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Abstract Since 1979 when continuous satellite observations began, Southern Ocean sea ice cover has
increased, whilst global coupled climate models simulate a decrease over the same period. It is uncertain wheth-
er the observed trends are anthropogenically forced or due to internal variability, or whether the apparent dis-
crepancy between models and observations can be explained by internal variability. The shortness of the
satellite record is one source of this uncertainty, and a possible solution is to use proxy reconstructions, which
extend the analysis period but at the expense of higher observational uncertainty. In this work, we evaluate the
utility for change detection of 20th century Southern Ocean sea ice proxies. We find that there are reliable prox-
ies for the East Antarctic, Amundsen, Bellingshausen and Weddell sectors in late winter, and for the Weddell Sea
in late autumn. Models and reconstructions agree that sea ice extent in the East Antarctic, Amundsen and Bel-
lingshausen Seas has decreased since the early 1970s, consistent with an anthropogenic response. However,
the decrease is small compared to internal variability, and the change is not robustly detectable. We also find
that optimal fingerprinting filters out much of the uncertainty in proxy reconstructions. The Ross Sea is a con-
founding factor, with a significant increase in sea ice since 1979 that is not captured by climate models; howev-
er, existing proxy reconstructions of this region are not yet sufficiently reliable for formal change detection.

1. Introduction

Over the period of passive microwave observations to the present day (i.e., since 1979), sea ice cover in the
Southern Ocean has increased [Cavalieri et al., 1999; Parkinson and Cavalieri, 2012]. There is a distinct spatial
and seasonal dependence to these trends, marked by large increases in the western Ross Sea in all seasons
and an increase in Weddell Sea ice cover in summer and autumn; these increases are contrasted by a reduc-
tion in the Amundsen and Bellingshausen Seas in summer and autumn [e.g., Hobbs et al., 2016]. Trends in
sea ice duration (i.e., the length of time over the year that a region has a sea ice concentration of more than
15%) largely match the distribution of areal trends [Stammerjohn et al., 2008]. An important question is
whether these trends are a response to anthropogenic climate change, or are due to internal variability.
Two challenges must be overcome to definitively answer this question; generally low confidence in the rep-
resentation of the complex Southern Ocean climate system by global coupled models, and the short dura-
tion of the continuous sea ice observation record.

Coupled climate models with realistic twentieth century climate forcings generally simulate a reduction in
sea ice cover in all sectors over the satellite period, which is most intense in austral winter [Hobbs et al.,
2016]. This difference with the observed spatial and seasonal trends brings into question the ability of these
models to adequately represent the Southern Ocean climate system, although the observed trends could
be due to internal variability rather than a forced response, in which case there is no discrepancy between
the models and observations. Several studies showed that the observed trend in total sea ice extent (SIE)
integrated over the whole Southern Ocean is well within the range of internal variability simulated by
unforced coupled climate models in the Coupled Model Intercomparison Project version 5 (CMIP5) suite
[Mahlstein et al., 2013; Polvani and Smith, 2013; Zunz et al., 2013], although interannual variability in the
models is high compared to observations, and in some cases more than double that of observed sea ice
[Zunz et al.,, 2013]. However, when the heterogeneous spatial pattern of trends is considered, there is evi-
dence that observations are outside the range of model internal variability [Hobbs et al., 2015].
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The second problem is the short duration of the passive microwave data record, which at 35 years is barely
long enough to capture true multidecadal variability. Studies have suggested that multidecadal variability
may explain some of the observed trends [Fan et al.,, 2014], with a particular role for atmospheric telecon-
nections to the tropical Pacific [Ding et al., 2011], but this is hard to test in the satellite record, and useful
insight may be gained from extending the sea ice record further back than 1979. Estimates of sea ice areal
cover from the early NIMBUS satellite missions now provide Southern Ocean SIE as far back as 1964 [Meier
et al., 2013a; Gallaher et al., 2014]. Gagné et al. [2015] compared the NIMBUS 1 estimate of September 1964
Southern Ocean SIE with both models and passive microwave data and found that although there has been
a slight decrease over the 50 year period, the change was not significant in the context of simulated internal
variability. However, this study only considered the total SIE and not the spatial pattern of trends. It is also
not clear whether estimates of the sea ice edge from visible images are biased compared to passive micro-
wave estimates of the 0.15 sea ice concentration isoline (the usual metric for SIE), and this approach is less
desirable for change detection than using a temporally consistent record.

To extend the record further back in time in a consistent fashion, proxy reconstructions must be used. Sum-
mer ice edge has been estimated using historical whaling records [de la Mare, 1997, 2009], but there are
concerns over the reliability of this approach [Ackley et al., 2003], and they do not provide a continuous
record to the present day. Several geophysical regional reconstructions have been published in recent years
[Curran et al., 2003; Abram et al., 2010; Murphy et al., 2014; Sinclair et al., 2014; Thomas and Abram, 2016], all
of which report statistically significant local changes in sea ice cover, but these reconstructions have not
previously been compared with simulated variability or forced response.

The primary aim of this work is to assess whether proxy reconstructions show evidence of an anthropogenic
signal in Southern Ocean sea ice over the twentieth century. We compare reconstructions covering different
seasons and regions with output from the CMIP5 models, using an optimal fingerprinting approach [Hassel-
mann, 1993; Allen and Stott, 2003], modified to account for uncertainty in the reconstructions.

