
6. ANTARCTICA—S. Stammerjohn, Ed.
a. Overview—S. Stammerjohn

In strong contrast to 2014, 2015 was marked by 
low regional variability in both atmospheric and 
oceanic anomalies, at least for the first half of the 
year. The Antarctic-wide distribution of anomalies 
coincided with a strong positive southern annular 
mode (SAM) index. However, by October; the high-
latitude response to El Niño became evident, but the 
associated anomalies were rather atypical compared 
to the mean response from six previous El Niño 
events. Simultaneously, a somewhat tardy but unusu-
ally large and persistent Antarctic ozone hole devel-
oped. These springtime conditions imparted strong 
regional contrasts late in the year, particularly in the 
West Antarctic sector. Other noteworthy Antarctic 
climate events from 2015 are below:

• For most of the year surface pressure was lower 
and temperatures were cooler than the 1981–2010 
climatology, along with stronger-than-normal 
circumpolar westerly winds, slightly higher-than-
normal precipitation over the ocean areas, and 
mostly shorter-than-normal melt seasons on the 
continent. These anomalies were consistent with 
the positive SAM index registered in all months 
except October. February had a record high SAM 
index value of +4.92 (13% higher than the previous 
high value recorded over 1981–2010).

• There was an abrupt but short-lived switch in the 
mean surface temperature anomaly for the con-
tinent (from cold to warm) and a weakening of 
the negative surface pressure anomaly in October 
2015. These atmospheric circulation changes co-
incided with the emerging high-latitude response 
to El Niño, the ozone hole, and a shift in the SAM 
index from positive to negative.

• The 2015 Antarctic ozone hole was amongst the 
largest in areal coverage and most persistent, 
based on the record of ground and satellite ob-
servations starting in the 1970s. This very large 
ozone hole was caused by unusually weak strato-
spheric wave dynamics, resulting in a colder- and 
stronger-than-normal stratospheric polar vortex. 
The persistently below-normal temperatures en-
abled larger ozone depletion by human-produced 
chlorine and bromine compounds, which are 
still at fairly high levels despite their continuing 
decline resulting from the Montreal Protocol and 
its Amendments.

• Although the 2015 El Niño produced strong 
atmospheric circulation anomalies in the South 
Pacific, thus affecting temperatures and sea ice 

in the West Antarctic sector, its impact across the 
rest of Antarctica was weaker due to an atypical 
teleconnection pattern.

• There was a continuation of near-record high 
Antarctic sea ice extent and area for the first half 
of 2015, with 65 sea ice extent and 46 sea ice area 
daily records attained by July. However, at mid-
year, there was a reversal of the sea ice anomalies, 
shifting from record high levels in May to record 
low levels in August. This was then followed by a 
period of near-average circumpolar sea ice (relative 
to the 36-year satellite record).  

• Together with unusually high sea ice extent, 
particularly in the West Antarctic sector, SSTs 
were also cooler than average, in contrast to 
warmer-than-normal SSTs equatorward of the 
polar front. South of the polar front, sea surface 
height anomalies were negative, consistent with 
the mostly positive SAM index. Compared to 
2014, there was a small decrease in sea level de-
tected around the continental margin as well, 
leading to a slight increase in the estimated volume 
transport of the Antarctic Circumpolar Current. 
These changes are, however, superimposed on 
longer-term increases in sea level and a potential 
small decrease in volume transport. The 2015 deep 
ocean observations at 140°E indicate a continued 
freshening of Antarctic Bottom Water, relative to 
observations in the late 1960s and more frequent 
observations since the 1980s.

Details on the state of Antarctica’s climate in 
2015 and other climate-related aspects of the Ant-
arctic region are provided below, starting with the 
atmospheric circulation, surface observations on 
the continent (including precipitation and seasonal 

Fig. 6.1. Map of stations and other regions used throughout 
the chapter.
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melt), ocean observations (including sea ice and 
ocean circulation), and finally the Antarctic ozone 
hole. Newly included this year is the southern high 
latitude response to El Niño (Sidebar 6.1) and the 
state of Antarctic ecosystems in the face of climate 
perturbations (Sidebar 6.2). Place names used in this 
chapter are provided in Fig. 6.1.

b. Atmospheric circulation—K. R. Clem, S. Barreira, and 
R. L. Fogt
The 2015 atmospheric anomalies across Antarctica 

were dominated by below-average surface tempera-
tures over much of coastal and interior Antarctica 
from January to September, particularly across the 
Antarctic Peninsula and the surrounding Weddell 
and Bellingshausen Seas. Negative pressure anomalies 
in the Antarctic troposphere during the first half of 
the year weakened in August, while the stratosphere 
poleward of 60°S became very active beginning in 
June with strong negative pressure and temperature 
anomalies and an amplification of the stratospheric 
vortex. Using a station-based SAM index (normalized 
difference in zonal mean sea level pressure between 
40°S and 65°S; Marshall 2003), the generally low 
pressure conditions gave rise to positive SAM index 
values, which were observed in every month except 
October during 2015. Figure 6.2 depicts a vertical 
cross section of the geopotential height anomalies 
(Fig. 6.2a) and temperature anomalies (Fig. 6.2b) 
averaged over the polar cap (60°–90°S), as well as the 
circumpolar zonal wind anomalies (Fig. 6.2c) aver-
aged over 50°–70°S and the Marshall (2003) SAM 
index average for each month. 

Climatologically, the year was split into four time 
periods (denoted by vertical red lines in Fig. 6.2) that 
were selected based on periods of similar temperature 
and pressure anomalies (Fig. 6.3). The composite 
anomalies (contours) and standard deviations (from 
the 1981–2010 climatological average; shading) for 
each of the time periods are shown in Fig. 6.3; surface 
pressure anomalies are displayed in the left column 
and 2-m temperature anomalies in the right column.

During January–March, the large-scale circula-
tion was marked with negative geopotential height 
(Fig. 6.2a) and surface pressure (Fig. 6.3a) anomalies 
over Antarctica and positive surface pressure anoma-
lies over much of the middle latitudes. The Marshall 
SAM index was strongly positive, and reached a 
record monthly mean high value during February 
[+4.92; Fig. 6.2; Marshall (2003); SAM index values 
start in 1957]. At this time, the circumpolar zonal 
winds exceeded 2 m s−1 (>1.5 standard deviations) 
above the climatological average throughout the 

troposphere and lower stratosphere (Fig. 6.2c). Much 
of the coastal Antarctic 2-m temperatures were below 
average (Fig. 6.3b), with the exception of areas of the 
Ross Ice Shelf and Wilkes Land (~90°E–180°). Positive 
temperature anomalies were observed throughout 
much of the stratosphere over the polar cap (Fig. 6.2b).

Positive SAM index values continued during April 
but weakened in May. This was due to a strong posi-
tive surface pressure anomaly southwest of Australia, 
while the remainder of the middle latitudes experi-

Fig. 6.2. Area-weighted averaged climate parameter 
anomalies for the southern polar region in 2015 rela-
tive to 1981–2010: (a) polar cap (60°–90°S) averaged 
geopotential height anomalies (contour interval is 
50 m up to ±200 m with additional contour at ±25 m, 
and 100 m contour interval after ±200 m); (b) polar 
cap averaged temperature anomalies (contour interval 
is 1°C up to ±4°C with additional contour at ±0.5°C, 
and 2°C contour interval after ±4°C); (c) circumpolar 
(50°–70°S) averaged zonal wind anomalies (contour 
interval is 2 m s−1 with additional contour at ±1 m s−1). 
Shading represents standard deviation of anomalies 
from the 1981–2010 climatological average. (Source: 
ERA-Interim reanalysis.) Red vertical bars indicate the 
four separate climate periods used for compositing in 
Fig. 6.2; the dashed lines near Dec 2014 and Dec 2015 
indicate circulation anomalies wrapping around the 
calendar year. Values from the Marshall (2003) SAM 
index are shown below panel (c) in black (positive val-
ues) and red (negative values).
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enced negative surface pressure anomalies with a 
weakening of the circumpolar zonal winds in May 
(Fig. 6.2c). Much of East Antarctica was colder than 
average, particularly offshore along coastal Queen 
Maud Land (30°W–0°) and portions of the Ross Sea 
westward towards Mirny station (~90°E), while the 
Amundsen Sea and the Ronne-Filchner Ice Shelf were 
slightly warmer than average (Fig. 6.3d).

During June–September, negative polar-cap av-
eraged geopotential height anomalies and positive 
circumpolar zonal wind anomalies were observed 

throughout the troposphere and stratosphere. Strong 
positive surface pressure anomalies occurred over the 
South Pacific, southwest of Australia, and over the 
South Atlantic, while strong negative surface pressure 
anomalies occurred over the Weddell Sea (Fig. 6.3e); 
these conditions led to positive SAM index values 
through September. Antarctic 2-m temperatures were 
primarily below average (Fig. 6.3f), with anomalies 
over the Antarctic Peninsula, Bellingshausen Sea, 
and eastern Amundsen Sea more than 2.5 standard 
deviations below the climatological average. 

