
 
© 2016 British Ornithologists’ Union 
 
This version available http://nora.nerc.ac.uk/514661/ 
 

 
NERC has developed NORA to enable users to access research outputs 
wholly or partially funded by NERC. Copyright and other rights for material 
on this site are retained by the rights owners. Users should read the terms 
and conditions of use of this material at 
http://nora.nerc.ac.uk/policies.html#access  

 
 
This document is the author’s final manuscript version of the journal 
article, incorporating any revisions agreed during the peer review 
process. There may be differences between this and the publisher’s 
version. You are advised to consult the publisher’s version if you wish 
to cite from this article. 
 
The definitive version is available at http://onlinelibrary.wiley.com/ 
 
 

 
 

    
 
 

Article (refereed) - postprint 
 

 

 

Collop, Catherine; Stillman, Richard A.; Garbutt, Angus; Yates, Michael G.; 
Rispin, Ed; Yates, Tina. 2016. Variability in the area, energy and time 
costs of wintering waders responding to disturbance. Ibis, 158 (4). 711-
725. 10.1111/ibi.12399  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contact CEH NORA team at  

noraceh@ceh.ac.uk 

 

 

 
The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and 
other countries, and may not be used without the prior written consent of the Trademark owner. 

http://nora.nerc.ac.uk/514661/
http://nora.nerc.ac.uk/policies.html#access
http://onlinelibrary.wiley.com/
http://dx.doi.org/10.1111/ibi.12399
mailto:nora@ceh.ac.uk


A
cc

ep
te

d
 A

rt
ic

le
A

cc
ep

te
d

 A
rt

ic
le

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process, which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1111/ibi.12399 
This article is protected by copyright. All rights reserved. 

Received Date : 06-Aug-2015 

Revised Date   : 09-Jun-2016 

Accepted Date : 11-Jul-2016 

Article type      : Original Paper 

Editor: Jen Smart 

 

Short heading: Variability in birds’ responses to disturbance 

 

Variability in the area, energy and time costs of wintering waders responding to 

disturbance 

 

CATHERINE COLLOP1*, RICHARD A. STILLMAN1, ANGUS GARBUTT2, MICHAEL 

G. YATES2, ED RISPIN2 & TINA YATES2 

 

1Department of Life and Environmental Sciences, Faculty of Science and Technology, 

Bournemouth University, Talbot Campus, Poole, Dorset, BH12 5BB, UK 

2NERC Centre for Ecology and Hydrology, Environment Centre Wales, Deniol Road, 

Bangor, Gwynedd, LL57 2UW, UK 

 

*Corresponding author.  

Email: ccollop@bournemouth.ac.uk 

 

Birds’ responses to human disturbance are interesting due to their similarities to anti-predator 

behaviour, and understanding this behaviour has practical applications for conservation 

management by informing measures like buffer zones to protect priority species. To 

understand better the costs of disturbance and whether it will impact on population size, 

studies should quantify time-related responses as well as the more commonly reported flight 
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initiation distance (FID). Using waders wintering on an estuarine area, we experimentally 

disturbed foraging birds on the Wash Embayment, UK, by walking towards them and 

recording their responses (FID, alert time, time spent in flight, time taken to resume feeding, 

and total feeding time lost). We present data for 10 species of conservation concern: Curlew 

Numenius arquata, Oystercatcher Haematopus ostralegus, Bar-tailed Godwit Limosa 

lapponica, Grey Plover Pluvialis squatarola, Redshank Tringa totanus, Knot Calidris 

canutus, Turnstone Arenaria interpres, Ringed Plover Charadrius hiaticula, Sanderling 

Calidris alba and Dunlin Calidris alpina. Larger species responded more strongly, response 

magnitude was greater under milder environmental conditions, and responses varied over 

both small and large spatial scales. The energetic costs of individual disturbance events, 

however, were low relative to daily requirements and unlikely to be frequent enough to 

seriously limit foraging time. We suggest, therefore, that wintering wader populations on the 

Wash are not currently significantly negatively impacted by human disturbance during the 

intertidal foraging period. This is also likely to be the case at other estuarine sites with 

comparable access levels, visitor patterns, invertebrate food availability and environmental 

conditions. 

 

Keywords 

Anti-predator behaviour; flight initiation distance; non-breeding season; shorebirds. 

 

Disturbance can mean, in its broadest sense, any event that leads to a change in behaviour or 

physiology. This might be for example due to natural events, such as attack by a predator, or 

anthropogenic disturbance whereby recreation or industry brings humans and birds into close 

proximity, or indirect disturbance through pollution events or noise impacts. For the purposes 

of this paper in relation to wintering waders, we use the definition adopted by signatories to 

the African-Eurasian Waterbirds Agreement (AEWA 2015), as given by Fox and Madsen 

(1997):‘Any human-induced activity that constitutes a stimulus (equivalent to a predation 

threat) sufficient to disrupt normal activities and/or distribution of waterbirds relative to the 

situation in the absence of that activity.’ 
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As recognised in this definition and according to the widely accepted risk-disturbance 

hypothesis (Frid & Dill 2002, Beale & Monaghan 2004, Blumstein et al. 2005), animals 

respond to the perceived risk from human disturbances in the same way that they respond to 

predation risk, i.e. by making trade-offs between avoidance of the risk and prioritizing other 

fitness-maximizing activities such as feeding, mating or parental care (Frid & Dill 2002). 