2. Methods

2.1. SIE Data

The observational sea ice data were monthly Goddard Merged passive microwave Sea Ice Concentrations,
available from the National Snow and Ice Data Center [Meier et al., 2013b]. To calculate the sea ice extent,
the sea ice concentrations were interpolated from their published 25 km? grid onto a 0.5° longitude X 0.25°
latitude grid (approximately 25 km X 25 km at 60°S), from which the SIE was calculated as the total area of
grid cells with a sea ice concentration of 0.15 or higher. Areas of open water within the ice pack are not
included in this calculation, but this is modest compared to the total SIE, especially for the late winter
season (August-October). The same process was used to calculate SIE from the modeled sea ice
concentrations.

To extend the observational record, 10° longitude sea ice area estimates from the US Navy/NOAA Joint Ice
Centre (JIC) covering the period 1973-1990 [Ropelewski, 1990] were also included in the analysis. (Sea ice
area is nominally different from SIE in that it includes regions of 0-15% sea ice concentration, but tests com-
paring the SIE and sea ice area data reveal no noticeable difference for the season of interest.) Additionally,
point estimates of SIE from the Nimbus 1, 2, and 3 satellite missions [Meier et al., 2013a; Gallaher et al., 2014]
were used. The Nimbus 1 mission covered a 3 week period in September 1964, Nimbus 2 was operational
from May to August 1966, and Nimbus 3 data are available for the entire May 1969 to January 1970. The
data are released as coordinate locations of the ice edge from visible imagery. These were collected into
10° longitude bins, the mean latitude for each bin was calculated, and the area bounded in each bin by the
ice edge and the coast gave the SIE. The uncertainty in each bin was taken to be two standard errors of the
observations in that bin. A cubic spline was fitted to the mean ice edge estimate to interpolate a value for
observation-free bins, and for these bins the uncertainty was taken as the 1979-2014 climatological stan-
dard error for that sector and month from daily passive microwave data. The Nimbus data do not necessari-
ly cover the entire period of the 3 month seasons of interest, potentially introducing a bias when compared
to the true 3 month mean. An average of each year from 1979 to 2014 was calculated from daily passive
microwave data using only the dates available in each Nimbus instrument’s record, which was compared
with the actual 3 month mean for the same data. The mean difference (i.e., bias) was added to Nimbus
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estimates, and the random error (i.e., two standard deviations of the difference) was included in the Nimbus
uncertainties. Both the biases and random errors were less than 5% of the estimated SIE for each sector.
This analysis does not account for the potential bias in comparing SIE from the visible ice edge with that
defined by the 15% passive microwave SIE, but as for the JIC sea ice area we expect this to be small.

2.2, Proxy Data

Five proxy records were assessed, each of which have proven significant relationships to regional Antarctic
sea ice at interannual timescales. The South Orkney Fast Ice (SOFI) data are a record of the observed timing
of fast ice cover at two research stations in the South Orkney Islands from 1903 to 2008, and has been
shown to be correlated with Weddell Sea ice cover [Murphy et al., 1995, 2014]. The SOFI record has three
parameters; the day of continuous fast ice cover formation, the timing of the spring breakout, and the dura-
tion of cover (i.e., the time difference in days between formation and breakout).

The remaining reconstructions are from ice core records. The East Antarctic reconstruction is derived from
the Law Dome methanesulphonic acid (MSA) record [Curran et al., 2003], with published data from 1841 to
1995. MSA is a by-product of biological activity in the seasonal sea ice zone, i.e., the area that is ice-free in
summer and ice-covered in winter [Curran and Jones, 2000]. Ice core MSA records are also used to recon-
struct SIE in the Amundsen and Bellingshausen Seas (ABS), although in this case the record is from three
“stacked” (or averaged) ice core records from the Antarctic Peninsula (AP), covering 1902-2004 [Abram
et al.,, 2010]. Two records have been proposed as proxies for the Ross Sea region, the Ferrigno ice core MSA
record covering 1703-2010 [Thomas and Abram, 2016] and the Whitehall Glacier (WHG) ice core deuterium-
excess (dxs) record, running from 1882 to 2006 [Sinclair et al., 2014]. Deuterium-excess is largely a marker
for the ocean-source of precipitation [Lewis et al., 2013], and therefore represents ice cover more as a
response to atmospheric water transport pathways rather than direct sea ice processes.

Ideally, to increase the robustness of our analysis we would choose multiple proxies for each sector. Sea
salt in ice cores has been used a qualitative indicator for Antarctic SIE over glacial and interglacial time-
scales, but does not appear to capture multidecadal and shorter timescale variability that is important for
change detection on anthropogenic timescales [Abram et al., 2013; Levine et al., 2014]. MSA records exist
for other ice cores, but MSA is a difficult chemical marker to extract from ice cores that requires careful
treatment of the ice [Abram et al., 2008], and does not reliably represent sea ice change at all sites [Abram
et al, 2007, 2013]. Here we use only records that have been used in published studies as quantified
indicators of regional SIE.

