing. These were
replaced by the average concentration for that particular hour over
the whole year. Monthly average concentration was calculated at
each receptor in ADMS-Urban, from which the annual-average
concentration was calculated as the metric in the subsequent
analysis.

2.2. Stage 2 — sampling network design

Three different types of sampling networks were investigated.
The aim in the selection of monitoring sites was to investigate how
network selection criteria and number of sites influence the rep-
resentation of the spatial variation of NO; at the residential home
addresses. Specifically, the exposure study area was first dis-
aggregated into 25 m x 25 m grid cells. The following GIS variables
were then calculated for the centroid of each grid cell: total home
addresses within a 100 m buffer (HH100) and distance to major/
minor road edge (MJRDDIST/MNRDDIST). Three types of moni-
toring sites were then defined:

e High household density sites (HH sites): centroid of the cells
with HH100 falling in the top 10% of all the 25 m grid cells;
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Fig. 1. The modelling domain for the city of Edinburgh. The inset map shows the locations of all potential monitoring sites. The underlying contour plot shows the monthly average

dispersion model concentration of NO, for April 2012.

e Roadside sites: centroid of the cells with MJRDDIST between
0 and 5 m;

e Background sites: centroid of the cells with both MJRDDIST and
MNRDDIST > 200 m.

A subset of each of the total set of HH and roadside sites was
then randomly selected, subject to a minimum distance of 300 m
between any pair of sites, to form two pools of potential HH and
roadside monitoring sites to be used in the sampling networks. The
locations of these sets of monitoring sites are shown in Fig. 1. The
purpose of adding a minimum distance constraint to the random

selection was to ensure that potential network sites were distrib-
uted across the range of localities in the study area. A third subset of
sites was randomly selected from the total set of background sites,
but with a minimum distance constraint of 500 m, since the
background concentrations in this modelling study are mainly
determined by the gridded emissions which have a resolution of
1 km? rather than by the road network which has a finer resolution.
Due to the minimum distance constraint added to the random se-
lection, the number of monitoring sites of each type from which a
monitoring network could subsequently be selected comprised 54,
70 and 50 for roadside, HH and background sites, respectively
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(Fig. 1).

From these potential monitoring sites, the following three types
of sampling networks were designed by randomly selecting
different numbers of sites from each type of monitoring site.

e Household density based network (HH network): randomly
selecting from the HH sites only;

e Proximity to road based network (Road network): randomly
selecting equal numbers of roadside sites and background sites;

e Mixed network: randomly selecting equal numbers of roadside
sites and HH sites.

Eleven different numbers of monitoring sites were tested for
each type of network design ranging from 10 to 60 (in steps of
N = 5). Random sampling of each number of monitoring sites was
repeated 30 times to obtain a statistical distribution of a particular
network configuration, resulting in 990 unique networks (3
network designs x 11 network sizes x 30 random replications).
Table S1 summarises the configurations of all the networks
examined. As a further network sensitivity test, different pro-
portions of roadside and HH sites within the Mixed network were
investigated to evaluate the effect of network composition in esti-
mating residential NO, concentration. Table S2 summarises the
different network compositions investigated.

The HH networks were designed in the anticipation that such
networks would more accurately estimate concentrations at most
residential addresses. However this sampling design might under-
predict concentrations for a small fraction of population who live
close to roads. The Road networks, being a mixture of roadside and
background sites, should capture the greatest NO, variation in the
study area; this is the network site selection design used in many
monitoring campaigns (Beelen et al., 2013). The Mixed networks of
roadside and HH sites aimed to capture similar spatial variation of
NO, as the Road network, but also to represent where most the
population live. This sampling design resembles the concept of a
formal methodology for locating monitoring sites (Kanaroglou
et al., 2005), namely locating monitors where the expected pollu-
tion spatial variability and density of the study subjects are high.
Unlike the formal methodology, however, the sampling design here
does not require prior knowledge of the pollutant concentration
surface, therefore the application of this sampling design is less
restricted.