Birds’ responses to disturbance can therefore be expected to vary between individuals 

according to a variety of factors related to the perceived risk, the individual’s current state 

and the costs of responding (Gill et al. 2001a, Beale & Monaghan 2004).  

For day-to-day survival, particularly in winter, birds must optimize their daily energy intake 

to avoid starvation, whilst minimizing the risk of predation and disease. Consequently, 

human activities can impact a bird’s energy budget since responding to disturbance events 

results in both reduced time and area available for feeding (Gill et al. 1996) as well as 

increased energy expenditure through locomotion (Houston et al. 2012) or physiological 

responses (Ackerman et al. 2004). Survival will be reduced as a result if the birds are unable 

to compensate, for example by moving to other sites and/or increasing feeding time or 

efficiency (Urfi et al. 1996, Gill et al. 2001a, 2001b, Stillman et al. 2001, West et al. 2002, 

Navedo & Masero 2007).  

We can investigate birds’ responses to disturbance and test the relative importance of 

potential explanatory factors using experimentally collected field data. Walking towards 

animals and recording characteristics of their response is a frequently used and effective 

method for studying disturbance avoidance behaviour, and the most commonly reported 

measure of response to disturbance is FID – flight initiation distance. Also known as ‘escape 

distance’ or ‘flush distance’, FID measures the distance between the disturbance source and 

animal when it begins to flee (Bonenfant & Kramer 1996, Blumstein et al. 2003). The 

method has been used for a range of taxa including mammals (Li et al. 2011), birds (Van 

Dongen et al. 2015), reptiles (Cooper 2009), fish (Gotanda et al. 2009) and amphibians 

(Rodriguez-Prieto & Fernandez-Juricic 2005). However, FID does not quantify the full time 

and potential energy costs incurred between the point that an animal detects a disturber and 

when it returns to its original behaviour and physiological state. Very few researchers have 

studied or reported these time- or energy-related measures, which is a clear knowledge gap 

that we seek to address here.   

Other studies have identified a variety of potential explanatory factors, including species or 

body size (Blumstein et al. 2003, 2005, Glover et al. 2011), flock size (Ikuta & Blumstein 
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2003, Glover et al. 2011), habituation (Urfi et al. 1996, Ikuta & Blumstein 2003, Lin et al. 

2012), whether or not birds are quarry species (Laursen et al. 2005), environmental 

conditions (Stillman & Goss-Custard 2002), type of disturbance (Glover et al. 2011), starting 

distance (Ikuta & Blumstein 2003) and individual condition (Beale & Monaghan 2004). 

Whilst this shows that FID has been relatively well studied in waders, much of the research 

has been carried out in Australia and North America (Blumstein et al. 2003, 2005, Ikuta & 

Blumstein 2003, Glover et al. 2011, Koch & Paton 2014), with multi-species studies of the 

birds of the East Atlantic Flyway being limited to the Dutch and Danish Wadden Sea (Smit & 

Visser 1993, Laursen et al. 2005). By focussing our research on the Wash Embayment in 

eastern England, we are therefore adding new understanding to the suite of information 

available on birds’ responses to disturbance around the world. Estuarine sites, given their 

importance for both wildlife and human activities (Ramsar Convention 1971, Millennium 

Ecosystem Assessment 2005), offer useful study systems for such research. We focus on 

waders (Charadriiformes) as they comprise a relatively long-lived group of species and many 

are migratory, so survival during the non-breeding period is an important part of the annual 

cycle with regards to the long-term persistence and viability of populations (Recher 1966, 

Saether et al. 1996, Piersma & Baker 2000, Piersma et al. 2016).  

 

Measuring physiological responses to disturbance was beyond the scope of this study and 

flushing behaviour is a good indicator of acute physiological changes associated with 

experimental disturbance (Ackerman et al. 2004), so we chose to focus on visible behavioural 

responses. We use our field data to explore the differences in those responses between 

species, identify key explanatory variables and test four expectations: (1) all aspects of the 

visible response to disturbance are positively correlated with each other; (2) FID, time spent 

in flight and total time lost to disturbance differ between species and increase with body size; 

(3) the magnitude of response (FID, time spent in flight and total time lost) decreases under 

harsher weather conditions; and (4) responses (FID, time spent in flight and total time lost) 

vary from site to site and over time (number of days through the winter season).  
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METHODS 

Study site 

The study took place on the Wash (52˚ 56’ 16” N, 00˚ 17’ 16” E), a large embayment in 

eastern England on the North Sea coast with extensive intertidal sand and mudflats. Its 

conservation importance is recognized through several national and international designations 

including Site of Special Scientific Interest, Special Area for Conservation, Special 

Protection Area and Ramsar site status (Doody & Barnet 1987, JNCC 2014). ‘In terms of 

total numbers, the Wash is the key site for wintering waterbirds in the UK’ (Austin et al. 