By October–December, positive surface pressure 
and 2-m temperature anomalies developed over 
interior East Antarctica, with the strongest warm-
ing noted over Queen Maud Land, while the Drake 
Passage and coastal Wilkes Land remained colder 
than average (Figs. 6.3g,h). A strong negative surface 
pressure anomaly was observed south of New Zealand 
and a strong positive surface pressure anomaly was 
observed in the southeastern South Pacific, likely 
tied to the strengthening of the El Niño conditions 
in the tropical Pacific. These circulation anomalies 
over the South Pacific brought cold, southerly flow to 
the coastal and offshore regions of Wilkes Land and 
the offshore region of the northwestern Antarctic 
Peninsula, respectively. Meanwhile, the stratosphere 
over the polar cap became very active after Septem-
ber. Negative temperature and geopotential height 
anomalies of 1–2 standard deviations below the 
climatological average propagated down through the 
stratosphere from October to December. A marked 
strengthening of the stratospheric circumpolar vortex 
occurred in response to the stratospheric cooling, 
with positive zonal wind anomalies exceeding 1–2 
standard deviations above the climatological aver-
age throughout the stratosphere to finish the year. 
Over this time period (October–December) the SAM 
index values also weakened, and a negative value 
was observed in October 2015, coincident with the 
weaker and more regional nature of the near-surface 
conditions (Fig. 6.3). 

c. Surface manned and automatic weather station 
observations—S. Colwell, L. M. Keller, M. A. Lazzara, A. Setzer, 
R. L. Fogt, and T. Scambos
The circulation anomalies described in section 6b 

are discussed here in terms of observations at staffed 
and automatic weather stations (AWS). Climate data 
that depict regional conditions are displayed for four 
staffed stations (Bellingshausen on the Antarctic 
Peninsula, Halley in the Weddell Sea, Mawson in 
the Indian Ocean sector, and Amundsen-Scott at the 
South Pole; Figs. 6.4a–d) and two AWSs (Byrd in West 

Fig. 6.3. (left) Surface pressure anomalies and (right) 
2-m temperature anomalies relative to 1981–2010 for 
(a) and (b) Jan–Mar 2015; (c) and (d) Apr–May 2015; 
(e) and (f) Jun–Sep 2015; and (g) and (h) Oct–Dec 
2015. Contour interval for (a), (c), (e), and (g) is 2 hPa; 
contour interval for (b) and (h) is 1°C and contour in-
terval for (d) and (f) contour interval is 2°C. Shading 
represents standard deviations of anomalies relative 
to the selected season from the 1981–2010 average. 
(Source: ERA-Interim reanalysis.)
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Antarctica and Gill on the Ross Ice Shelf; Figs. 6.4e,f). 
To better understand the statistical significance of 
records and anomalies discussed in this section, ref-
erences can be made to the spatial anomaly maps in 
Fig. 6.3 (the shading indicates the number of standard 
deviations the anomalies are from the mean).

Monthly mean temperatures at Bellingshausen 
station (Fig 6.4a) on the western side of the Antarctic 
Peninsula were similar to the 1981–2010 mean at the 
start and end of the year, but from May to September, 
the values were consistently lower than the mean. 
Midway down on the west side of the Antarctic 
Peninsula, the temperatures at Rothera (not shown) 
followed a similar pattern. In the Weddell Sea region, 
the monthly mean temperatures at Halley (Fig. 6.4b) 
and Neumayer (not shown) were within ±2°C of the 

1981–2010 mean, with 
the exception of June 
and July at Halley. In 
June, the mean monthly 
value nearly matched 
the lowest recorded 
mean monthly value 
and included a new re-
cord for the extreme 
daily minimum value, 
which was −56.2°C. 
The anomalously cold 
conditions in June were 
followed by a respite 
to anomalously warm 
conditions in July that 
were then followed by 
below- to near-average 
temperatures for the 
rest of the year. 

Around the coast of 
East Antarctica, all of 
the Australian stations 
had near-average tem-
peratures at the start 
and end of the year and 
colder-than-average 
t emp er at u re s  f rom 
April to August, except 
for Casey (not shown) 
in June when the tem-
perature was slightly 
higher than average. 
Davis (not shown) and 
Mawson (Fig. 6.4c) both 
had very low monthly 
mean temperatures in 

May (a record low at Mawson). Temperatures at 
Mawson were also anomalously low again in July. 
At Amundsen-Scott station (Fig. 6.4d), the monthly 
mean temperatures were close to the long-term means 
with the exception of October and November when 
they were warmer than average.

In the Antarctic Peninsula, an all-time record 
warm air temperature for the continent may have 
been set at Esperança on 24 March, reaching +17.5°C 
during an intense foehn wind event that spanned 
much of the northeastern Peninsula. Temperatures 
rose as much as 30°C within 48 hours as an intense 
high pressure region over the Drake Passage and 
strong low pressure over the northwestern Weddell 
Sea drove strong downslope winds all along eastern 
Graham Land. An automated sensor at Foyn Point in 

Fig. 6.4. 2015 Antarctic climate anomalies at six representative stations [four staffed 
(a)–(d) and two automatic (e)–(f)]. Monthly mean anomalies for temperature (°C) 
and surface pressure (hPa) are shown, with + denoting record anomalies for a given 
month at each station in 2015. All anomalies are based on differences from 1981–2010 
averages, except for Gill, which is based on averages during 1985–2013. Observa-
tional data start in 1968 for Bellingshausen, 1957 for Halley and Amundsen-Scott, 
1954 for Mawson, 1985 for Gill AWS, and 1981 for Byrd AWS.
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the Larsen B embayment recorded still higher values 
brief ly, at +18.7°C on the 24th, and several other 
weather stations in the region surpassed +17°C on 
23 and 24 March.

Temperatures at the AWS locations provide a 
broader view of weather records and trends for the 
continent. For the Ross sector, Possession Island 
(not shown) reported a record low temperature of 
−21.9°C (greater than 2 standard deviations from 
the 1981–2010 mean) in September and then tied its 
record high mean temperature of 1.7°C in Decem-
ber. Otherwise, temperatures at Possession Island 
were above normal for February, August, October, 
November, and December and below normal for the 
rest of the months (no report for July). The Ross Ice 
Shelf region (e.g., Gill AWS, Fig. 6.4f) had generally 
above-normal temperatures from January through 
March and again in August, but these warm periods 
were interspersed by colder-than-normal tempera-
tures, especially in April, July, and September. In 
West Antarctica, Byrd AWS (Fig. 6.4e) was colder 
than normal for March–April, June–August, and 
November–December and was warmer than normal 
otherwise. At Relay Station (not shown) on the Polar 
Plateau, temperatures were above normal through 
May, below normal for June–September, and then 
5°C above normal in October. On the other side of the 
Polar Plateau, Dome C II (not shown) did not operate 
from May through part of September, but October 
and November had above-normal temperatures.

While stations over Antarctica generally did not 
report record temperature anomalies, many staffed 
and unstaffed stations reported record low pressure 
anomalies in at least one month. The pressure data 
from all staffed stations showed lower-than-average 
pressures for all months except October (Figs. 6.4a–d) 
and January at the Bellingshausen station (Fig. 6.4a). 
On the Ross Ice Shelf, almost every month had below-
normal pressure with a record low anomaly reported 
for February for Possession Island (−6.7 hPa), Marble 
Point (−9.2 hPa, greater than 2 standard deviations 
below normal), Ferrell (−9.9 hPa, about 2 standard 
deviations below normal), and Gill AWS (−10.5 hPa, 
greater than 2 standard deviations below normal; the 
latter shown in Fig. 6.4f). The record low pressure 
anomalies ranged from −6.7 to −10.5 hPa. Possession 
Island was only above normal for May, and Marble 
Point had slightly above-normal pressure for October. 
Relay Station also had a record low pressure anomaly 
in February (−5.1 hPa), and pressures were below nor-
mal through the whole year until October. The record 
low pressure anomalies observed in February on both 
the Ross Ice Shelf and at Relay Station also coincided 

with the record high SAM index value (Fig. 6.2c). 
Byrd AWS (Fig. 6.4e) in West Antarctica reported 
record low pressures in March and November (803.7 
and 799.8 hPa, respectively), with only four other 
months reporting pressure anomalies less than 6 hPa 
below normal. There were also a few reported wind 
speed records (not shown), but most stations generally 
reported only slightly above or below normal wind 
speeds over the course of the year. Marble Point had 
a record low monthly mean wind speed of 2.4 m s−1 
in March, and Gill reported a record low wind speed 
of 1.5 m s−1 in April (both more than 2 standard de-
viations below normal). Relay Station had a record 
high monthly mean wind speed of 9.1 m s−1 in April 
(greater than 2 standard deviations above normal). 