2.3. Stage 3 — LUR modelling

2.3.1. Predictor variables

A total of 15 predictor variables were selected for model
development (Table 1). These variables were chosen based on prior
knowledge that they may correlate with the input emissions in
ADMS-Urban and their inclusion in previous LUR models for NO,
(Beelen et al., 2013). As shown in Fig. S2, NOx emissions for each of
the 1 km? grids in the study area are mostly dominated by road
transport and combustion in commercial/residential sectors. The
total road length, population counts and building plan area within a
buffer radius are considered to reflect these emissions. In addition,
in some areas, NOx emissions from ‘other’ transport (most likely
resulting from railways) are also significant. Therefore total railway
length within a buffer was also included as a predictor variable.
Since the emissions apart from major roads and some minor roads
were modelled as 1 km? grid sources in ADMS-Urban, the buffer
radii for the relevant predictor variables were chosen to be com-
parable with the resolution of input emissions, namely 0.5 and
1 km (Table 1). The rest of the predictor variables attempt to ac-
count for the increase in NO, concentration close to road sources
(Table 1).

2.3.2. LUR model development and diagnostics

The development of the LUR models followed the method used
in the ESCAPE project (Beelen et al., 2013). The method is a su-
pervised forward stepwise procedure which aims to maximise the
adjusted R? of the model while also ensuring that the included
variables are associated with coefficients with pre-defined di-
rections (Table 1).

First, all variables were individually regressed against the NO,
concentrations in that monitoring network. The variable with the
highest adjusted R? and a coefficient with pre-defined direction
formed the initial model. Second, the remaining variables were
successively added to the start model and the change in adjusted R?
recorded. The variable resulting in the highest increase in adjusted
R? was added to the model if: (i) the increase in adjusted R? was
greater than 1%; and (ii) the coefficients of this variable and the
variables already in the model conformed to the pre-defined di-
rection. The selection process was continued until no variable ful-
filled the above criteria. At the final step, variables with p-value
greater than 0.1 were subsequently removed from the model
starting from the variable with the highest p-value.

Diagnostic tests were performed on the final model. Multi-
collinearity in the variables was checked using Variance Inflation
Factor (VIF). Predictors with high VIF value (>3) were excluded
from the model one at a time starting with the variable with the
highest VIF. Potential influential observations were investigated
using Cook's D value. An influential observation (indicated by a
Cook's D > 1) was generally caused by including a variable with
extreme values or many zero values. A sensitivity test was therefore
conducted on a model with an influential observation problem by
fitting a new model without using the observation with Cook's
D > 1. If the change in the coefficient for that variable was large
(over 100% of the coefficient derived from using all the observa-
tions), a new LUR model was developed following the above pro-
cedure but excluding that specific variable from the outset.

For the LUR model validation, leave-one-out-cross-validation
(LOOCV) was used to assess the generalisability of the LUR model.
LOOCV uses the variables in the final model to develop a regression
model using N — 1 observations (N = total number of observations
in a monitoring network), which was then applied to the leave-out
site. The procedure was repeated N times at which point all the
predicted concentrations are compared with the observations to
test the validity of the model within the dataset. Values of R? and
Root Mean Squared Error (RMSE) calculated from LOOCV were used
to assess the LUR model's capability to predict the concentrations
within a monitoring network.

2.4. Stage 4 — evaluation of LUR model's capability at estimating
simulated NO, concentrations at residential addresses

This aspect of LUR model evaluation compares the LUR
modelled concentration at residential address with that modelled
by ADMS-Urban. In essence this is similar to the concept of hold-
out validation (HV) in a regression model validation, where the
training data and testing data are completely independent. How-
ever the validation dataset is based on ADMS-Urban output and is
of constant size and much larger (7445 residential addresses) than
the traditional HV validations based on measurement data. In this
context, the evaluation results not only reflect the performance of
the LUR model but also indicate the relative effectiveness of the
underlying monitoring sites used to build the LUR model. R?, RMSE
and Mean Bias (MB) were used here to evaluate the LUR modelled
concentration for all population addresses and for different con-
centration ranges.

All GIS calculations were conducted in the Feature Manipulation
Engine (FME) (Safe Software Inc., 2015). Statistical analyses were
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Table 1

Predictor variables with buffer sizes and a priori defined directions of effect on NO, concentration.