2014) and supports internationally important wintering populations of all the species that we 

included in this study: Curlew Numenius arquata, Oystercatcher Haematopus ostralegus, 

Bar-tailed Godwit Limosa lapponica, Grey Plover Pluvialis squatarola, Redshank Tringa 

totanus, Knot Calidris canutus, Turnstone Arenaria interpres, Ringed Plover Charadrius 

hiaticula, Sanderling Calidris alba and Dunlin Calidris alpina. 

 

The intertidal flats used for the disturbance experiments (Fig. 1) were selected because of the 

wide range of wader species that were known to feed at low tide (Goss-Custard et al. 1988, 

Goss-Custard & Yates 1992, Yates et al. 2004) and the relatively even distribution of the 

birds within them. We also selected these areas on the basis of local knowledge of their 

differing distances from human populations, ease of access and resulting frequencies of 

human activities (such as walkers, dog-walkers, wildfowlers, bait diggers etc.) on the 

intertidal area and sea wall. Sites 1 to 3 can be characterized as areas of low disturbance, with 

a visitor frequency in the order of around three times per week; whereas the more easily 

accessible Site 4, on the eastern side of the Wash, had a comparatively high frequency of 

disturbance on a daily basis (M.G.Y. pers. obs.). Together the areas encompassed all shore 

levels and both regularly disturbed and undisturbed parts of the Wash, and so can be 

considered to be representative of the whole embayment. 

 

Field experiments 

All experiments took place during mid-December to late March of winters 2002/03, 2003/04, 

and 2004/05 and within the period of minimal tidal movement two hours either side of low 

water on spring tides, which on the Wash occur around midday. The intention was to survey 

all sites in all years, though circumstances dictated that Site 2 was not used in 2002/03 and 
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Site 3 was used only in 2003/04. Two observers worked together using binoculars to observe 

the birds and digital stopwatches were used to time the birds’ behavioural responses to the 

nearest second. 

 

The procedure was to mutually agree on a target bird, which remained unobscured from view 

for the duration of the observation, and then to walk side-by-side directly towards it at a 

comfortable pace on the soft substrate (approximately 2.5 km/h). The length of time for 

which the bird was visibly alert was noted and when the bird took flight both observers 

stopped walking. One observer timed the ‘flight time’ (the period from taking off to landing) 

and the ‘latency time’ (length of time between landing and the first attempt at feeding). Total 

time lost was calculated by summing alert time, flight time and latency time. The second 

observer kept their eyes on the place from which the bird had taken off and waited until the 

other observations had been completed before pacing out the FID. Distances were measured 

by counting paces which were later converted to metres after calibrating against a known 

distance in similar walking conditions. Isolated individuals of species that would normally be 

expected to feed in small groups or flocks were not selected for observation as their 

behaviour was considered unrepresentative of the usual behaviour of individuals of that 

species. Disturbance experiments took place on 38 separate survey days and the number of 

disturbances during each low tide survey period varied from three to 37 (median = 17.5; 

median for same species on same day = 3), depending on the number of birds present and 

how many experiments could be completed in the time available. Care was taken to ensure 

that the same birds were not disturbed more than once during a single survey, by searching 

for each target bird in a direction at least 90 degrees from that taken by the previous target 

bird when it flew off and landed. We also only selected birds that were at least 200 metres 

further away than the anticipated FID. Daily replicates were therefore well spread out in time 

and space so as to avoid order effects in the data. 

 

In addition to the behavioural response parameters listed, a variety of environmental 

measurements were recorded relating to factors that may affect birds’ responses; air 

temperature and wind speed (using a hand-held thermometer and anemometer) and the part of 

the shore at which each disturbance took place. This was assigned by dividing each site 

equally on a three-point scale from ‘low’ (1), through ‘mid ‘ (2) and ‘upper’ (3) shore, as an 
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indication of the relative proximity to the saltmarsh or sea wall (the most likely source of 

human disturbance) i.e. upper shore is closest. Shore width (distance between sea wall or 

marsh and the low tide mark) was approximately 2.5 km at Site 4 and 3-4.5 km at the other 

three sites. We also converted the date of each survey to the continuous variable ‘winter day’: 

with winter day 1 = 1 August. 

 

Since warm bodies lose heat to the surrounding environment at faster rates when exposed to 

greater wind speeds (Williamson 2003), measurements of air temperature and wind speed 

from each disturbance experiment were converted to a wind chill equivalent temperature 

index (WCTI)  using the following equation: 

WCTI = 13.12 + 0.6215T – 11.37V0.16 + 0.3965T⋅V0.16 

where T is the air temperature in ˚C, and V is the wind speed in km/h (Williamson 2003, 

Osczevski & Bluestein 2005). We consider this to be a more appropriate independent 

variable, in relation to thermoregulation and energy budgets of birds, than records of air 

temperature alone (Wiersma & Piersma 1994). 

 

Energy and time costs of responding to disturbance 

To set birds’ time-related responses in the context of daily energy requirements, we 

calculated energy cost per flight using the following equation from (Kvist et al. 2001): 

(ܬ݇)	ݐݏܥ = 10.ଷଽ × .ଷହܯ − 0.951000 × ݁݉݅ݐ ݐ݊݁ݏ ݅݊ ݂݈݅݃ℎݐ  (ݏ)
and used Nagy et al.’s (1999) equation for the birds’ thermoneutral requirements: ݕ݃ݎ݁݊ܧ	ݐ݊݁݉݁ݎ݅ݑݍ݁ݎ	(ܬ݇) = 10.5  .଼ଵܯ×

where ܯ = body mass in grams. 