2.3. Reconstruction Calibration and Validation

The reconstructions were made by first revisiting the spatial domain and time of year for which SIE is related
to each proxy. Each proxy was correlated with the passive microwave SIE for each 3 month seasonal mean
for the period of overlap (i.e.,, 1979 to the end of each proxy record (Figure 1)). For the MSA records, the
data are published as calendar annual means (i.e., January—-December), but the WHG dxs are published as
monthly means; the WHG analysis was repeated for all 12 possible annual-mean records (i.e., annual means
starting at each month) to find the best correlation, shown in Figure 1b (June-May). The MSA records show
the strongest correlations with late season sea ice, as expected (Figures 1a, 1c, and 1d). SOFI formation is
correlated with sea ice during advance (Figure 1e), SOFI breakout is correlated with sea ice during retreat
(Figure 1g), and SOFI duration is correlated with the late winter maximum (Figure 1f). The Ferrigno MSA
record has a strong relationship from the mid-winter maximum through the months of sea ice retreat (Fig-
ure 1¢); the persistence of this correlation occurs because late winter sea ice anomalies in this sector (for
which MSA is a proxy) persist throughout the austral summer [Holland, 2014]. Compared to the other prox-
ies, WHG dxs record has a relatively weak correlation with Ross SIE, and only for a narrow sector of the Ross
Sea (Figure 1b); Sinclair et al. [2014] only considered annual-mean SIE integrated over the canonical Ross
Sea sector in their analysis of the WHG sea ice proxy; hence, their findings are not directly comparable to
the spatially and seasonally dependent analysis we present here.

The Law Dome and AP regions of influence are slightly different from those used in Curran et al. [2003] and
Abram et al. [2010], respectively, probably because the JIC data were used for calibration in the original
studies. Interestingly, the SOFI records show correlations not just with the Weddell Sea, but also inverse cor-
relations with the Amundsen and Bellingshausen Seas [Murphy et al., 2014]. This is an expression of the
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Figure 1. (a—g) Correlations between passive microwave SIE and each proxy record, by season and longitude, from 1979 to the end of each proxy record. SIE have been integrated to a
10° zonal resolution. All data were detrended before calculating the correlation coefficient. Figure 1Th shows the approximate location of each proxy record. For Figures 1a-1g caption
colors correspond to marker colors in Figure Th, vertical dashed lines show the approximate locations of the relevant proxies, and the seasons of ice advance and retreat are indicated

on the y axes.
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I - : : : Antarctic Dipole (ADP), a leading
mode of Antarctic sea ice variability
that is characterized by an inverse
relationship between sea ice in the
Weddell and Amundsen seas, driven
by meridional winds [Yuan and Mar-
tinson, 2001; Raphael, 2007]. This
dipole pattern suggests that the SOFI
(and to a lesser extent the AP MSA)

- T ———— = records could be a valid proxy for
both the Weddell and the ABS
sectors.
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Figure 2. Correlation between seasonal SIE in the Weddell (300-360°E) and 36 | di t i |
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periods. Orange lines are for coupled model control runs (see Table 2, and section enough to represent multidecadal
2.4); blue lines are for 1979-2014 passive microwave data (with and without variability. The model control runs
trends); black lines in Figure 2a show the correlation between the SOFI-duration

and the AP MSA records (with and without trends). have ADP-like inverse correlations

that quickly diminish (or even become
positive) at timescales longer than 2-3 years, indicating that the ADP is only an interannual mode in the
models. Although the reliability of the models’ representations of long-term variability are in doubt, we
note that there is surprisingly robust agreement between them on this point, regardless of their
unsmoothed Weddell-ABS correlation. The proxies have weak correlations at interannual timescales, as may
be expected given the noisiness of their SIE signals at shorter timescales. Interestingly, when the proxies are
detrended there is an ADP-like negative correlation at the longer timescales, but the correlations are positive
when the proxies are not detrended. This would suggest that while the ADP mode might be an important
mode of variability at longer than interannual timescales (contrary to the models), long-term twentieth centu-
ry trends do not project onto this mode. Verifying whether this is the case requires further physical analysis
(and ideally longer direct observations) that is beyond the scope of this research. However, given the clear
uncertainty as to whether long-term signals of change project onto the ADP, we have chosen to exclude his
pattern from the reconstructions, and we do not extrapolate Weddell sea ice variability from AP MSA, or ABS
variability from the SOFI record.

The analysis shown in Figures 1 and 2 indicates several possible reconstruction seasons and locations, sum-
marized in Table 1. To test that the empirical relationship between SIE and each record is temporally
stationary, we calculated the proxy correlation coefficients with SIE integrated over the sectors shown in
Table 1, using 10 year moving windows (Figure 3). For August-October (ASO; Figure 3a) the correlations
between SIE and the three MSA records are consistently high, but the SOFI duration correlation is reduced
during the late 1990s. The correlation between SOFI formation and MJJ SIE is consistently high (Figure 3b).
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Table 1. Summary of Selection Criteria Applied to Each Reconstruction®

Observed Reconstruction Obs —
Overlapping  Uncertainty Trend Trend Reconstruction

Proxy Sea Ice Sector Time Period (10° km?) (10°km?a~")  (10km?a") Regression
ASO

Law Dome MSA E. Antarctic (80-140°E) 1979-1995 0.31 —135*x11 =55 1.4
Ferrigno MSA Ross-Amundsen (190-230°E) 1979-2010 0.31 10.5+5 44 1.2

AP MSA Amundsen-Bellingshausen 1979-2002 0.42 177 —87 13

(220-270°E)

SOFI duration Weddell (300-360°E) 1979-2008 0.40 —33*x8 =343 12
MJJ

SOFI formation Weddell (300-360°E) 1979-2008 0.38 —03*9 —59 1.1
DJF

WHG dxs Ross Sea (190-210°E) 1979-2006 0.27 134=*5 =71 1.1

“Third column is the period of overlap between each proxy and the passive microwave record; fourth is 1.96 times the root mean
square difference between the passive microwave record and the reconstruction; fifth column is the trend in passive microwave SIE for
the period of overlap; sixth column is the reconstruction trend for the same period; and seventh column is the regression coefficient
between the reconstructed (predictive variable) and passive microwave (response variable) SIE, using Geometric Mean Regression.

