nerc.ac.uk

High-latitude ionospheric electrodynamics as determined by the assimilative mapping of ionospheric electrodynamics procedure for the conjunctive SUNDIAL/ATLAS 1/GEM period of March 28-29, 1992

Lu, G.; Emery, B. A.; Rodger, A. S.; Lester, M.; Taylor, J. R.; Evans, D. S.; Ruohoniemi, J. M.; Denig, W. F.; de la Beaujardière, O.; Frahm, R. A.; Winningham, J. D.; Chenette, D. L.. 1996 High-latitude ionospheric electrodynamics as determined by the assimilative mapping of ionospheric electrodynamics procedure for the conjunctive SUNDIAL/ATLAS 1/GEM period of March 28-29, 1992. Journal of Geophysical Research: Space Physics, 101 (A12). 26697-26718. 10.1029/96JA00513

Full text not available from this repository. (Request a copy)

Abstract/Summary

During the conjunctive SUNDIAL/ATLAS 1/GEM campaign period of March 28–29, 1992, a set of comprehensive data has been collected both from space and from ground. The assimilative mapping of ionospheric electrodynamics (AMIE) procedure is used to derive the large-scale high-latitude ionospheric conductivity, convection, and other related quantities, by combining the various data sets. The period was characterized by several moderate substorm activities. Variations of different ionospheric electrodynamic fields are examined for one substorm interval. The cross-polar-cap potential drop, Joule heating, and field-aligned current are all enhanced during the expansion phase of substorms. The most dramatic changes of these fields are found to be associated with the development of the substorm electrojet in the post midnight region. Variations of global electrodynamic quantities for this 2-day period have revealed a good correlation with the auroral electrojet (AE) index. In this study we have calculated the AE index from ground magnetic perturbations observed by 63 stations located between 55° and 76° magnetic latitudes north and south, which is larger than the standard AE index by about 28% on the average over these 2 days. Different energy dissipation channels have also been estimated. On the average over the 2 days, the total globally integrated Joule heating rate is about 102 GW and the total globally integrated auroral energy precipitation rate is about 52 GW. Using an empirical formula, the ring current energy injection rate is estimated to be 125 GW for a decay time of 3.5 hours, and 85 GW for a decay time of 20 hours. We also find an energy-coupling efficiency of 3% between the solar wind and the magnetosphere for a southward interplanetary magnetic field (IMF) condition.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1029/96JA00513
Programmes: BAS Programmes > Pre 2000 programme
ISSN: 01480227
Date made live: 21 Nov 2016 14:06 +0 (UTC)
URI: http://nora.nerc.ac.uk/id/eprint/515199

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...