We also estimated the number of disturbances that would result in a 1%, 5%, and 10% 

reduction in available feeding time based on our data for total time lost per disturbance 

(assuming that disturbance events do not overlap). Numbers are presented as a range based 

on the fact that birds are able to feed throughout the tidal cycle on neap tides, but not able to 

feed for two hours either side of high tide on spring tides (Goss-Custard et al. 1977). We used 

data from Goss-Custard et al. (1977) on how much of the available feeding time is used by 
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each species during the winter as an indicator of their likely capacity to compensate for the 

costs of responding to disturbance. This is also presented as a range according to the spring-

neap tidal cycle and reflecting the reduced number of daylight hours and increased 

thermoregulatory requirements of smaller species in mid-winter (Dawson & O’Connor 1996). 

 

Model selection and data analysis 

We used general linear models in a multi-model inference approach (Symonds & Moussalli 

2011, Pap et al. 2013) to find variables with high explanatory power for our three different 

response variables (FID, flight time and total time lost). Preliminary analyses showed no 

effect of winter year, so the data from all three winters were combined (Supplementary 

Online Table S1). When deciding on the global models to be tested for each response 

variable, we initially included all biologically plausible two-way interactions in addition to 

the potential explanatory variables as main effects. Interactions that were found to be non-

significant were subsequently excluded from the candidate model set,  as recommended by 

Schielzeth (2010). In situations where the Akaike weight of the best AICc-ranked model in 

the candidate set was considerably higher than that of the next best model, inferences were 

made based on that model alone (Symonds & Moussalli 2011). However, if this was not the 

case, model averaging was undertaken using all models with Δi < 4 to estimate the relative 

importance of the predictor variables under consideration. This involves summing the Akaike 

weights for each model in which that variable appears (Symonds & Moussalli 2011). The 

larger the sum of the Akaike weights (up to a maximum value of 1), the more important the 

variable is relative to the others in the global model (Burnham & Anderson 2002). Burnham 

and Anderson (2002) suggest ranking variables according to their relative importance, so in 

our analyses variables with a relative importance value greater than 0.9 were considered to 

have high explanatory power, those with values between 0.6 and 0.9 were considered 

moderate and variables with relative importance less than 0.6 were considered to have low 

explanatory power. 

 

The candidate models that we tested included ‘site’ as a fixed factor, with ‘shore level’, ‘wind 

chill index’, ‘winter day’ and ‘species mass’ in grams (using Wash-specific data from 

Johnson 1985) as covariates. We also included two binary variables indicating whether the 

species was an Oystercatcher or not, or whether it was a plover or not, since these species are 



A
cc

ep
te

d
 A

rt
ic

le
A

cc
ep

te
d

 A
rt

ic
le

This article is protected by copyright. All rights reserved. 

in different families to the others (Haematopididae and Charadriidae, respectively as opposed 

to Scolopacidae) and have different feeding ecologies (Goss-Custard et al. 2006). Before 

carrying out the analyses we centred and standardized the input variables (following Gelman 

2008 and Grueber et al. 2011) to facilitate interpretation of the relative strength of parameter 

estimates, particularly where interaction terms were involved. The three response variables 

were loge-transformed, which helped to achieve a better distribution of the model residuals in 

relation to the assumptions of the statistical tests used.  

 

To assess the relationships between our different response variables we used Spearman’s rank 

correlation tests along with visual inspection of the bivariate scatterplots. We visually 

inspected diagnostic plots of the residuals for the statistical tests performed, as recommended 

by Zuur et al. (2010). This showed no issues with lack of normality, heterogeneity of 

variance, collinearity or undue leverage; however, as is often the case with ecological studies, 

the assumption of independence was not met. Therefore inferences beyond the sample space 

are made with care, and we will discuss the possibility that this could be an indication that an 

important covariate was not measured (Zuur et al. 2010). Details of preliminary data 

exploration and statistical tests not reported in the main text can be found in the supporting 

information. Analyses were carried out in R (R Core Team 2015) using functions available in 

‘arm’ (Gelman & Su 2015) to standardize model predictors, and the multi-model inference 

package ‘MuMIn’ (Barton 2015) for model selection and averaging; plots were produced 

using ‘ggplot2’ (Wickham 2009) and ‘PerformanceAnalytics’ (Peterson & Carl 2014). Means 

are presented ± 1 SE. 

 

RESULTS 

We approached waders a total of 677 times and the birds’ responses to the experimental 

disturbances are summarized in Table 1. During the survey period, the wind chill index 

ranged from -4.74 ˚C up to a maximum of 14.27 ˚C, which is within the range of typical 

winter temperatures for the area after accounting for wind speed (Met Office 2016). 

Following Frid and Dill (2002), we predicted that all measures of response to disturbance 

would be correlated with each other and Fig. 2 shows that this was well supported by our 

data. Flight time and latency time were strongly positively correlated both with each other 

and with total time lost, although alert time was not significantly correlated with flight time 
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or latency time and was only weakly correlated with total time lost. Individuals that exhibited 

greater FIDs spent longer in flight and took longer to resume feeding (particularly at FIDs 

below 200 m) and consequently lost more time in total. However, there was no correlation 

between FID and alert time.  