The correlation between WHG dxs and Ross Sea extent is not at all stable (Figure 3c), and the relationship
effectively disappears after the early 1990s. This temporal inconsistency makes the WHG dxs record unsuit-
able as a proxy for reconstruction, at least without further analysis of the reason for this nonstationary rela-
tionship; therefore, the reconstruction is omitted from our change detection analysis.

Time series of satellite SIE were integrated over each spatial domain for the relevant season. For calibration
and validation, a similar approach to Tierney et al. [2015] was used. Two thirds of the period of overlap
between the start of the passive microwave record (1979) were used as a training data set; the proxy
records were regressed against the relevant sector’s SIE using Geometric Mean Regression to estimate the
transfer coefficient, which accounts for errors and noise in both the dependent and independent variables
[Abram et al., 2010]. The transfer coefficients were applied to each proxy to obtain a reconstructed SIE
record for each sector. The uncertainty in each reconstruction was obtained by calculating the root-mean-
square difference from the satellite record; the reconstruction with the smallest root-mean-square differ-
ence was used.

The uncertainty was estimated as 1.96 times the root-mean-square difference (Table 1, column 4), with all
the reconstructions showing similar ranges of uncertainty. The regressions between reconstructed and sat-
ellite SIE (Table 1, column 7) are all slightly higher than the “perfect” 1-to-1 relationship, implying that the
reconstructions underestimate the true SIE variability. This is to be expected since the reconstruction uses a
linear empirical model to approximate the nonlinear climate system, and previous studies note that recon-
structions tend to underestimate long-term variability [von Storch et al., 2004]. In general, the reconstruction
trends are within the uncertainty range of the passive microwave trends, although the agreement is at the
limit of the uncertainty range for the Ross-Amundsen and Amundsen-Bellingshausen sectors in ASO.

Figure 4 compares the selected reconstructions with the passive microwave data, the 1973-1990 JIC data,
and estimates from the Nimbus 1, 2, and 3 missions, where available for the given season. For the East Ant-
arctic, Amundsen-Bellingshausen and Weddell sectors, the reconstructions agree with the three indepen-
dent observation sets, within the estimated uncertainty ranges. There are a small number of values that
differ from the satellite estimates by more than the uncertainty ranges, mostly for the JIC data which is
known to have exaggerated monthly mean variability [Ropelewski, 1990]. However, despite the good agree-
ment between Ferrigno MSA and post-1979 satellite observations, the relationship with the pre-1979 obser-
vations is poor (indicated by red markers in Figure 4b).

There is a known bias in the JIC data, especially an underestimation in the Ross Sea compared to passive
microwave [Harangozo, 1998]. However, there may also be evidence of nonstationarity in the Ferrigno MSA
record. There is a large jump in variance in the MSA reconstruction from 1997 onward [Thomas and Abram,
2016], consistent with large increases in variability in the snow accumulation records from this region [Tho-
mas et al., 2015]. The source region of MSA reaching the Ferrigno site is strongly modulated by changes in
the strength and location of the Amundsen Sea Low, a quasi-stationary low-pressure anomaly over the
Amundsen Sea [Thomas and Bracegirdle, 2015]. The increased MSA variance in the late 1990s is related to a
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Figure 3. 10 year correlation coefficients between proxies and sector integrated
SIE, for (a) ASO (with proxies/regions indicated in the legend); (b) SOFI formation
against MJJ Weddell SIE; and (c) WHG dxs against DJF Ross SIE.

deepening of the Amundsen Sea Low,
and appears unusual in the context of
the past 300 years [Thomas et al.,
2015]. Since we cannot rule out a
migration in the MSA source region
through time, which could affect the
empirical relationship between the
Ferrigno record and Ross sea ice, we
have therefore eliminated the record
from our change detection analysis.

The Ross Sea sector explains most of
the observed increase in Antarctic SIE
in 1979 and is the region of greatest
disagreement between models and
observations, so the lack of a reliable
reconstruction for this sector is a sig-
nificant confounding factor in our
analysis. For the remaining sectors,
our analysis indicates that the recon-
structions have a reasonable repre-
sentation of the true SIE variability,
with the caveat that the period of
overlap between the proxies and the
satellite record is short, especially for
the Law Dome MSA record.

2.4. CMIP5 Model Output

Model data are from the CMIP5
archive of coupled model experi-
ments performed by modeling groups
around the world, using common
experiment designs [Taylor et al,
2012]. We use three CMIP5 experi-
ments: The pre-Industrial control
experiments (piControl) were run free-
ly, forced only by an annually repeat-
ing seasonal solar cycle over several
centuries, and are used to estimate
the climate system’s internal variabili-
ty; the "historical” simulations were
run using all known forcings, natural
and anthropogenic, from 1850 to
2005, and are intended to give a real-
istic representation of the observed
climate system; and the “historicalNat”
experiment, which was forced only
using natural forcings (i.e., solar and

volcanic) and is used here to separate natural from anthropogenic responses. At the time of analysis, 21
models were available with at least three “historical” simulation members. Since we considered the ADP
mode in the reconstructions, the inverse correlation between sea ice in the Weddell and Amundsen-
Bellingshausen sectors was calculated in each model’s piControl simulation for the ASO and MJJ seasons
(supplemental Table 1). Thirteen models show and ADP-like negative correlations in both seasons, summa-

rized in Table 2, and are used in this analysis.