Predictor variables Abbreviation Unit Buffer radius (m) Direction of effect

Population counts POP n 500, 1000 +

Building plan area BA m? 500, 1000 +

Total major and minor road length RDLEN m 500, 1000 +

Total railway length RAILLEN m 500, 1000 +

Distance to the nearest major road (inverse INVMJRDDIST, INVMJRDDIST2 m~!, m? NA +
distance and inverse distance squared)

Distance to the nearest road (inverse distance INVDIST, INVDIST2 m~!, m? NA +
and inverse distance squared)

Traffic volume on nearest major road ALLTRAF veh.day~! NA +

Product of traffic intensity on nearest major TRAFDIST, TRAFDIST2 vehday ' m~!, m2 NA +

road and inverse distance to the nearest
major road and inverse distance squared

conducted in R software (R Core Team, 2015).

3. Results
3.1. ADMS-urban model validation

ADMS-Urban was evaluated against measurements taken by
both reference chemiluminescence analyser and passive diffusion
tube (PDT). Comparison between the modelled annual average
concentration of 2012 and the measurement by reference analyser
at three monitoring stations in the study area showed that the bias
was small at urban background (ED3) and minor roadside (ED7)
(Table 2). The relatively large underestimation at major roadside
(ED5) could be associated with the known issue of under-reporting
of NOy from diesel vehicles (Carslaw and Rhys-Tyler, 2013).

A network of 30 PDT sampling sites within this study area were
deployed weekly for 6 weeks during summer and winter periods of
2013/2014. Detail of the site locations and characteristics can be
found in Table S3 and in Lin et al. (2016). Seasonal average con-
centration (i.e. mean of 6 weekly average NO, concentrations) was
compared with ADMS-Urban output. Sites containing more than 1
week's missing weekly NO, were excluded from the model evalu-
ation. Some PDTs were located next to bus stop or at the traffic
junction, where additional emissions from buses and traffic
queueing are considered to be great but not modelled in the current
model setup. These sites therefore do not reflect the general pre-
dictive ability of the ADMS-Urban model and were also excluded
from the evaluation. Fig. 2 shows the relationship between
modelled and PDT-measured NO, concentrations during different
seasons. Overall the model underestimated NO, concentrations
compared to the PDT measurements. However the spatial variation
in the measured NO, was explained very well by the model
(R? = 73% and 77% for summer and winter, respectively) and was
comparable to a previous ADMS model evaluation study (Dédele
and Miskinyte, 2014). This indicates that although there is bias
between modelled and PDT-measured NO, concentration the
spatial pattern predicted by the model is consistent with the
measurements. The bias could result from both the errors in the
model and the errors in the PDT measurements. Large discrepancy
(55% for summer and 82% for winter) between PDT measurement

Table 2

and reference analyser was observed during the deployment period
at one co-location site (Table S4). This partly explains the general
underestimation in the modelled NO, compared to the PDT
measurements.

Given the good agreement between the model and real-time
analyser measurements at the urban background and minor
roadside monitor locations, and the very good capture of spatial
pattern indicated by the dense PDT network, it can be deduced that
the dispersion model here fulfils the purpose of this study; that is,
to simulate a realistic pollution surface of NO, for the evaluation of
the LUR model validity and of the monitoring sites used to build the
LUR model.

3.2. Evaluation of the LUR models constructed from different
monitoring networks

The distributions of NO; concentrations at the locations of each
type of monitoring site, and at all the population addresses, are
summarised in Fig. S3. Consistent with the expectations under-
pinning the network design principles, Fig. S3 shows that a Road
network (roadside sites + background sites) is likely to cover the
whole range of concentration across the modelled domain,
whereas a HH network (only HH sites) matches most closely the
interquartile range of residential NO;, concentration.