 

Mean FID for all species was 89.7 m ± 3.1 (5−570 m, n = 677), but was significantly 

different between species (F9,667 = 122.1, P < 0.001). There was also a significant difference 

between species in flight time (F9,667 = 20.9, P < 0.001) and total time lost (F9,677 = 29.5, P < 

0.001). Model selection and ranking by AICc (Table 2) revealed clear support for the top 

model, with all potential predictors included, when explaining both FID and time spent in 

flight (each with a model weight (ωi) > 0.8). In the case of total time lost, the top model only 

had a model weight of 0.727, though the cumulative model weight of the top two models (acc 

ωi) was 0.993, setting them well apart from the lower ranked models in the candidate set. 

Standardized and model averaged parameter estimates are shown in Table 3, and with all the 

coefficients being positive for ‘species mass’ and ‘wind chill’, these results support 

expectations that FID, time spent in flight and total time lost increase with body size (Fig. 3), 

and that response magnitude decreases under harsher environmental conditions (i.e. lower 

values of wind chill equivalent temperature; Fig. 4). There is also support for the expectation  

that responses vary both between sites and over time; a mixture of positive and negative 

coefficients indicates differences in birds’ responses between sub-sites (Fig. 5) and negative 

coefficients for the relationships with ‘winter day’ indicate that response magnitude decreases 

as the season progresses, although the 95% confidence interval for FID includes zero. In 

addition to the between-site differences in response we also found within-site differences, 

with the negative coefficients for ‘shore level’ indicating a trend for greater response 

magnitudes when birds were feeding closer to the low water mark. 

 

Inclusion of the two bnary variables indicating whether the specis was an Oystercatcher or a 

plover demonstrated additional between-species differences over and above the species mass 

relationship described. With positive and negative coefficients, respectively, plovers had 

larger magnitude responses than expected for their size; and Oystercatchers were relatively 

more tolerant, exhibiting shorter FIDs and spending less time in flight, although any 
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relationship was poorly supported for total time lost (Table 3: relative importance = 0.267, 

and the 95% confidence interval includes zero). 

 

Using our data on mean flight time and mean total time lost, we looked in more detail at the 

energetic consequences and the lost feeding opportunity costs of responding to disturbance 

for each species (Table 4). A 5% reduction in birds’ daily available feeding time would be 

expected to result from responding to between 38 and 162 separate disturbance events 

(depending on species and tidal stage). The mean cost per individual flight response 

represented less than a tenth of a percent of each species’ daily energy requirements: Fig. 6 

shows there was no significant relationship between body mass and energetic cost of 

responding to a single disturbance when expressed in this way (F1,675 = 0.565, P = 0.45).  

 

DISCUSSION 

Our study provides data for 10 species of wader on FID, flight time and total time lost, along 

with associated energy costs, when birds flee an approaching pedestrian during the non-

breeding season. Based on the findings of other studies from around the world (Urfi et al. 

1996, Stillman & Goss-Custard 2002, Blumstein et al. 2003, 2005, Ikuta & Blumstein 2003, 

Glover et al. 2011, Lin et al. 2012), we identified four expectations about how birds’ 

responses to disturbance vary: all four were supported by our results. Waders show a great 

deal of variation in their responses and much of that variation can be explained by species, 

body mass, environmental conditions and site differences on both small and larger spatial 

scales.  

 

Relationships between response measures 

With the exception of alert time, all of the time- and distance-related measures of response 

that we recorded were inter-correlated. This supports the expectation that disturbance 

avoidance behaviour depends on the relative costs of fleeing and remaining (Frid & Dill 

2002): when starvation risk is lower, birds fly from further away (FID), flee further (longer 

flight time) and spend more time being vigilant (alert and latency time). The lack of a strong 

relationship between alert time and the other variables could be due to the fact that this was 

more difficult to record accurately, especially at greater distances. Alternatively, it may be 
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that alert time is simply not a useful measure of response to disturbance in this case, since it 

is likely to be related to speed of approach, which was approximately constant in our 

experiments. 

 

Between-species differences 

Larger species had greater FIDs, spent more time in flight, and lost more feeding time overall 

than did smaller species. Møller et al. (2013) suggest that longer FIDs in larger species are 

due to the aerodynamic cost of large body size: this explanation may work for FID, but does 

not explain the additional body mass relationships with flight time and total time lost. 

Another explanation could be that since smaller birds generally spend a greater proportion of 

the available time feeding (Goss-Custard et al. 1977) and have proportionally lower body fat 

reserves upon which they can rely if they are unable to meet their daily intake requirements 

(Piersma & Vanbrederode 1990), they have less capacity to compensate for the costs of 

responding to disturbance. Indeed, the trade-off becomes apparent when the energetic cost 

per flight response is expressed as a percentage of the species’ daily requirements, and the 

body mass relationship disappears. 

 

Effect of environmental conditions 

One prediction of the risk-disturbance hypothesis is that ‘fleeing probability and FID increase 

when… environmental conditions are mild’ (Frid & Dill 2002), because when birds are able 

to meet their daily energetic requirements easily, the balance in the trade-off between 

avoidance of starvation and predation shifts towards greater FIDs. We found this to be the 

case: birds also spent significantly longer in flight and lost more time overall when conditions 

were milder (i.e. higher wind chill equivalent temperatures).  