HOBBS ET AL.

TWENTIETH CENTURY ANTARCTIC SEA ICE CHANGE

7810



@AGU Journal of Geophysical Research: Oceans

10.1002/2016JC012111

reconstructed SIE (10° km?) reconstructed SIE (10° km?)

reconstructed SIE (10° km?)

2.40

2.20

1.80

1.40

2.40

2.20

1.40

4.80

4.40

4.00

3.20

o b b

P ETRRTI NI NS BTSN RS

‘ a) ASO EAntarctic ’—‘—

LN
’
ra [
,’® oo C ’
o ’l [ ] .
. ] "

- .
’

—_— ,

’ L)
P % ® .0
’ .
‘e *° ° 4
[ ] 4
e ‘e .
4 .
. ’
’
L4 [J L] .
L] L] ’

L B L LA A S B S B |

L LA IR B B B
140 160 1.80 200 220 240
observed SIE (10° km?)

M I RS SR EESE ES
7

c)ASOABS|  °.7

. ol
4 -
4
. L
L4
s e -
," e @ [
i k4 ° o 4
s -
" L I’ -
°
V4 ° b P L
e o L
° o, L
4 oK)
. ° o & bid L
Ao . L’ [
° . ,’ [

T l T T l V‘ T l T T l T T I T T I L g
140 160 1.80 200 220 2.40
observed SIE (10° km?)

| L )

1|e) MJJ Weddell ot §

. .
. . B
o0 .
L
° ‘a® o o (Y
’
e egee PR L
. .
4 (] d . -
. ) .
. . -
4 - e
. . L
[ ] . 4
. ’
4 ., B
. .
4 4 I~
’ .
. . I
. .
L4 Y . L

LI T L L L
3.20 3.60 4.00 4.40 4.80
observed SIE (10° km?)

2.40

2.20

2.00

1.80

1.40

5.40

4.80

4.50

4.20

e v v b by by by

I
e,

b) ASO Ross o

LI L B L S B B B B B R

L I B B B L B
140 1.60 180 200 220 240

observed SIE (10° km?)

1|d) ASO Weddell . i
'l
, [
’
’ -
l‘ e
. [ ) A =
" o & ,I.
.’ P I
l' ,'
[ ] [ ] B
“' . l’ -
() ’
. o .
[ ] 'l ° ..' ', I
e ¢ B
4 ’
S e Se e -
’l ° . l‘ |
’ L/ 4 4
’ [ ] ’ o
a ’
Y ° . -

| [SNELANLE B Sy B S R B B I R B

420 450 480 510 540 570

observed SIE (10° km?)

Figure 4. Comparison between single-proxy reconstructions (y axes) and satellite SIE (x axes) from passive microwave (black dots), JIC (red
dots), and Nimbus (purple lines indicating uncertainty ranges). Solid black lines show the 1-to-1 agreement, and dashed black lines show
the estimated reconstruction uncertainty range.

To remove internal variability from the modeled response to climate forcings, we calculated the multimodel
ensemble average SIE over the three regions represented by presatellite sea ice reconstructions (Table 1).
The model output was drift-corrected by calculating the long-term trends for each sector in each model’s
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control run, and subtracting that
Table 2. Summary of Models Used, Showing Model Name (With Appropriate Cita- df he f d X
tion), Length of aVailable Control Run Data (Years), and Number of Ensemble tren rom the torced experiments.
Members Used From CMIP5 “Historical” and “HistoricalNat” Experiments To account for biases in the models,

piControl  Historical ~Natural Only the mean was also extracted from
Rergin () LDEnises LS each model experiment to generate

WAdEST-O() @i all, 20031 S0 2 v SIE anomaly time series. An ensem-
ACCESS1-3 [Bi et al, 2013] 500 3 1

BCC.CSM1-1 [Xio-Ge et al, 2013] 500 3 1 ble mean response was calculated
CCSM4 [Gent et al,, 2011] 501 5 3 for each model, and then the multi-
CESM1-CAMS5 [Hurrell et al., 2013] 235 3 1 model mean was calculated by aver-
CSIRO-Mk3-6 [Rotstayn et al., 2012] 500 5 5 . ,

FGOALS-g2 [Li et al,, 2013] 700 3 3 aging each model’'s ensemble mean.
HadGEM2-ES [Martin et al., 2011] 576 5 0 To avoid biasing the estimates of
IPSL-CM5A-LR [Mignot and Bony, 2013] 1000 5 0 forced response toward any one
IPSL-CM5A-MR [Mignot and Bony, 2013] 300 3 2 .

MIROC-ESM [Watanabe et al., 2011] 630 3 3 model, a maximum of five members
MIROCS [Watanabe et al., 2010] 670 5 0 was used from each model and
eSS [ an e, 2012 S0y 2 L experiment. The uncertainty of the
Total 7112 48 20

response comes from internal vari-
ability and model disagreements
and was estimated as the standard error, i.e., the standard deviation of all ensemble members at each time
step, divided by the square root of the number of models. This uncertainty range thus is greater in experi-
ments that were performed by fewer models.