Fig. 3 summarises the following statistics evaluating LUR model
performance as a function of network design and size: (i) the per-
centage of variance explained within the data used to build the LUR
model (LUR R?); (ii) the ability of the LUR model to predict the
observed concentrations at the virtual monitoring sites (LOOCV R?
and LOOCV RMSE); and (iii) the effectiveness of the monitoring
networks at predicting concentrations at all the residential ad-
dresses (Residential R> and Residential RMSE). Fig. 3 shows that
LUR R? and LOOCV R? slightly decreased with increasing network
size, while LOOCV RMSE slightly increased. In contrast, the effec-
tiveness of the monitoring networks at predicting residential NO;
concentration improved with increasing network size as shown by
the increasing Residential R*> and decreasing Residential RMSE
(Fig. 3). The improvement in the prediction of residential concen-
tration (Residential R’ and RMSE) was, however, insignificant be-
tween LUR models constructed with >30 monitoring sites, as

Dispersion model versus measured annual average NO, concentration in 2012. ED3, ED5 and ED7 are three real-time monitoring stations (shown in Fig. 1) located at urban

background, major roadside and minor roadside, respectively.

Modelled NO, (ug m—3)

Measured NO, (g m~3)

Over/under-estimation by the model

ED3 24.8 241
ED5 354 39.1
ED7 275 28.1

2.8%
-9.5%
—2.0%
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calculation.

indicated by the overlap of inter-quartile range of the statistic
calculated from 30 random repetition. The fact that the LOOCV R?
was significantly higher than the Residential R? across the network
size for Road and Mixed networks (Fig. 3a) suggests that using
LOOCV to evaluate the LUR model's predictive ability might be
overly optimistic. The contrast between the performance of the LUR
model and its ability to predict residential NO, concentration was
especially large for the Road network design (comprising a mixture
of roadside and background sites), and for the other network de-
signs when there were only 10 or 15 monitoring sites (Fig. 3a). The

most effective type of monitoring network was the Mixed network,
as indicated by the highest Residential R limit and lowest Resi-
dential RMSE limit. The variability of Residential R? and RMSE in the
30 random repetitions of each network configuration (whiskers in
Fig. 3) decreased with increasing network size, suggesting that
larger number of monitoring sites better capture the actual rela-
tionship between predictor variables and NO; concentration, hence
less between-LUR-model variabilities.

The performances of the LUR models in estimating residential
concentration within three separate ranges of NO, concentration
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are compared in Fig. 4. At the low end of NO, concentration
(<20 pg m~3), RMSE was similar between Mixed and HH networks,
but both HH and Road networks significantly overestimated (MB)
the overall residential NO, concentration. For NO, concentrations
between 20 and 30 pg m~>, the HH networks generally under-
estimated the residential concentration (Fig. 4b). The most
distinctive difference between the three network designs was
observed at the high end of NO, concentration (>30 pg m~>). For
these NO; concentrations, the prediction errors (RMSE) and the
extent of overall underestimation (MB) were significantly higher
for the HH networks (Fig. 4). Mixed and Road networks performed
similarly at high NO, concentration, although they both still, on
average, underestimated (Fig. 4b). Similar to the statistics in Fig. 3,
the variability of estimation errors also reduced with increasing
network size. Overall, considering the results shown in Figs. 3 and 4
together, the Mixed networks were most effective in estimating
residential NO, concentration when considering both all residential
addresses together and subsets of addresses in different ranges of
NO, concentrations.

Fig. 5 shows the results of the investigation of the different
proportions of HH sites and roadside sites within the Mixed
network on the LUR model predictions of residential NO, concen-
trations. There was no significant trend in the R? values across the
different proportions of roadside sites in the Mixed network
(Fig. 5a). The prediction error (RMSE) increased with increasing
proportions of roadside sites (Fig. 5b). The variability of the RMSE
resulting from networks consisting only of roadside sites was the
largest, whereas the LUR models derived from networks with more
HH sites were relatively more precise (Fig. 5b).