 
Within- and between-site differences  

The magnitude of all three measures of response varied on both small and larger spatial 

scales; birds responded less strongly to disturbance when feeding further from the low water 

mark and at the site with easiest access, closest proximity to residential areas, and highest 

frequency of potential disturbers. The site effect may thus be attributable to habituation. 

However, it is not possible to rule out alternative explanations without detailed knowledge of 

the differences between sites and individual birds, which we unfortunately do not have. For 



A
cc

ep
te

d
 A

rt
ic

le
A

cc
ep

te
d

 A
rt

ic
le

This article is protected by copyright. All rights reserved. 

example, if birds feeding on high disturbance sites are in poorer condition they will prioritize 

feeding more than higher quality birds feeding on low disturbance sites. Or with any 

differences between sites in food availability and competitive ability of birds, birds feeding at 

lower quality sites would be expected to be more tolerant of disturbance because of a lack of 

alternatives (Frid & Dill 2002). Similar arguments and explanations relating to habitat quality 

and individual differences could also apply to the observed relationship with shore level. 

Whilst it was also beyond the scope of this study to collect detailed information on types and 

frequencies of human activities, we suggest that future studies consider using an objective 

measure of disturbance (such as number of visitors per day) which lends itself better to 

comparisons between sites and shore levels. 

 

Costs of responding to disturbance 

In addition to the energetic costs of flight, responding to disturbance reduces birds’ available 

feeding time. Feeding intensity data (Goss-Custard et al. 1977) show that most birds on the 

Wash are likely to be able to cope with at least a 5% reduction, which we calculate would be 

caused by between 38 and 162 separate disturbance events per day depending on species and 

tidal stage. Curlew, Oystercatcher, Bar-tailed Godwit and Grey Plover may even be able to 

cope with a more serious reduction of 10% (caused by between 77 and 184 daily disturbance 

events). While objective data on visitor frequencies and distribution across the intertidal 

habitat in our study area are lacking, we believe from experience that current levels on most 

parts of the embayment are well below these values, especially at lower shore levels (in the 

order of around three visitors per week; M.G.Y. pers. obs.), though perhaps with the 

exception of the more easily accessible eastern area around site four on busier weekend days. 

As an example, the popular RSPB Titchwell Marsh Nature Reserve (7 km east of Site 4) 

receives on average 217 visitors per day (Visit England 2015), and as few as 10% of visitors 

might cause disturbance events (Liley & Fearnley 2012). We suggest, therefore, that 

wintering wader populations on the Wash are not currently significantly negatively impacted 

by human disturbance during the intertidal foraging period. 

 

Further work to quantify disturbance of high tide roosts would complement this study and 

allow a more confident assessment of the overall impacts of disturbance (or lack thereof) on 

wintering waders on the Wash. As well as requiring suitable high tide refuges upon which to 
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rest and preen (Rogers et al. 2006), some species are known to rely on supratidal habitats for 

foraging when they are not able to meet their energy requirements during the intertidal 

exposure period, for example due to increased requirements for thermoregulation during 

extreme cold weather or reduced intertidal exposure during storm events (Goss-Custard 1969, 

Milsom et al. 1998, Smart & Gill 2003). In such situations, the time and energy costs 

associated with responding to disturbance could be particularly problematic, especially if 

birds are forced to fly long distances to alternative roost or foraging sites (Rehfisch et al. 

1996). 

 

The data that we present here do not take account of the potential additional energetic costs of 

physiological responses (increased heart rate, stress hormones etc.) that may be incurred even 

when birds do not flee, and which can last longer than visible response behaviours 

(Ackerman et al. 2004, Elliott et al. 2016). More research is needed in this area; however 

Ackerman et al. (2004) found that the largest increase in heart rate occurs during the period 

immediately before and after initiation of flight, so we expect that that the contribution made 

by physiological changes not associated with flight is small compared to that due to the costs 

of flight and lost feeding time. 

 

Conclusions 

The few published studies with comparable data to ours show that there can be considerable 

between-estuary variation in responses (Smit & Visser 1993, Urfi et al. 1996, Fitzpatrick & 

Bouchez 1998, Laursen et al. 2005), as well as the within-estuary variation that we observed. 

We would therefore caution against making direct inferences from our data about the 

magnitude of birds’ responses to disturbance at other sites if those sites do not also have large 

areas of intertidal habitat that are relatively inaccessible (for humans), where the width of the 

shore tends to be much greater than our largest observed FID, and where potentially 

disturbing activities are largely restricted to the upper shore. Similarly, given the influence of 

environmental conditions, it is important to note the temperature range over which 

experiments take place – for example, during an abnormally cold winter FIDs would be lower 

than those exhibited under more commonly experienced conditions. Our study on the Wash 

adds to the suite of available data from a range of sites, providing more options for informed 

comparisons with new sites. 
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Finally, greater emphasis is needed on recording time-related measures of responses to 

disturbance – to understand better the constraints on birds’ time and energy budgets – rather 

than simply reporting FID. Doing so would also add value by providing the information 

necessary for parameterizing simulation models for understanding population-level impacts 

of different levels of disturbance and to predict the effectiveness of proposed management 

options (e.g. Blumstein et al. 2005, Stillman 2007). 
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TABLES 
Table 1. Mean, maximum and minimum responses to an approaching pedestrian for each species. Species are presented in order of decreasing 

body size. FID = flight initiation distance; FlightTime = time spent in flight; TotalTimeLost = time taken to resume feeding after becoming alert, 

flying and landing. 