2.5. Optimal Fingerprinting Technique

The primary aim of this study was to assess whether current proxies can be used to identify an anthropo-
genic response in Southern Ocean sea ice. We used an optimal fingerprinting technique as described in
Hasselmann [1993]. A vector of observed climate change (Y), in this case the evolution of sea ice in different
sectors and seasons, is linearly decomposed into a forced response (X) and internal variability (g),

Y=/X+z¢,

where f3 is a scaling factor. The forced response X is usually estimated (as is the case here) from an ensem-
ble of single or multiple-forcing model experiments, and internal variability is represented by independent
segments of the model control simulations. If, for example, the vector of change was a 30 year trend map
of surface temperature, an ensemble mean of forced model simulations over the same 30 year period
would be used to estimate the response, and 30 year segments of the models’ control simulations would
be used to give a distribution of trend maps representing internal variability, referred to as “pseudo-
observations.”

Since in general the forced signal is small compared to the internal variability, the matrices X and Y are opti-
mized by multiplying by the inverse noise covariance matrix, C, . This transformation means that X and Y
are weighted toward temporal and spatial features with low internal variability, and weighted against
modes of high variability (including spatial and temporal autocorrelation). In practice, C,, is rarely invertible,
so a Moore-Penrose pseudo-inverse based on Empirical Orthogonal Functions (EOFs) of the control run dis-
tribution is used (in this case the 10 leading EOFs were used).

As well as calculating f for the observations, it is also calculated for the distribution of pseudo-observations,
giving a range for amplitude of the response signal due to internal variability alone. The scaling factor and
its range can be interpreted thus: if § > 1 then the amplitude of the response is underestimated in the mod-
el ensemble, and vice versa; f = 0 implies that there is no forced response at all, thus if the complete range
of f (i.e,, forced and due to internal variability) does not include zero then the forced response is detectable,
i.e,, outside the range explicable by internal variability alone.

An implicit assumption in optimal fingerprinting is that observational uncertainty is small compared to the
internal variability of the climate system. This assumption may not hold true for proxy reconstructions, and
a number of modifications to the standard technique have been made here to account for this complica-
tion. First, the control run segments were converted into “pseudo-reconstructions” by adding a reconstruc-
tion uncertainty, modeled as a random Normal time series for each sector/season with a mean of 0 and a
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Figure 5. Time plots of twentieth century SIE anomaly from reconstructions and CMIP5 simulations for each sector. Black lines show the reconstruction time series, with uncertainties.
Red lines show the model all-forcing simulation ensemble mean (with orange uncertainty ranges), and green line is the response to natural forcings only. Each gray line is an individual
105 year control run segment (49 in total), and the horizontal black lines show the 95% confidence intervals of the multimodel control runs, assuming a Normal distribution. Anomalies
are calculated with respect to the 1900-1960 mean, and are 20 year moving averages.

standard deviation of each reconstruction’s standard error (Table 1). Second, in general total least squares
regression is used to estimate f§ since uncertainty in the response vector X can be accounted for [Allen and
Stott, 2003; Hannart et al.,, 2014], but this requires a parametric estimate of the internal variability -range
that does not account for observational error. Instead, we use an ordinary least squares regression, which
allows an estimate of the ff-range by repeating the regression on all the pseudo-reconstructions to get a
distribution of f§ [Allen and Tett, 1999]. The use of ordinary least squares in this case can be justified since
the combination of variability and uncertainty in the reconstructions is much greater than the ensemble
mean X uncertainty. Finally, optimal fingerprint results are sensitive to the number of EOFs retained, and
ideally a post hoc test that ensures the residual after removing the signal (i.e,, €) is consistent with the con-
trol run internal variability [Allen and Tett, 1999]. However, it is not clear how this test can be reliably
employed where the observational error is large. Instead, to test the sensitivity of the results the optimal fin-
gerprinting results were compared with a nonoptimized analysis (i.e, X and Y were not transformed by the
EOFs), with no change to our conclusions.

3. Results

Figure 5 compares the reconstructed SIE for each sector and season with the CMIP5 simulated response to
all forcings over the twentieth century, and the estimated response to natural forcings only. Note that natu-
ral forcings are distinct from internal variability—the former is due to radiative forcings outside the Earth’s
climate system (i.e., solar variability and stratospheric aerosol from volcanic eruptions), whereas the latter is
due to the inherent chaos of the nonlinear ocean-atmosphere system. The all-forcings simulations show lit-
tle trend in the first half of the twentieth century, followed by a decrease starting in the late 1960s/early
1970s. This reduction diverges from the natural-forcing experiment, showing that the late twentieth century
ensemble-mean trends in the model simulations cannot be explained by natural forcings. Although a formal
attribution to specific forcings is not made in this study, Figure 5 demonstrates that the trend in the all-
forcings response in the simulations is anthropogenic.
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Figure 6. Scaling factors and their uncertainty ranges from optimal and unoptimal fingerprinting, for different analysis periods. X axis shows the start year of the fingerprint, in all cases
the final year is 1995 (a, b) for ASO and 2005 (c, d) for MJJ. Best fit scaling values are shown by filled circles, the 99% confidence interval by black lines, and the absolute range of uncer-
tainty by crosses. Vertical lines at the right of each plot show the results from 1980 to 1995/2005 satellite data. Dashed lines show the zero and 1 scaling factor values.