The performance of networks containing different percentages
of roadside sites at different NO, concentration ranges are
compared in Fig. 6. For NO, concentration <30 pg m >, the RMSE
increased with increasing percentage of roadside sites (Fig. 6a) and
the MB suggested overestimation for networks with high roadside
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site composition (Fig. 6b). However at NO; concentration
>30 pg m~>, the RMSE decreased with increasing percentage of
roadside sites (Fig. 6a) and higher roadside site composition led to
reduced bias (Fig. 6b). Fig. 6a shows that LUR models constructed
with only roadside sites resulted in high variabilities in the RMSE at
NO, concentration <30 pg m 3, whereas LUR models constructed
with all HH sites resulted in high variabilities in the RMSE at high
level of NO, concentrations (>30 pg m>).

4. Discussion

In most LUR studies, LOOCV and/or hold-out validation (dividing
monitoring sites into two independent sets for model development
and validation) have been used to validate the LUR models. LOOCV
tests how well the LUR model predicts the observation within the
training dataset. Hold-out validation evaluates the predictive abil-
ity of the LUR model at locations that were not used in model
development. The latter evaluation is of more interest for an LUR
model; in practice, however, there is always a trade-off between
building a more robust LUR model using a larger training dataset
and giving more power to the evaluation using a larger validation
dataset. A limited number of monitoring sites in many studies
makes the division of the dataset even more difficult. Evaluation of
LUR models on all potential exposure subjects has been unfeasible
in reality. However, this can be achieved by using a dispersion
model to provide a realistic spatial field of urban ambient NO,
concentration. Although there may be uncertainties in the
dispersion-modelled concentrations, the nature of the errors
should be similar at the virtual monitoring sites and at the resi-
dential addresses.

As expected, more monitoring sites yielded better estimation of
residential NO, concentration by the LUR model (Fig. 3). For all
three network types, however, the improvement in the estimation
was insignificant for networks with more than ~30 monitoring
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Fig. 4. Summary statistics of (a) RMSE and (b) MB in estimating residential concentration for different ranges in NO, concentration. The whiskers extend to 25th and 75th per-

centiles of the statistics for the 30 repetitions of each network configuration.
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extend to 25th and 75th percentiles of the statistics for the 30 repetitions of each network configuration.
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Fig. 6. Summary statistics of (a) RMSE and (b) MB in estimating residential concentration in different NO, concentration ranges for Mixed networks containing different proportions
of roadside sites. The whiskers extend to 25th and 75th percentiles of the statistics for the 30 repetitions of each network configuration.

sites. Although the improvement was insignificant, higher number
of monitoring sites increased the stability of the developed LUR
models as shown by the very small inter-quartile range for the
statistics at larger network sizes in Figs. 3 and 4. As the number of
monitoring sites increased, the number of unique variables
appearing in the LUR models decreased (Table S5), indicating that a
greater number of monitoring sites was more effective at elimi-
nating insignificant predictor variables. This is consistent with the

findings of Basagana et al. (2012) using actual NO, measurements.
In our work, it was found that ~30 observations are sufficient to
capture the spatial variation of the residential NO, concentrations
in a dispersion modelled pollution surface of an urban area of
25 km?, but this number is expected to be larger in reality due to
local effects (e.g. street canyon effect and traffic queueing) that
were not modelled by ADMS-Urban and for larger areas than
simulated in this study. Basagana et al. (2012) showed that the
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improvement of R? in hold-out validation was minor after ~60
monitoring sites in a study area of 45.7 km?. In a national wide
Netherlands study, LUR models constructed with over ~90 moni-
toring sites seemed to result in similar prediction ability. Collec-
tively these results suggest that a minimum optimal number of
monitoring exists but depends on the actual study area.

In the ESCAPE study (Beelen et al., 2013) and many other LUR
studies (Aguilera et al., 2008; Madsen et al., 2007), urban back-
ground sites were selected in conjunction with roadside sites to
build the LUR model. Urban background sites are usually defined
with respect to the distance to road source or traffic activity within
a certain buffer, irrespective of the distribution of the exposure
study subjects, as was represented by the Road network design in
this study. Fig. 3a shows that LUR models derived from such net-
works were generally poorer at estimating NO, concentration at
residential addresses than LUR models derived from networks with
sites selected on the basis of household density. LUR models
derived from Mixed networks were better at estimating residential
NO, concentration than those derived from Road networks (Fig. 3)
and also gave comparable errors to Road network-derived LUR
models for estimating concentrations at the high end of the dis-
tribution (Fig. 4). This observation emphasises the importance of
characterising both the concentration and population distribution
in the study area when designing a monitoring network.