Species Mass(g) n FID(m)  FlightTime(s)  TotalTimeLost(s) 
mean SE min max  mean SE min max  mean SE min max

Curlew (CU) 751 39 340.33 18.23 88 570 34.20 2.35 11.7 78 75.27 4.8 28 163 
Oystercatcher (OC) 500 147 97.28 2.97 30 228 21.17 0.94 6 61 59.86 2.0 21 136 
Bar-tailed Godwit (BA) 297 92 84.36 3.93 32 225 20.07 1.20 5 53 47.03 2.4 14 118 
Grey Plover (GV) 215 55 132.27 6.81 35 251 22.82 1.65 6 56 58.22 3.4 19 154 
Redshank (RK) 143 53 79.83 5.95 28 187 17.44 1.67 4 58 45.16 3.4 11 120 
Knot (KN) 134 78 71.83 3.92 20 240 19.58 1.26 6 59 43.71 2.6 15 125 
Turnstone (TT) 105 40 31.50 3.00 5 75 12.84 1.49 2 41 32.79 2.8 7 85 
Ringed Plover (RP) 64 30 41.07 2.55 20 74 12.35 1.16 4 32 36.15 2.7 11 72 
Sanderling (SS) 54 26 25.00 2.65 9 51 10.08 1.27 3 34 26.69 2.6 10 72 
Dunlin (DN) 48 117 43.93 2.68 9 194  13.61 0.69 3 41  32.05 1.4 8 85 
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Table 2. Model selection tables – top five AICc-ranked models in each candidate set. Δi = difference in AICc between model and top model. ωi = 

Aikaike model weight. acc ωi = cumulative model weight. SpMass = species mass (g); WindChill = wind chill equivalent temperature (˚C); 

IsItOC = Oystercatcher vs other species; IsItPlover = plover vs other species.  

 

a) Global model = log(FID)~SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover+Site:WinterDay 
Candidate models adjR2 AICc Δi ωi acc ωi 

1 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover+Site:WinterDay 0.66561 971.232 0 0.916 0.916 
2 SpMass+Site+ShoreLevel+WinterDay+IsItOC+IsItPlover+Site:WinterDay 0.66083 976.398 5.166 0.069 0.985 
3 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover 0.65683 980.328 9.096 0.010 0.995 
4 SpMass+Site+ShoreLevel+WinterDay+IsItOC+IsItPlover 0.65371 982.901 11.669 0.003 0.997 
5 SpMass+Site+ShoreLevel+WindChill+IsItOC+IsItPlover 0.65325 983.581 12.348 0.0019 0.999 

b) Global model = log(FlightTime)~SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover+Site:WinterDay 
Candidate models adjR2 AICc Δi ωi acc ωi 

1 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover+Site:WinterDay 0.29671 1107.022 0 0.892 0.892 
2 SpMass+Site+ShoreLevel+WindChill+IsItOC+IsItPlover 0.28098 1112.770 5.749 0.050 0.943 
3 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover 0.28106 1114.778 7.757 0.018 0.961 
4 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItPlover+Site:WinterDay 0.28326 1115.192 8.170 0.015 0.976 
5 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+Site:WinterDay 0.28268 1115.627 8.605 0.012 0.988 

c) Global model = log(TotalTimeLost)~SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover+Site:WinterDay 
Candidate models adjR2 AICc Δi ωi acc ωi 

1 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItPlover+Site:WinterDay 0.39716 860.499 0 0.727 0.727 
2 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover+Site:WinterDay 0.39724 862.515 2.016 0.265 0.993 
3 SpMass+Site+ShoreLevel+WindChill+IsItPlover 0.37560 871.248 10.749 0.003 0.996 
4 SpMass+Site+ShoreLevel+WindChill+IsItOC+IsItPlover 0.37590 873.077 12.578 0.001 0.998 
5 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItPlover 0.37566 873.266 12.767 0.001 0.999 
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Table 3. Standardized parameter estimates and confidence intervals for eight potential predictors of waders’ responses to disturbance. 

Dependent variables have been natural log transformed. See Tables 1 and 2 for parameter abbreviations. 