All the reconstructions show evidence for large-magnitude decadal-scale fluctuations, but also suggest an
overall decline in ice cover over the late twentieth century. The East Antarctic and ABS reconstructions qualita-
tively agree with the simulated anthropogenic SIE decrease starting in the 1960s, although the magnitude of
the reconstructed decrease is greater than the simulated anthropogenic response (Figures 5a and 5b).
Although regression indicates that the Weddell reconstructions have a negative trend over the satellite era
(Table 1), this is not in either ASO or MJJ (Figures 5¢ and 5d). Due to the large uncertainty in both the model
ensemble mean and in the reconstructions, a discrepancy between the models and reconstructions is not evi-
dent. Some of the reconstructions show quasiperiodic multidecadal fluctuations that differ from the modeled
forced responses, indicating that these fluctuations are low-frequency internal variability.

Internal variability as represented by the CMIP5 models is shown in Figure 5 as gray lines. Consistent with
previous studies [Mahlstein et al., 2013; Polvani and Smith, 2013; Zunz et al, 2013] neither the forced
responses nor the reconstruction trends are outside the range of the models internal variability. There are
unrealistic outliers in model variability, and many of the CMIP5 models are thought to overestimate South-
ern Ocean sea ice variability [Zunz et al., 2013], but the majority of the piControl simulation segments from
our ensemble seem reasonable when compared to the reconstructions.

Figure 5 demonstrates the signal-to-noise ratio problem that is a common challenge in detection and attribu-
tion studies, i.e., the theoretical response and observed trend is small compared to the internal variability of the
system. To account for this issue, the optimal fingerprint analysis described in section 2.5 was applied to the
reconstructions (Figure 6). The range of the scaling factors includes zero for both seasons and for all timescales,
whether or not optimization is used. This means that the best fit projection of the response onto the recon-
structions is well within the range of internal variability, and so an anthropogenic signal is not rigorously detect-
able in the reconstructions. For the nonoptimized case the range of uncertainty reduces as the period of
analysis increases (Figures 6b and 6d), but this is not the case for the optimized analysis (Figures 6a and 6c); in
fact, at the longer time periods the nonoptimal analysis shows smaller uncertainty. This suggests that optimal
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generally in the range of zero to unity,
implying that estimated response in
the reconstructions is higher than the
model simulations.

Results using satellite data for the same
sectors/seasons are also shown in Fig-
ure 6 (vertical lines). This comparison
allows us to consider the impact that
the extra uncertainty of proxy recon-
structions has on change detection.

-10 Also, by comparing with the results of
'© Hobbs et al. [2015] the impact of the
15 . _ . missing Ross Sea sector can be ascer-

tained. After optimization (Figures 6a
and 6¢), the results using the satellite
data do not have very much less uncer-
tainty than the reconstructions, even at
relatively short analysis periods. This
indicates that the optimization process
is effective at filtering out observational
uncertainty, and the benefits of using a
longer reconstruction record are not
offset by the high observational uncertainty. For the MJJ season, the scaling factor using satellite data matches
that of the reconstruction for the same time period (Figure 6d), but for the optimized case in ASO the scaling
factors are quite different (Figure 6¢). Presumably, this occurs because the ABS trend from the stacked Antarctic
Peninsula MSA record does not match the satellite observations (Table 1). This means that the optimization
process magnifies the difference in the ABS sector between the satellite and reconstruction data, and (recalling
that the optimization process weights the analysis to regions with a relatively low internal variability) implies
that the signal-to-noise ratio in the ABS sector is higher than the other sectors.
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Figure 7. 20 year trends in reconstructed ABS SIE (y axis) and the Tripole Index for
the IPO [Henley et al., 2015]. Trends were calculated at 5 year intervals and run
from 1910 to 1999. The final three periods (1970-1989, 1975-1994, and 1980~
1999) are indicated by open circles. The best fit relationship between the indices,
estimated by Geometric Mean Regression, is shown by the dashed line.

The satellite-only results were calculated over a similar period, and using a similar method, to those
obtained by Hobbs et al. [2015], except that the latter case included all circumpolar sectors. Unsurprisingly,
the omission of sectors that do not have reliable proxies results in a larger uncertainty range compared to
Hobbs et al. [2015] for both the advance and winter seasons.

Finally, we consider the role that tropical teleconnections may have played in explaining the observed trends. It
has been suggested that multidecadal tropical Pacific variability can effect winter SIE in the Amundsen and Bel-
lingshausen Seas [Ding et al., 2011; Meehl et al,, 2016]. The major mode of multidecadal tropical Pacific variability,
the Interdecadal Pacific Oscillation (IPO), switched from a warm to a cool phase over the passive microwave
period [Henley et al.,, 2015], and this may have aliased ABS trends in the satellite era. Figure 7 compares 20 year
trends in our ABS SIE reconstruction, with trends over the same periods from the Tripole Index of IPO variability
[Henley et al., 2015]. Regression analysis indicates a relationship between the two that is consistent with previous
work [Ding et al., 2011], such that ABS SIE tends to have negative trends when the IPO switches to a warm to a
cool phase, and vice versa. However, correlation between the two is not statistically significant, and we note
that the three strongest reductions in ABS SIE—which are the three trends since 1970—span a range of IPO
phase shifts. This analysis indicates that the tropical Pacific may have a role in the satellite-observed reduction in
ABS SIE, but trends going back the 1960s cannot be uniquely explained by this teleconnection.