d. Net precipitation (P – E)—D. H. Bromwich and S.-H. Wang
Precipitation minus evaporation/sublimation 

(P − E) closely approximates the surface mass balance 
over Antarctica, except for the steep coastal slopes 
(e.g., Bromwich et al. 2011; Lenaerts and van den 
Broeke 2012). Precipitation variability is the dominant 
term for P − E changes at regional and larger scales 
over the Antarctic continent. There are few precipita-
tion gauge measurements for Antarctica, and those 
are compromised by blowing snow. In addition, over 
the interior Antarctic plateau, snowfall amounts are 
often less than the minimum gauge resolution. As a 
result, precipitation and evaporation fields from the 
Japanese 55-year Reanalysis (JRA-55; Kobayashi et al. 
2015) were examined to assess Antarctic net precipi-
tation (P − E) behavior for 2015. JRA-55, the second 
generation of JRA, is produced with a low-resolution 
version of the Japan Meteorological Agency’s (JMA) 
operational data assimilation system as of Decem-
ber 2009, which incorporated many improvements 
achieved since JRA-25 (Onogi et al. 2007), including a 
revised longwave radiation scheme, four-dimensional 
data assimilation, bias correction for satellite radianc-
es, and assimilation of newly available homogenized 
observations. These improvements have resulted in 
better fits to observations, reduced analysis incre-
ments and improved forecast results (Kobayashi et 
al. 2015). The model is run at a spatial resolution of 
TL319 (~0.5625° or 55 km) and at 60 vertical levels 
from the surface up to 0.1 hPa. In comparison to 
other long-term global reanalyses (e.g., NCEP1 and 
NCEP2), JRA has higher horizontal and vertical 
model resolution, uses a greater number of observa-
tions, and has a more advanced model configuration 
(e.g., Bromwich et al. 2007; Kang and Ahn 2015).

Figure 6.5 shows the JRA-55 2015 and 2014 an-
nual anomalies of P − E and mean sea level pressure 
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(MSLP) departures from the 
1981–2010 average. In gen-
eral, annual P − E anomalies 
(Figs. 6.5a,b) over the high 
interior of the continent are 
small (within ±50 mm yr−1), 
but larger anomalies can be 
observed along the coast, 
consistent with the low and 
high snow accumulation 
in these regions. At higher 
latitudes (> 60°S) JRA-55 
is quantitatively similar to 
JRA-25 and ERA-I (Euro-
pean Centre for Medium-
Range Weather Forecasts 
Interim reanalysis) P − E re-
sults (Bromwich and Wang 
2014, 2015). The excessively 
high positive anomalies of 
JRA-25 over the Southern 
Ocean north of 60°S (that 
were noted in last year’s 
report) are not present in 
JRA-55. JRA-55 also shows 
better overall agreement 
with ERA-I than JRA-25 
during 2013 and 2014.

Based on JRA-55, the 
2014 negative anomalies 
located at eastern Queen 
M au d  L a nd  ( b e t we e n 
15° and 80°E) are weak-
er in 2015, and positive 
anomalies are observed 
over Enderby Land and 
the Amery Ice Shelf. The 
strong negative features be-
tween American Highland 
and Wilkes Land (between 
80° and 150°E) observed 
in 2014 were replaced by 
weak positive anomalies in 
2015, except near the Budd Coast region (near 115°E) 
where negative anomalies were observed again. The 
George V Coast and Ross Sea had positive anomalies 
in 2015, in contrast to 2014 conditions. The small 
positive anomalies over the western Ross Sea seen 
in 2014 were replaced by negative anomalies in 2015. 
Strong positive anomalies over the Amundsen and 
Bellingshausen Seas (between 150° and 75°W) in 
2014 were weaker but remained positive in 2015. 
Small negative anomaly centers were present along 

the West Antarctic coastline in 2015. Both sides of the 
Antarctic Peninsula have similar anomaly patterns 
to 2014, but were weaker. The negative P−E anomaly 
center over the Weddell Sea in 2014 was replaced by 
a positive one in 2015.

These annual P − E anomaly features were gener-
ally consistent with the mean atmospheric circulation 
implied by the MSLP anomalies (Figs. 6.5c,d). In 2015 
the MSLP anomalies surrounding Antarctica were 
less localized than in 2014 (Figs. 6.5c,d). The MSLP 

Fig. 6.5. JRA-55 (a–d) annual P – E and MSLP anomalies: (a) 2015 P – E anomalies 
(mm month−1); (b) 2014 P–E anomalies (mm month−1); (c) 2015 MSLP anoma-
lies (hPa); and (d) 2014 MSLP anomalies (hPa). All anomalies are departures 
from the 1981–2010 mean. (e) Monthly total P – E (mm; dashed green) for the 
West Antarctic sector bounded by 75°–90°S, 120°W–180°, along with the SOI 
(dashed dark blue, from NOAA Climate Prediction Center) and SAM [dashed 
light blue, from Marshall (2003)] indices since 2010. In (a) and (b), Antarctic 
regions with greater than ±30% change are hatched; sloping denotes negative 
values and horizontal denotes positive. Centered annual running means are 
plotted as solid lines. 
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pattern in 2015 consisted of large negative pressure 
anomalies over Antarctica (or high latitudes) and a 
ring of positive pressure anomalies at midlatitudes, 
which resulted in positive SAM index values recorded 
for most of 2015 (Figs. 6.2c, 6.5e). This MSLP pat-
tern tended to induce higher precipitation from the 
Southern Ocean into Antarctica. The positive MSLP 
anomaly over the Ronne Ice Shelf and the Weddell 
Sea in 2014 was replaced by a strong negative anomaly 
center at the tip of the Antarctic Peninsula in 2015. 
Enhanced cyclonic flows induced more inflow from 
the ocean and resulted in higher precipitation anoma-
lies into the Weddell Sea and Queen Maud Land. A 
strong negative anomaly center at the southern Indian 
Ocean (near 105°E) in 2014 was replaced by large posi-
tive anomalies, with weak negative anomalies along 
the coast of East Antarctica. Combined with cyclonic 
flow produced by negative anomalies over Weddell 
Sea, it produced higher precipitation along Queen 
Mary Coast (between 60° and 125°E) in 2015. The 
large positive anomaly center in 2014 over the South 
Pacific Ocean (near 120°W) was enhanced in 2015. 
In combination with the expanded and strengthened 
negative anomalies over the western Ross Sea region, 
above-normal precipitation was observed in the Ross 
Sea and Amundsen Sea regions (Fig. 6.5a).

Earlier studies show that almost half of the mois-
ture transport into Antarctica occurs in 
the West Antarctic sector. Here, there 
is also large interannual variability 
in moisture transport in response to 
atmospheric circulation patterns asso-
ciated with extreme ENSO events (e.g., 
Bromwich et al. 2004) and high SAM 
index values (e.g., Fogt et al. 2011). As 
the seasons progressed from 2014 to 
2015, the negative MSLP anomalies over 
the Ross Sea weakened (Figs. 6.3a,c, 
6.5d), while a positive MSLP anomaly 
deepened offshore of 60°S (Figs. 6.5c,d). 
A positive anomaly then appeared in the 
Bellingshausen Sea and strengthened 
in later months of 2015 (Figs. 6.3e,g). 
These anomaly features are consistent 
with a simultaneously strong El Niño 
event and a positive SAM index. Figure 
6.5e shows the time series of average 
monthly total P − E over Marie Byrd 
Land–Ross Ice Shelf (75°–90°S, 120°W–
180°) and the monthly Southern Oscil-
lation index (SOI) and SAM indices 
(with 12-month running means). It is 
clear that the SOI and SAM index were 

positively associated with each other, but negatively 
associated with P – E, in most months from 2010 to 
mid-2011. From then on, the SOI and SAM index 
were negatively associated through 2015. From 2014 
into 2015, the SOI became more negative (indicating 
El Niño conditions in the tropical Pacific), while the 
SAM index became more positive.  The atmospheric 
circulation pattern associated with a positive SAM 
index modulated the high latitude response to 
El Niño, and the associated MSLP anomalies were 
located farther north than normal (Sidebar 6.1). The 
end result was near-normal precipitation over Marie 
Byrd Land–Ross Ice Shelf (Fig. 6.5e), in contrast to 
higher-than-normal precipitation during previous 
El Niño events (e.g., Bromwich et al. 2004). 