 

Predictor 

logFIDa  logFlightTimea  logTotalTimeLostb 

Estimate SE 

95% confidence 
interval Estimate SE 

95% confidence 
interval Relative 

importance Estimate SE 

95% confidence 
interval 

Lower 
limit 

Upper 
limit  

Lower 
limit 

Upper 
limit  

Lower 
limit 

Upper 
limit 

Intercept 4.430 0.035 4.361 4.499  2.915 0.039 2.839 2.991    3.796 0.032 3.732 3.859 
1 SpMass 1.263 0.050 1.165 1.361 0.564 0.055 0.456 0.673 1 0.512 0.039 0.435 0.589 
2 WindChill 0.109 0.041 0.029 0.189 0.163 0.045 0.075 0.252 1 0.163 0.038 0.089 0.237 
3 ShoreLevel -0.165 0.040 -0.244 -0.086 -0.164 0.044 -0.251 -0.077 1 -0.154 0.037 -0.226 -0.081 

4 Sitec 1 
 Site2-Maretail -0.093 0.210 -0.506 0.320 -0.245 0.232 -0.702 0.211 - -0.111 0.194 -0.492 0.270 
 Site3-Breast Sand 0.098 0.126 -0.150 0.345 0.208 0.140 -0.066 0.482 - 0.237 0.116 0.009 0.464 
 Site4-Stubborn Sand -0.361 0.042 -0.445 -0.278 -0.257 0.047 -0.350 -0.165 - -0.137 0.039 -0.214 -0.061 

5 WinterDay -0.101 0.073 -0.244 0.042 -0.229 0.080 -0.386 -0.071 1 -0.222 0.067 -0.354 -0.091 

6 IsItOCd -0.533 0.060 -0.651 -0.416 -0.211 0.066 -0.340 -0.081 0.267 0.004 0.029 -0.054 0.061 

7 IsItPloverd 0.487 0.061 0.367 0.606 0.219 0.067 0.087 0.351 1 0.330 0.056 0.220 0.440 

8 Site:WinterDaye 1 
 Site2-Maretail:WinterDay -0.228 0.333 -0.882 0.426 -0.072 0.368 -0.795 0.652 - -0.099 0.308 -0.703 0.504 
 Site3-Breast Sand:WinterDay - - - - - - - - - 0 0 0 0 
 Site4-Stubborn Sand:WinterDay 0.298 0.087 0.127 0.469  0.324 0.096 0.135 0.514  - 0.321 0.080 0.163 0.479 
a Based on top model only. b Results of model averaging top two models.                     
c Reference category is 'Site1-Wrangle Flats'. d Reference category is 'No'. e Reference category is 'Site1-Wrangle Flats:WinterDay'. 
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Table 4. An assessment of the time and energy costs incurred by waders per disturbance response, and the number of disturbances that would be 

expected to reduce available feeding time by 1%, 5% and 10%. See text for a description of the calculations involved. Data reproduced from 

Goss-Custard et al. (1977) give an indication of birds’ likely capacity to compensate by extending their feeding time. 

Species Cost per flight 
response (kJ)a 

Thermoneutral 
daily energy 

requirement (kJ)b 

Cost per flight as 
% of daily intake 

requirement 

Number of disturbances that 
would reduce available feeding 

time (day and night) by: 

% available daylight 
time spent feeding in 

winterc 
1% 5% 10% 

Curlew 0.820 953.89 0.086 8-11 38-57 77-115 50-80 
Oystercatcher 0.437 723.08 0.060 10-14 48-72 96-144 50-70 
Bar-tailed Godwit 0.342 507.15 0.068 12-18 61-92 122-184 70-85 
Grey Plover 0.345 406.99 0.085 10-15 49-74 99-148 70-80 
Redshank 0.227 308.30 0.074 13-19 64-96 128-191 90-100 
Knot 0.248 294.95 0.084 13-20 66-99 132-198 97-100 
Turnstone 0.148 249.82 0.059 18-26 88-132 176-263 not recorded 
Ringed Plover 0.118 178.32 0.066 16-24 80-120 159-239 not recorded 
Sanderling 0.090 158.84 0.057 22-32 108-162 216-324 not recorded 
Dunlin 0.117 146.59 0.080 18-27 90-135 180-270 95-100 
a using cost per second of flight from Kvist et al. (2001) 
b using Nagy et al.'s (1999) allometric equation 
c as observed by Goss-Custard et al. (1977) 
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FIGURE LEGENDS 

Figure 1. The intertidal areas of the Wash on which disturbance observations were made in 

winter and early spring of 2002/03, 2003/04 and 2004/05. Site 1-Wrangle; Site 2-Maretail; 

Site 3-Breast Sand; Site 4-Stubborn Sand. Reproduced from Ordnance Survey map data by 

permission of Ordnance Survey © Crown copyright 2013. 

Figure 2. Correlation matrix for all recorded measures of birds’ responses to experimental 

disturbance. Bivariate scatterplots are presented with a fitted line, and Spearman’s rank 

correlation coefficients, along with stars to indicate significance level. 

Significance codes:  ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05. 

Figure 3. Relationship between species mass and three measures of responses to disturbance. 

Dependent variables have been loge-transformed. 

Figure 4. Relationships between wind chill equivalent temperature and measures of response 

to disturbance, adjusted relative to the mean response of each species. Regression lines with 

95% confidence intervals. 

Figure 5. Variation between sub-sites in birds' responses to disturbance, adjusted relative to 

the mean response of each species. Site codes: 1 = Wrangle; 2 = Maretail; 3 = Breast Sand; 4 

= Stubborn Sand. 

Figure 6. Relationship between species body mass and energetic costs of flight in response to 

disturbance. 
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FIGURES 

Figure 1. 
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Figure 3. 
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Figure 4. 
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Figure 5. 

 

 

 

Figure 6. 
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