4. Summary and Discussion

Several proxies of twentieth century regional Southern Ocean maximum SIE were compared with satellite
observations, and with coupled climate model simulations of SIE internal variability and response to climate
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forcings, the first such comparison to date for the Southern Ocean. For the East Antarctic, and Amundsen
Bellingshausen Sea regions, we have confirmed that ice core MSA records are a reasonable proxy for local
winter (ASO) SIE, and the South Orkney Fast Ice record is a useful proxy for Weddell SIE in early and late win-
ter (MJJ and ASO). Reconstructions of the Ross SIE are much less reliable, due to temporal dependence in
the empirical relationships between SIE and the WHG and Ferrigno chemical records. The SOFI and Antarc-
tic Peninsula MSA records could also be second-order proxies for SIE variability in the Amundsen and Wed-
dell Seas through the Antarctic Dipole mode of sea ice variability, but since it is not clear that long term
trends project onto this mode their use for change detection is in doubt.

There are limited independent estimates against which the reconstructions can be compared, but the
reconstructions included in the change detection analysis all agree within uncertainty ranges with early
Nimbus observations. Estimates of SIE based on ship log books [Edinburgh and Day, 2016] and whaling
records [de la Mare, 2009] indicate a decrease in summer SIE Weddell Sea ice cover since the early twentieth
century, consistent with the SOFI MJJ reconstruction. Coastal surface temperature records indicate a
decrease in Bellingshausen SIE in all seasons since the mid-twentieth century [King and Harangozo, 1998] in
agreement with the ABS reconstruction.

The East Antarctic and Amundsen-Bellingshausen proxy reconstructions are qualitatively consistent with
coupled model simulations, with both models and reconstructions showing a decrease in winter sea ice
cover since the early 1960s. The models also show a decrease in the Weddell sector in all seasons that is not
evident in the reconstructions, but this apparent discrepancy is within the range of the model and recon-
struction uncertainties. In all sectors and seasons, the response is small compared to simulated internal vari-
ability; therefore, a detectable anthropogenic signal cannot be rigorously detected.

The comparison of models and proxy reconstructions presented here offers useful insight into Antarctic SIE
change. In particular, the models and reconstructions both show decreases in the East Antarctic and
Amundsen-Bellingshausen sectors at approximately the same time, providing possible evidence of a very mod-
est anthropogenic signal, whilst the comparison of the reconstructions with the CMIP5 control runs helps place
previously reported ice core proxy trends [Curran et al., 2003; Abram et al., 2010; Sinclair et al,, 2014] in the con-
text of Antarctic SIE’s large internal variability. This analysis is especially useful for the East Antarctic sector, since
the relatively short passive microwave record shows an increase in ASO ice cover since 1979, in contrast to cou-
pled climate models. The reconstructions have also allowed a consideration of the role of multidecadal tropical
Pacific variability on SIE trends in the Amundsen and Bellingshausen Seas. The reconstruction indicates that
longer term trends in this sector cannot be fully explained by the tropical Pacific. For quantitative detection/
attribution the benefit of extending the observational record is not offset by the observational uncertainty of
proxy reconstructions, since optimal fingerprinting effectively filters the added uncertainty.

The unique nature of the Southern Ocean'’s circulation provides sound physical reasons why an anthropo-
genic signal in Antarctic sea ice might be modest, compared to the very significant decrease that is
observed in the Arctic. Near the coast, sea ice production and its subsequent northward transport means
that there is a net flux of briny, dense water over the continental shelf. This is largely responsible for the
deep convections that cause Antarctic Bottom Water formation [Rintoul and Naveira Garabato, 2013], and
means that warming signals are moved into the deep ocean more swiftly than elsewhere on the planet.
The observed warming and freshening of Antarctic Bottom Water [Purkey and Johnson, 2013; Schmidtko
et al,, 2014; van Wijk and Rintoul, 2014] suggests that changes may be more apparent at depth in the South-
ern Ocean. Further north, much of the ice pack lies over the region of upwelling Circumpolar Deep Water.
This means that near surface waters are constantly replenished by Circumpolar Deep Water (which due to
its long residence time in the deep ocean has a limited anthropogenic signal), thus delaying any anthropo-
genic warming at the surface [Ferreira et al., 2015; Marshall et al., 2015; Armour et al., 2016].

The results presented here are somewhat preliminary due to some unavoidable confounding factors. First,
the limitations of the reconstructions mean that the analysis does not include the region of greatest sea ice
change, the western Ross Sea, which is responsible for much of the observed increase in Antarctic SIE since
1979. Also excluded is the period of early sea ice advance, from March to May, which is the season when
the most significant SIE trends have occurred. An analysis that included that season and region might have
produced very different results [Hobbs et al., 2015], and it is hoped that in the future a reliable proxy for the
Ross Sea will be found. Additionally, although our analysis indicates that for the sectors and seasons
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analyzed, the model ensemble used here is not demonstrably inconsistent with the reconstructions or satel-
lite data, there remain legitimate questions regarding the models’ ability to reproduce the true variability
and forced response of Antarctic sea ice, especially in the Ross Sea.
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