e. Seasonal melt extent and duration—L. Wang and H. Liu
Seasonal surface melt on the Antarctic continent 

during 2014/15 was estimated from daily measure-
ments of passive microwave brightness temperature 
using data acquired by the Special Sensor Micro-
wave–Imager Sounder (SSMIS) onboard the Defense 
Meteorological Satellite Program (DMSP) F17 satel-
lite. The data were preprocessed and provided by the 
U.S. National Snow and Ice Data Center (NSIDC) in 
level-3 EASE-Grid format (Armstrong et al. 1994) and 
were analyzed using a wavelet transform-based edge 

Fig. 6.6. Estimated surface melt for the 2014/15 austral summer (a) 
melt start day, (b) melt end day, (c) melt duration (days), and (d) melt 
duration anomalies (days) relative to 1981–2010. (Data source: DMSP 
SSMIS daily brightness temperature observations.)
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SIDEBAR 6.1: EL NIÑO AND ANTARCTICA—R. L. FOGT

During 2015, a strong El Niño developed and 
intensified in the tropical Pacific. Like much of 
the globe, Antarctica is influenced during ENSO 
events by a series of atmospheric Rossby waves 
emanating from the tropical Pacific, extending 
to high latitudes over the South Pacific Ocean 
near West Antarctica (Turner 2004). This pat-
tern has been widely referred to as the Pacific 
South American pattern, and during an El Niño 
event, positive pressure anomalies are typical 
off the coast of West Antarctica (Mo and Ghil 
1987; Karoly 1989). 

Despite the 2015/16 El Niño’s emergence as a 
strong event in the Pacific by midyear, its impact 
near Antarctica was not at all typical. However, 
true to form, in September–December (SOND) 
2015, the high-latitude South Pacific was marked 
by a strong positive pressure anomaly and as-
sociated counterclockwise near-surface flow 
(Figs. SB6.1a, 6.3g). The southerly flow in the 
vicinity of the Antarctic Peninsula partially 
explains the persistence of below-average tem-
peratures across the Antarctic Peninsula in the 
latter half of 2015 (compare Figs. 6.3f,h with 
Fig. 6.4a). Elsewhere, the pattern of response 
was quite different from recent strong El Niño 
events (Fig. SB6.1b). The southern Pacific posi-
tive pressure anomaly, although much stronger 
than the El Niño average, was displaced north-
ward. While this had consistent temperature 
and wind impacts across the Antarctic Peninsula and the 
South Pacific, much of the rest of West Antarctica was 
not strongly impacted in 2015 as is typical during other 
strong El Niño events (compare Fig. SB6.1b with Fig. 6.3e,g 
and Byrd AWS data in Fig. 6.4e). The northward displace-
ment of the high pressure anomaly in 2015 is most likely 
due to the fact that much of 2015, with the exception of 
October, was marked by a positive SAM index (compare  
Fig. 6.2c). Because the SAM index monitors the strength 
and/or position of the circumpolar jet, which is known 
to influence extratropical Rossby wave propagation and 
breaking (L’Heureux and Thompson 2006; Fogt et al. 2011; 
Gong et al. 2010, 2013), the strengthened jet in 2015 was 
not so favorable for Rossby wave propagation into the 
higher (>60°) southern latitudes. Thus, the South Pacific 
teleconnection was displaced farther north than normal 
(based on Fig. SB6.1b). Historically, many of the strongest 
El Niño events occurred during negative SAM index values 

Fig. SB6.1. (a) SOND MSLP (contoured) and 10-m wind 
anomalies (vectors) from the 1981–2010 climatological 
mean. Shading represents the number of standard de-
viations the 2015 SOND MSLP anomalies were from the 
climatological mean; wind vectors are only shown if at 
least one component was a standard deviation outside 
the climatological mean. (b) MSLP (contoured) and 10-m 
wind (vectors) anomaly composite for the six strongest 
El Niño events in SOND since 1979 (in rank order: 1997, 
1982, 1987, 2002, 2009, 1991), with shading (from lightest 
to darkest shades) indicating composite mean anomalies 
(of MSLP and winds) significantly different from zero at  
p < 0.10, p < 0.05, p < 0.01, respectively, based on a two-tailed 
Student’s t test. The shading therefore indicates where the 
El Niño composite mean is significantly different from the 
1981–2010 climatology. (Source: ERA-Interim reanalysis.)

(Fogt et al. 2011) in contrast to the 2015 El Niño event. 
Nonetheless, because of its influence on meridional flow 
over the ice edge at the time of maximum sea ice extent 
(Figs. SB6.1a, 6.8c), the end of 2015 was marked by strong 
regional sea ice extent anomalies in the West Antarctic 
sector (Figs. 6.8c,d, 6.9c–e), which were opposite in sign 
to the long-term trends in sea ice extent in that region 
(Fig. 6.8e).

In summary, the 2015 El Niño indeed produced strong 
atmospheric circulation impacts in the South Pacific, 
which are consistent with the below-average tempera-
tures across the Antarctic Peninsula and sea ice extent 
anomalies in the Bellingshausen, Amundsen, and Ross 
Seas. However, because the teleconnection was displaced 
farther north than normal, its impact across the rest of 
Antarctica was much weaker than was the case for previ-
ous strong El Niño events. 
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detection method (Liu et al. 2005). The algorithm 
delineates each melt event in the time series by track-
ing its onset and end dates, with the onset day of the 
first melt event being the start day of the melt season 
(Fig. 6.6a) and the end day of the last melt event being 
the end day of the melt season (Fig. 6.6b). The melt 
duration is then the total number of melting days per 
pixel during the defined melt season (excluding any 
refreezing events that may have occurred during this 
period; Fig. 6.6c). The melt extent and melt index are 
metrics useful for quantifying the interannual vari-
ability in surface melt (Zwally and Fiegles 1994; Liu 
et al. 2006). Melt extent (km2) is the total area that 
experienced surface melt for at least one day, while 
the melt index (day·km2) is the product of duration 
and melt extent and describes the spatiotemporal 
variability of surface melting. The anomaly map 
(Fig. 6.6d) was created by referencing the mean melt 
duration computed over 1981–2010 (see also Fig. 3 in 
Liu et al. 2006). 

The spatial pattern of the melt duration map in 
austral summer 2014/15 (Fig. 6.6c) was similar to pre-
vious years (Wang et al. 2014). Areas with extended 
melt duration (>45 day duration in orange-red) were 
the Antarctic Peninsula area, including the Larsen 
and Wilkins ice shelves, and parts of coastal East Ant-
arctica, including the Shackleton ice shelf and other 
smaller ice shelves east of there. Areas with moderate 
melt duration (16–45 day duration in green-yellow) 
included much of coastal Queen Maud Land and the 
Amery, West, and Abbot ice shelves; short-term melt 
(<16 day duration in blues) occurred on the coast of 
Marie Byrd Land, including Ross ice shelf and por-
tions of Queen Maud Land near the Filchner Ice Shelf. 

The melt index for the entire Antarctic continent 
has continued to drop since the 2012/13 season 
(Fig. 6.7a; Wang et al. 2014). The estimated melt index 
of the 2014/15 season is 29 252 500 day·km2 in compar-
ison to 39 093 125 day·km2 in 2013/14 and 51 335 000 
day·km2 in the 2012/13 season. The melt extent of 
the 2014/15 season (Fig. 6.7b), however, is 1 058 750 
km2, slightly greater than last year at 1 043 750 km2. 
The melt anomaly map in Fig. 6.6d shows the melt 
season was generally shorter than the historical aver-
age. Therefore, austral summer 2014/15 is classified 
as a low melt year for Antarctica. The 2014/15 melt 
extent and index numbers were almost equivalent 
to those observed during austral summer 2011/12 
(944 375 km2 and 29 006 250 day·km2, respectively). 
Figure 6.7 shows a nearly significant (p = 0.05) nega-
tive trend (311 900 day·km2 yr−1) in melt index and a 
significant (p < 0.01) negative trend (14 200 km2 yr−1) 
in melt extent over 1978/79 to 2014/15, highlighted by 
the record low melt season observed during austral 
summer 2008/09. The negative trends in melt index 
and melt extent are consistent with previous reports 
(Liu et al. 2006; Tedesco 2009a,b). 

f. Sea ice extent, concentration, and duration—P. Reid,  
R. A. Massom, S. Stammerjohn, S. Barreira, J. L. Lieser, and T. Scambos
Net sea ice areal extent was well above average dur-

ing the first few months of 2015 (Fig. 6.8a). Monthly 
record extents were observed in January (7.46 × 106 
km2), April (9.06 × 106 km2), and May (12.1 × 106 km2). 
The January extent marked the highest departure 
from average for any month since records began in 
1979, at 2.39 × 106 km2 above the 1981–2010 mean 
of 5.07 × 106 km2, or nearly 50% greater. These early 
season records follow on from the record high extent 
and late retreat of sea ice in 2014 (Reid et al. 2015). 
During the first half of 2015, there were 65 individual 
days of record daily sea ice extent, the last occurring 
on 11 July, and 46 record-breaking days of sea ice area 
within the first half of the year. However, the expan-
sion of sea ice slowed so dramatically midyear that 
although sea ice area was at a record high level in May, 
it was at a record low level in August, just 83 days later 
(Fig. 6.8a). Close-to-average net sea ice extent levels 
were then observed in the latter half of 2015. 