The composition of different types of measurement sites in most
monitoring networks used to construct LUR models to date has
been rather arbitrary. Some researchers (Cyrys et al., 2012) followed
the principle of over-representing the roadside sites with respect to
the fraction of addresses close to the roads, as this captures the
spatial variation of NO-. In our work, LUR models constructed from
networks containing 0—30% of roadside sites (compared with 0.2%
of addresses within 10 m to the roads in the study area) showed
lower estimation errors (Fig. 5b) compared to other network
compositions for all three network sizes tested. When examining
the estimated residential concentrations at different NO; levels,
LUR models constructed from networks containing 0—30% of
roadside sites resulted in larger errors at high NO, concentrations
compared to networks containing higher proportions of roadside
sites (Fig. 6). The results here suggest that a greater proportion of
roadside sites in a monitoring network yielded LUR models that
better characterised the higher end of the residential NO, con-
centration (Fig. 6) but also introduced greater prediction error
considering the population as a whole (Fig. 5), and vice versa for
LUR models derived from networks containing a greater proportion
of HH sites. No particular network composition was simultaneously
able to provide an LUR model capable of good overall estimation of
the residential NO, concentrations and a good estimation of the
higher end concentration. This illustrates the limitation of LUR
models to capture the spatial contrast in residential NO, concen-
tration predicted by the dispersion model.

As a common LUR model evaluation method, the LOOCV R?
statistic was found to overestimate the LUR predictive ability,
consistent with the limited number of other studies on the same
topic (Basagana et al., 2012; Johnson et al., 2010; Wang et al., 2012).
Collectively, the results from these studies highlight the limited
predictability of empirical NO, LUR models that are highly
dependent on the measurement sites. Dispersion modelling, as
demonstrated in this study, is a potentially useful tool to design an
effective monitoring network and to better evaluate the LUR
models in a way that is otherwise unfeasible in reality.

We acknowledge that the area of our domain (25 km?) is smaller
than some LUR studies (Aguilera et al., 2008; Fernandez-Somoano
et al, 2011). This choice was mainly limited by the intensive
computational requirement of the dispersion model to calculate
concentration at the large number of residential addresses.

Clustering addresses with similar characteristics would reduce the
calculation time and facilitate dispersion modelling over a larger
area. In this study, a dispersion model provided the NO, concen-
trations for development of the LUR models and for evaluation of
their predictive capabilities. Whilst accepting potential discrep-
ancies between dispersion model and real measurements, this
work shows that more comprehensive evaluation of LUR models
and their underpinning monitoring networks is needed. Although
we only evaluated the LUR models for NO5, results for the effect of
number and type of monitoring sites on LUR model performance
should be transferable to other traffic-related air pollutants such as
black carbon and ultrafine particle number, given their mutual high
correlations.

5. Conclusions

Using a greater number of sites to build an LUR model improved
its ability to estimate residential NO, concentrations. However,
improvement in LUR model predictive capability was not signifi-
cant beyond a certain number of monitoring sites: the predictive
capability achieved using ~30 monitoring sites was similar to that
achieved using 70—100 monitoring sites, but a greater number of
monitoring sites tended to decrease imprecision. LUR models
constructed from a network design incorporating both high
household density areas and roadside sites better characterised the
full range of residential concentrations and specifically those with
highest concentrations. It is therefore recommended to incorporate
monitoring sites representing most of the study subjects when
designing of a monitoring network aimed at studying the health
effects of air pollutants. The more roadside sites included in a
monitoring network used to construct LUR model, the larger the
RMSE for the estimation of residential NO, concentrations, but the
lower the estimation error for high NO, concentrations. The fact
that no particular proportion of roadside sites within the network
design estimated well both the overall residential concentration
and higher level of NO, concentrations suggested a lack of spatial
contrast in LUR modelled pollution surface. A dispersion model has
been shown to be a useful tool for both designing a monitoring
network for LUR models and for the evaluation of the LUR models.
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