The record high net sea ice extent in January was 
dominated by strong positive regional anomalies 
in sea ice concentration and extent in the Ross and 
Weddell Seas (Figs. 6.8b, 6.9c,e) and across East 
Antarctica (~75°–140°E). This was counterbalanced 
by strong negative ice concentration and extent 
anomalies that were present in the Bellingshausen– 
Amundsen Seas (Figs. 6.8b, 6.9d). All three regions 

Fig. 6.7. (a) Melt index (106 day·km2) from 1978/79 to 
2014/15, showing a slight negative trend (p not signifi-
cant at 95%). (b) Melt extent (106 km2) from 1978/79 to 
2014/15, also showing a negative trend (p significant at 
99%). A record low melt was observed during 2008/09. 
The year on the x-axis corresponds to the start of the 
austral summer melt season, e.g., 2008 corresponds 
to summer (DFJ) 2008/09.
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of more extensive sea ice coin-
cided with anomalously cool SSTs 
adjacent to the sea ice. Low atmo-
spheric pressure anomalies were 
also present in the Weddell and 
Ross–Amundsen Seas (Fig. 6.3a). 
Interestingly, at this time colder-
than-normal SSTs were present 
just to the north of the Belling-
shausen–Amundsen Seas, possibly 
entrained within the ACC but not 
adjacent to the ice edge itself (and 
thus removed from the area expe-
riencing below-normal ice extent).

As shown in Fig. 6.8a, there 
was a substantial and rapid de-
crease in the net ice extent (and 
area) anomaly from late January 
to early February, in large part 
due to changes in the eastern 
Ross (ref lected in Fig. 6.9c) and 
western Amundsen (not shown) 
Seas. This rapid regional “collapse” 
followed lower-than-normal sea 
ice concentrations in the central 
pack ice during the latter part 
of 2014 (see Reid et al. 2015). In 
spite of this, net sea ice extent 
and area continued to track well 
above average or at record high 
levels between February and May. 
The Indian Ocean sector between 
~60° and 110°E, the western Ross 
Sea, and the Weddell Sea showed 
particularly high or increasing 
sea ice extents during the Febru-
ary to May period as ref lected 
in the regionwide daily anomaly 
series (Figs. 6.9a,c,e, respectively), 
with early-season areal expansion 
spurred on by colder-than-normal 
SSTs (not shown) and surface air 
temperatures (Figs. 6.3b,d). 

June saw the beginning of a 
major change in the large-scale 
atmospheric pattern at higher 
southern latitudes, with lower-
than-normal atmospheric pressure 
over the Antarctic continent and a strong atmospheric 
wave-3 pattern evolving (Fig. 6.3e). This coincided 
with warmer-than-normal SSTs in lower latitudes of 
the Indian and Pacific Oceans (the latter associated 
with the developing El Niño) and their influence on 

the distribution of atmospheric jets (Yuan 2004) and 
hence cyclonicity at higher southern latitudes. The 
abrupt change in hemispheric atmospheric circula-
tion began a regional redistribution of patterns of sea 
ice areal expansion (Fig. 6.9). On one hand, there was 

Fig. 6.8. (a) Plot of daily anomalies from the 1981–2010 mean of daily 
Southern Hemisphere sea ice extent (red line) and area (blue line) for 2015. 
Blue banding represents the range of daily values of extent for 1981–2010, 
while the thin black lines represent ±2 standard deviations of extent. 
Numbers at the top are monthly mean extent anomalies (× 106 km2). 
Sea ice concentration anomaly (%) maps for (b) Jan and (c) Sep 2015 
relative to the monthly means for 1981–2010, along with monthly mean 
SST anomalies (Reynolds et al. 2002; Smith et al. 2008). These maps are 
also superimposed with monthly mean contours of 500-hPa geopotential 
height anomaly (Kalnay et al. 1996; NCEP). Bell is Bellingshausen Sea, 
AIS is Amery Ice Shelf. (d) Sea ice duration anomaly for 2015/16 and (e) 
duration trend (Stammerjohn et al. 2008). Both the climatology (for 
computing the anomaly) and trend are based on 1981/82 to 2010/11 data 
(Cavalieri et al. 1996, updated yearly), while the 2015/16 duration-year data 
are from the NASA Team NRTSI dataset (Maslanik and Stroeve 1999).
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a reduction in the rate of expansion in the western 
Weddell and Ross Seas and much of East Antarctica 
(~30°E–180°). In other regions (i.e., the eastern Wed-
dell and Ross Seas and Bellingshausen and Amundsen 
Seas), however, a likely combination of wind-driven 
ice advection and enhanced thermodynamics (colder-
than-normal atmospheric temperatures, and in the 
Bellingshausen and Amundsen Seas region colder-
than-normal SSTs) led to strongly positive sea ice 
extent anomalies. The anomalous ice extent patterns 
in the Ross Sea and Bellingshausen–Amundsen Seas 
were opposite to the trends observed over the last 
few decades of greater/lesser sea ice extent in those 
two regions respectively (Holland 2014). The net 
result of this redistribution in regional ice extent 

anomalies was that net circumpolar sea ice extent and 
area dropped dramatically at the beginning of July 
(Fig. 6.8a). This general regional ice anomaly pattern 
then persisted to the end of September (Fig. 6.8c). 

Another switch in large-scale regional sea ice 
extent anomalies occurred in October in response 
to the dissipation of the atmospheric wave-3 pattern 
and subsequent increase in negative pressure anoma-
lies centered on ~0° and ~170°W and a broad ridge 
of positive pressure anomalies centered on ~55°S, 
90°W (Fig. 6.3g). Positive sea ice extent anomalies 
were associated with a combination of cold SSTs in 
the Bellingshausen–Amundsen Seas and cool atmo-
spheric temperatures in the western Ross and Weddell 
Seas and far eastern East Antarctic. Negative anoma-
lies were associated with relatively warm atmospheric 
temperatures to the east of the low pressure systems 
(Fig. 6.3h). At the same time, sea ice extent in the far 
eastern Weddell Sea and Indian Ocean sector (~0° 
to ~60°E) was well below average (Fig. 6.9a) and re-
mained so for the rest of the year. This is attributable 
to the very low sea ice extent in the western Weddell 
Sea in the previous months (July–September as men-
tioned above), leading to lower-than-normal eastward 
advection of sea ice in the eastern limb of the Weddell 
Gyre (see Kimura and Wakatsuchi 2011). Similarly, a 
lack of eastward zonal advection of sea ice from the 
western Ross Sea resulted in lower-than-normal sea 
ice extent in the eastern Ross Sea (~150° to ~120°W). 
On a smaller scale, in late October through mid-
November several intense low pressure systems caused 
a temporary expansion of the sea ice edge (~50% above 
the long-term average) between ~60° and 90°E.

The net result of the seasonal sea ice anomalies 
described is summarized by the anomaly pattern in 
the annual ice season duration (Fig. 6.8d). The longer-
than-normal annual ice season in the outer pack 
ice of the eastern Amundsen, Bellingshausen, and 
western Weddell Seas (120°W–0°) was due both to an 
anomalously early autumn ice-edge advance and later 
spring ice-edge retreat. In contrast, the longer annual 
ice season in the inner pack ice zones of the western 
Weddell Sea and East Antarctic sector (~80°–120°E) 
was the result of anomalously high summer sea ice 
concentrations (Fig. 6.8b) that initiated an anoma-
lously early autumn ice edge advance in those two 
regions. The shorter-than-normal annual ice season 
in the eastern Ross and western Amundsen Seas 
(160°–120°W) was mostly due to an anomalously 
early ice edge retreat in spring associated with the 
increased negative pressure anomalies centered on 
170°W and lack of zonal ice advection from the west. 
Though of lesser magnitude, similar spring factors 

Fig. 6.9. Plots of daily anomalies (× 106 km2) from the 
1981–2010 mean of daily Southern Hemisphere sea ice 
extent (red line) and area (blue line) for 2015 for the 
sectors: (a) Indian Ocean; (b) western Pacific Ocean; 
(c) Ross Sea; (d) Bellingshausen–Amundsen Seas; and 
(e) Weddell Sea. The blue banding represents the 
range of daily values for 1981–2010 and the thin red 
line represents ±2 std dev. Based on satellite passive-
microwave ice concentration data (Cavalieri et al. 
1996, updated yearly).
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(the low pressure at 0° and lack of zonal ice advection 
from the west) were also implicated in the shorter-
than-normal ice season in the far eastern Weddell 
Sea and western Indian Ocean sector between 10° 
and 40°E. The contrast in spring–summer anomaly 
patterns between the Bellingshausen–Amundsen Seas 
and eastern Ross Sea (Figs. 6.8c, 6.9c,d) is a somewhat 
typical response to El Niño and as such is opposite 
to the sea ice response to the atmospheric circulation 
pattern associated with a strong positive SAM index 
(and is also opposite to the long-term trend in an-
nual ice season duration; Fig. 6.8e). However, and as 
described in Sidebar 6.1, the high-latitude response to 
this year’s El Niño was spatially muted relative to past 
El Niños due to the damping effect of the circulation 
anomalies associated with a mostly positive SAM 
index during this time.

g. Southern Ocean—J.-B. Sallée, M. Mazloff, M. P. Meredith,  
C. W. Hughes, S. Rintoul, R. Gomez, N. Metzl, C. Lo Monaco,  
S. Schmidtko, M. M. Mata, A. Wåhlin, S. Swart, M. J. M. Williams, 
A. C. Naveria-Garabata, and P. Monteiro
The horizontal circulation of the Southern Ocean, 

which allows climate signals to propagate across the 
major ocean basins, is marked by eddies and the 
meandering fronts of the Antarctic Circumpolar 
Current (ACC). In 2015, large observed anomalies 
of sea surface height (SSH; Fig. 6.10a) contributed to 
variations in the horizontal ocean circulation. While 
many of these anomalies are typical of interannual 
variability, there were several regions where the 2015 
anomaly was noteworthy due either to its extreme 
magnitude or its spatial coherence: north of the ACC 
in the Southwest Indian Ocean (~20°–90°E); in the 
entire South Pacific (~150°E–60°W), specifically the 
mid-Pacific basin around 120°W; and the anomalous 
negative SSH anomalies stretching around much of 
the Antarctic south of the ACC, especially over the 
Weddell Sea (0°–60°W). A large part of the 2015 SSH 
anomalies in the mid-Pacific, around Australia, and 
around South America was likely attributable to the 
strong El Niño event in 2015, though the low around 
Antarctica appears unrelated to ENSO variations 
(Sallée et al. 2008). 

It is not straightforward to convert these large-
scale SSH anomalies into anomalies of circumpolar 
volume transport. The best indicator of such varia-
tions is bottom pressure averaged on the Antarctic 
continental slope (Hughes et al. 2014), but such ob-
servations on the narrow slope regions are not avail-
able. Instead, the focus is on sea level averaged over 
this strip (Hogg et al. 2015). Figure 6.10d reveals that 
recent years have shown a resumption of the steady 

rise in sea level in this region. A slight sea level fall in 
2015 compared to 2014 remains consistent with this 
trend given the increase from 2014 to 2015 in eastward 
winds as represented by the SAM index (Fig. 6.10e), 
which is known to be associated with a fall in sea level 
(Aoki 2002; Hughes et al. 2003). A conversion from 
sea level to zonally averaged circumpolar transport, 
which is well established for periods of up to five 
years, is shown in Fig. 6.10e. This confirms the associ-
ation with the atmospheric structures related to SAM 
but is suggestive of an additional source of variability 
associated with major El Niño (e.g., 2009/10, 2015/16) 
and La Niña (e.g., 1998/99, 1999/2000) events, when 
zonally averaged circumpolar transport anomalies 
became more negative (decreased transport) and 
positive (increased transport), respectively. 

The horizontal circulation and vertical water-mass 
circulation are dynamically linked through a series 
of processes including surface water-mass trans-
formation associated with air–sea–ice interactions. 
The characteristics of the lightest and densest of the 
Southern Ocean water masses are now described to 
provide an assessment of the vertical circulation and 
its contribution to ventilating the world’s oceans. The 
ocean surface mixed layer is the gateway for air–sea 
exchanges and provides a conduit for the sequestra-
tion of heat or carbon dioxide from the atmosphere 
into the ocean’s interior, which is ultimately mediated 
by the physical characteristics of the mixed layer.

The 2015 mixed layer temperature anomaly pat-
tern revealed a distinct north–south dipole delimited 
by the ACC (Figs. 6.10b,c). Mixed layer conditions in 
Antarctic waters were very cold, whereas the mixed 
layers north of the ACC were warmer than average. 
This pattern persisted throughout both summer 
and winter, though with a reduced magnitude in 
winter. While the warm signal in the mid-Pacific 
was consistent with the influence of the 2015 El Niño 
event (Vivier et al. 2010), the cold signal south of the 
ACC was not. It was consistent, however, with the 
atmospheric circulation pattern associated with a 
positive SAM index that included increased north-
ward Ekman transport of relatively cool and fresh 
Antarctic surface waters. In agreement, the southeast 
Pacific sector was fresher than the climatological 
average conditions, though other regions showed 
little homogeneity in salinity anomaly (not shown).

Mixed layer temperatures have a strong inf lu-
ence on air–sea CO2 fluxes and ocean pH. Overall, 
the Southern Ocean is a net carbon sink. This sink 
decreased during the 1990s, but since 2002 has in-
creased, reaching a maximum of about 1.3 Pg C yr−1 
in 2011 (Pg = 1015g; Landschutzer et al. 2015) and was 
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likely stronger than 1 Pg C yr−1 
in 2015 (Fig. 6.10f). South of the 
ACC, the increase of the sink is ex-
plained by the cooling of the sur-
face layer in summer (Fig. 6.10b) 
and the stability of the CO2 con-
centrations in winter (Munro 
et al. 2015). The ocean carbon 
uptake leads to a decrease in pH, 
the so-called ocean acidification. 
A global assessment of surface 
water pH in 2015 is not possible 
due to scarcity of observations, 
so we present the evolution of pH 
in the South Indian sector, which 
has been monitored since 1985 
(Fig. 6.10g). A rapid pH change 
was identif ied in 1985–2001 
(−0.03 decade−1) but has stabilized 
since 2002 (Fig. 6.10g), a signal 
probably associated with a shift in 
climate forcing (e.g., neutral state 
of SAM in 2000s; Fig. 6.10e).

The bottom layers of the South-
ern Ocean are also undergoing 
substantial changes. Linear trends 
of deep ocean change constructed 
from repeat sections between 1992 
and 2005 reveal abyssal warm-
ing, with the strongest warming 
close to Antarctica (Purkey and 
Johnson 2010; Talley et al. 2016). 
Antarctic Bottom Water (AABW) 
is also contracting in volume and 
freshening (Purkey and Johnson 
2012, 2013; Shimada et al. 2012; 
Jullion et al. 2013; van Wijk and 
Rintoul 2014; Katsumata et al. 
2014; Meredith et al. 2014). These 
changes ref lect the response of 
AABW source regions to changes 
in surface climate and ocean–ice 
shelf interaction and to down-
stream propagation of the signal 
by wave and advective processes 
(Jacobs and Giulivi 2010; van Wijk 
and Rintoul 2014; Johnson et al. 
2014).

As with pH, observations of 
the deep ocean remain scarce, 
preventing a global assessment 
of the state of the abyssal ocean 
in 2015. However, repeat occupa-

Fig. 6.10. (a) 2015 anomaly of sea surface height (cm) with respect to the 
1993–2014 mean (produced from the Aviso SSH merged and gridded 
product). The trend at each location has been removed. (b) Time series 
(gray) of sea level anomaly (cm; produced from the Aviso SSH merged and 
gridded product) representative of a narrow region along the Antarctic 
coast (see Hogg et al. 2015) smoothed at different time scales. (c) Estimate 
of annual mean ACC transport anomaly (Sv, black line) derived from sea 
level (Hogg et al. 2015) with SAM index (Marshall et al. 2003) superimposed 
(dashed orange line). (d) 2015 anomaly of mixed layer temperature (°C) in 
summer (Jan–Apr) with respect to the climatological mean (2000–2014; 
computed from all available Argo observations). (e) Same as (d) but for 
the winter anomaly (Jul–Sep). In (a, d, e), the two black lines represent 
the mean location of the two main fronts of the ACC (Orsi et al. 1995). 
(f) Evolution of the Southern Ocean carbon sink (Pg C yr−1) south of 35°S, 
showing the flux derived from an interpolation method (Landschutzer 
et al. 2015) based on surface ocean pCO2 data from SOCAT-V3 (black 
solid line) and from SOCAT-V2 (black dotted line; Bakker et al. 2014). 
Positive values refer to a flux from air to ocean (i.e., ocean acts as a sink). 
(g) Evolution of pH in the Antarctic surface water (around 56°S, solid 
square) and subantarctic surface water (around 40°S, hollow square) in the 
South Indian Ocean; only repeat summer stations are used. (h) Potential 
temperature (°C, black line) and salinity (dashed orange line) of Antarctic 
Bottom Water at 140°E for 1969–2015; only repeat summer stations are 
used. Potential temperature and salinity are averaged over the deepest 
100 m of the water column for stations between 63.2° and 64.4°S, in the 
core of the AABW over the lower continental slope (average pressure 
of 3690 dbar). The vertical dashed line indicates the date of the calving 
of the Mertz Glacier Tongue. Note that time axis in (h) is different from 
(b), (c), (f), and (g).
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tions of hydrographic sections at 140°E provide a 
record of variations in AABW properties immediately 
downstream of a primary source of bottom water 
(Fig. 6.10h). Potential temperature shows significant 
variability but no long-term trend between 1969 and 
2015. In contrast, the long-term trend in salinity 
(~ −0.01 decade−1; Fig. 6.10h) exceeds interannual 
variability. Calving of the Mertz Glacier Tongue in 
2010 reduced the area of the Mertz polynya and 
thereby reduced the amount of sea ice and dense water 
formed in the polynya (Tamura et al. 2012; Shadwick 
et al. 2013), which likely contributed to the AABW 
variations observed after 2010.

h. Antarctic ozone hole—E. R . Nash , S . E. Strahan, 
N. Kramarova, C. S. Long, M. C. Pitts, P. A. Newman, B. Johnson, 
M. L. Santee, I. Petropavlovskikh, and G. O. Braathen
The 2015 Antarctic ozone hole was among the larg-

est and most persistent ever observed, based upon the 
record of ground and satellite measurements starting 
in the 1970s. Figure 6.11a displays the daily areal 
coverage of the Antarctic ozone hole during 2015 
(blue line) compared to the 1986–2014 climatology 
(white line). The ozone hole area is defined as the 
area covered by total column ozone values less than 
220 Dobson Units (DU). For 2015, area values greater 
than 5 million km2 first appeared in late August, ap-

proximately two weeks later than typical. The ozone 
hole usually reaches its largest size by mid-September, 
but in 2015 the maximum size occurred on 2 October 
at 28.2 million km2. The ozone hole then persisted at 
this large size (>20 million km2) until 15 November, 
setting daily records during much of October and 
November. The development of ozone depletion over 
time (daily minimum values; Fig. 6.11b) indicates that 
the ozone minimum was reached near 2 October; 
ozone then remained near record low values until 
early December. The late start, persistent large area, 
and low ozone minima were caused by unusually 
weak stratospheric wave dynamics.

NOAA ozonesondes are launched regularly 
over South Pole station. In early October 2015, the 
12–20-km column ozone was close to the long-term 
mean (Fig. 6.12a), while ozone increases thereafter 
were delayed compared to the long-term record. The 
minimum 12–20-km column ozone in 2015 was the 
fourth lowest at 7.2 DU, measured on 21 October 
(ozone hole image Fig. 6.11a). The ozonesonde total 
column minimum was 112 DU on 15 October. The 
ozonesonde of 8 December 2015 (ozone hole image 
Fig. 6.11b) showed record low total column ozone 
for early December, highlighting the abnormally late 
breakup of the hole.

One of the key factors controlling the severity of 
the Antarctic ozone hole is stratospheric temperature. 
Lower temperatures allow more polar stratospheric 
cloud (PSC) formation, exacerbating ozone deple-
tion. Southern Hemisphere stratospheric dynami-
cal conditions were anomalous in spring 2015. The 
lower stratospheric polar cap temperatures from 
the NCEP–DOE Reanalysis 2 for 2015 (Fig. 6.12b, 
blue line) were near the climatological average 
through August, but were below climatology during 
September–November.

The 100-hPa eddy heat flux is a measure of wave 
propagation into the stratosphere. A smaller (larger) 
magnitude leads to colder- (warmer-) than-average 
temperatures. The heat f lux was generally below 
average for July–October (Fig. 6.12c), especially 
in October. As a result, temperatures warmed at a 
slower rate in September–October (Fig. 6.12b), and 
the vortex eroded more slowly than in previous years. 
Consequently, the ozone hole was persistent, and 
stratospheric ozone levels at South Pole remained 
below average during October–November (Fig. 6.12a). 

The 2015 ozone hole broke up on 21 December, 
about two weeks later than average. The breakup is 
identified as the date when total ozone values below 
220 DU disappear (see Fig. 6.11). Ozone hole breakup 
is tightly correlated with the stratospheric polar vor-

Fig. 6.11. (a) Area coverage of the Antarctic ozone 
hole as defined by total column ozone values less than 
220 DU and (b) daily total column ozone minimum val-
ues in the Antarctic region from TOMS/OMI for 2014 
(red line) and 2015 (blue line). The average of the daily 
values (thick white line), the record maximum and 
minimum sizes (thin black lines), and the percentiles 
(gray regions and legend in a) are based on a climatol-
ogy from 1986–2014. The black arrows indicate the 
dates of the ozone maps on the right side.
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tex breakup, which is driven by wave events propa-
gating upward into the stratosphere, thus enabling 
transport of ozone-rich air from midlatitudes. The 
2015 ozone hole broke up late because of weak wave 
driving in October–November (Fig. 6.12c).

Levels of chlorine and bromine continue to decline 
in the stratosphere, and improvement of ozone con-
ditions over Antarctica is expected. Ozone depletion 
is estimated using equivalent effective stratospheric 
chlorine (EESC)—a combination of inorganic chlo-
rine (Cly) and bromine. Using a mean age of air of 5.2 

years, EESC shows a 2000–02 peak of 3.8 ppb, with 
a projected decrease in 2015 of 9% to 3.45 ppb as a 
result of the Montreal Protocol. This is a 20% drop 
towards the 1980 (“pre-ozone hole”) level of 2.03 ppb. 
NASA Aura satellite Microwave Limb Sounder (MLS) 
N2O measurements can be used to estimate Antarctic 
stratospheric Cly levels (Strahan et al. 2014). Antarc-
tic EESC has a small annual decrease (<1% yr−1), but 
interannual variations in transport to the Antarctic 
vortex cause Cly to vary by up to ±8% with respect to 
expected levels. Similar to 2014, the 2015 Antarctic 
stratospheric Cly was higher than recent years and 
similar to levels found in 2008 and 2010.

MLS lower stratospheric chlorine and ozone 
observations in the vortex were consistent with the 

Fig. 6.12. (a) Column ozone from NOAA South Pole 
ozonesondes measured over the 12–20-km (~160– 
40-hPa) range. (b) NCEP–DOE Reanalysis 2 of lower 
stratospheric temperature (60°–90°S, 50-hPa). (c) 
NCEP–DOE Reanalysis 2 of zonal mean eddy heat 
flux (45°–75°S, 100 hPa). The blue lines show the 2015 
values and the red lines show 2014. The average of the 
daily values (thick white line), the record maximum 
and minimum sizes (thin black lines), and the percen-
tiles [(gray regions and legend in (b)] are based on a 
climatology from (a) 1986–2014 and (b), (c) 1979–2014.

Fig. 6.13. Time series of 2014 (red line) and 2015 (blue 
line) Antarctic vortex-averaged: (a) HCl, (b) ClO, and 
(c) ozone from Aura MLS (updated from Manney et al. 
2011). These MLS averages are made inside the polar 
vortex on the 440-K isentropic surface (~18 km or 
65 hPa). The gray shading shows the range of Antarctic 
values for 2004–14. (d) Time series of 2014 (red line) 
and 2015 (blue line) CALIPSO PSC volume (updated 
from Pitts et al. 2009). The gray shading shows the 
range for 2006–14, and the black line is the average.
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SIDEBAR 6.2: POLAR ECOSYSTEMS AND THEIR SENSITIVITY TO 
CLIMATE PERTURBATION—H. DUCKLOW AND A. FOUNTAIN

Ice exerts a dominant control on the function and 
structure of polar ecosystems. Depending on the organ-
ism, it provides habitat and foraging platforms, or serves 
as a barrier to food and the flow of nutrients (Fountain et 
al. 2012). Polar ecosystems, both terrestrial and marine, 
have evolved and adapted to pervasive ice conditions, so 
when air temperatures rise above the melting threshold, 
the normal balance of water and ice shifts dramatically, 
resulting in a series of cascading effects that propagate 
through the entire ecosystem. The effects may persist for 
years to decades (J. Priscu 2016, manuscript submitted 
to BioScience). 

In Antarctica, the differences between marine and 
terrestrial ecosystems could not be more extreme. These 
two biomes are the focus of two NSF-funded Long Term 
Ecological Research (LTER) programs: the Palmer LTER 
(or PAL), which is studying the rapidly changing marine 
ecosystem west of the Antarctic Peninsula (Ducklow et al. 
2013), and the McMurdo Dry Valleys LTER (or MCM), 
which is studying the terrestrial ecosystem in the Dry 
Valley polar desert (Freckman and Virginia 1997). Estab-
lished in the early 1990s, these two Antarctic sites collect 
baseline measurements to develop process-level under-
standing, thus providing necessary context for evaluating 
ecological responses to climate events.

The marine ecosystem surrounding Antarctica includes 
the coastal and continental shelf region that is influenced 
by seasonal sea ice cover, as well as the permanently open 
ocean zone poleward of the Antarctic Circumpolar Cur-
rent (Treguer and Jacques 1992). Primary production in 
these regions is dominantly by phytoplankton. Although 
considerable regional and seasonal variability exists, Ant-
arctic food webs are typically supported by diatoms with 
variable contributions by other types of phytoplankton. 
Diatom-based food webs are typically characterized by 
highly variable but sometimes vast swarms of Antarctic 
krill. Krill in turn are the principal food for the conspicuous 
large predators of Antarctic seas, including penguins and 
other seabirds, seals, and whales (Hardy 1967). 

This general picture has served as the paradigm for the 
Antarctic marine ecosystem for decades, but it appears to 
be changing, at least in the rapidly warming (Smith et al. 
1996) western Antarctic Peninsula region (WAP) of the 
Bellinsghausen Sea. Ecological change along the WAP was 
first marked by catastrophic declines in Adélie penguins 
(Fig. SB6.2a; Fraser and Hofmann 2003; Bestelmeyer et al. 
2011). The principal cause of ecological change is decreas-
ing sea ice cover in the WAP and greater Bellingshausen 
Sea—both its extent and duration (Fig. 6.8e; Stammerjohn 

et al. 2012). Diatom blooms, krill recruitment, and penguin 
breeding success are all dependent on the extent of sea 
ice and the timing of its retreat (Saba et al. 2014; Montes-
Hugo et al. 2009). Other changes in the freshwater sys-
tem are also known to influence the marine ecosystem. 
Glacial discharge and melt, for example, have the capacity 
to increase ocean stratification and add bio-available 
micronutrients, such as iron, to the productive upper 

Fig. SB6.2. (a) The number of breeding pairs of Adélie 
and Gentoo penguins near Palmer Station, 1976–2013. 
The Gentoo is a subpolar, ice-tolerant invasive species 
that has colonized the polar region as sea ice cover 
has declined and water temperatures have increased. 
The first Gentoo pairs were observed at this location 
in 1994. (b) Monthly mean composite anomaly map of 
500-hPa geopotential height centered over Antarctica 
for Sep 2001 to Feb 2002 relative to the mean calcu-
lated over Sep to Feb 1980–2001. BH and LP denote 
blocking high pressure and low-pressure anomalies, 
respectively. The yellow X is close to Palmer Station 
and the yellow circle is close to McMurdo Station. 
(From Massom et al. 2006.)

AUGUST 2016|S170



layers (Boyd and Ellwood 2010; Hawkings et al. 2014). 
Changes in any of these environment variables can lead 
to functionally extinct species and a reorganization of the 
marine ecosystem (e.g., Sailley et al. 2013).

Antarctic terrestrial ecosystems, at least those that 
inhabit the largest ice-free areas of the Antarctic conti-
nent, the Dry Valleys (78°S, 162°E), exist in a landscape 
that includes glaciers, perennially ice-covered lakes, 
seasonal meltwater streams, and arid soils (Ugolini and 
Bockhiem 2008). No vascular plants or vertebrates inhabit 
the region, and food webs are dominated by bacteria, 
cyanobacteria, fungi, yeasts, protozoa, and a few taxa of 
metazoan invertebrates (Freckman and Virginia 1997). 
Glacial meltwater is the primary source of water, which 
flows in ephemeral streams and conveys water, solutes, 
sediment, and organic matter to the lakes (Fountain 
et al. 1998; McKnight et al. 1999). Streams flow for up 
to 12 weeks in the austral summer providing a habitat 
for microbial mats abundant in streambeds stabilized by 
stone pavement (McKnight et al. 1998). Perennial water 
environments include ice-covered lakes in the Dry Valleys 
of Antarctica; they maintain biological activity year-round 
with food webs dominated by phytoplankton and bacteria 
(Laybourn-Parry 1997). 

The two LTER sites are separated by about 3800 km 
(Fig. 6.1). On annual time scales, air temperatures at 
these two sites are inversely related (A. Fountain et al. 
2016, manuscript submitted to BioScience; M. Obryk et al. 
2016, manuscript submitted to BioScience) due mostly 
to the circulation anomalies associated with the SAM 
index (Trenberth et al. 2007). On decadal time scales, 
the lower-latitude PAL site is also experiencing rising 
air temperatures (+3°C increase in annual temperatures 
over 1958–2014), while the higher-latitude MCM site is 
experiencing a more modest change [+1°C over the same 
time period; A. Fountain et al. (2016), manuscript submit-
ted to BioScience]. 

However, in the austral spring/summer of 2001/02, a 
hemisphere-wide atmospheric circulation anomaly caused 

unusually high temperatures across the entire continent 
(Fig. SB6.2b; Massom et al. 2006), which had long-lasting 
impacts. 

At MCM, the rapid melting of glacial ice caused streams 
to flow at record levels, eroding stream banks and rap-
idly raising lake levels (Foreman et al. 2004). The stream 
waters transported unusually high concentrations of sedi-
ments and nutrients to the ice-covered lakes. Phytoplank-
ton chlorophyll-a concentrations reached record high 
levels that austral summer but also remained at elevated 
levels for almost a decade. Elevated soil moisture caused 
a reorganization of species composition in the soils that 
was still evident seven years later (Barrett et al. 2008). 

At PAL, warm, moist northwesterly winds caused 
a rapid and early ice edge retreat in early spring 
(September–October 2001) that subsequently compacted 
and piled the ice against the Peninsula. Snowfall was also 
anomalously high during this time (Massom et al. 2006). 
Abundances of krill species were higher than normal, likely 
due to the high productivity associated with the com-
pacted sea ice inshore (Steinberg et al. 2015). The posi-
tive chlorophyll-a anomaly in 2001/02 corresponded to a 
statistically significant krill recruitment event (evidenced 
in Adélie penguin diet samples) the following year (Saba 
et al. 2014). However, it was the catastrophic late-season 
snowfalls and subsequent flooding that caused the largest 
single-season decline in Adélie penguin breeding success 
in 30 years (Fraser et al. 2013). There was a devastating 
loss of an entire breeding cohort, an effect that is still 
evident 10 years later.

The climate event of 2001/02 illustrates the extreme 
sensitivity of polar ecosystems and also illustrates how an 
anomalous event can induce connectivity across different 
regional climates. As exemplified here, a relatively small 
but critical change in the temporal and spatial distribu-
tions of ice and water exhibited dramatic and persistent 
ecological responses, the implications of which are still 
being studied. 

late start of the 2015 ozone hole (Fig. 6.11a). The ref-
ormation of hydrogen chloride (HCl; Fig. 6.13a) and 
decrease of chlorine monoxide (ClO; Fig. 6.13b) oc-
curred late in 2015. The 440-K potential temperature 
ozone levels (Fig. 6.13c) were higher than average in 
July–September, but declined to very low values by 
mid-October, consistent with Fig. 6.12a.

Heterogeneous chemical reactions on PSC surfaces 
convert reservoir chlorine (e.g., HCl) into reactive 

forms (e.g., ClO) for catalytic ozone loss. The PSC 
volume (Fig. 6.13d), as measured by the Cloud-Aerosol 
Lidar and Infrared Pathfinder Satellite Observation 
(CALIPSO), generally followed the average (black 
line) for the entire season. However, the October 2015 
volume of 5.6 million km3 ranked highest of all 10 
years, consistent with the persistent and large October 
ozone hole (Fig. 6.11a).

Satellite column observations over Antarctica 
(not shown) show some indications that ozone loss 
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be manifested in smaller and shallower Antarctic 
ozone holes. However, unambiguous attribution of 
the ozone hole improvement to the Montreal Pro-
tocol cannot yet be made because of relatively large 
year-to-year transport, wave activity, temperature 
variability, and observational uncertainty. Further 
information on the ozone hole, with data from satel-
lites, ground instruments, and balloon instruments, 
can be found at www.wmo.int/pages/prog/arep/gaw 
/ozone/index.html.

has diminished since the late-1990s. Averaged daily 
minima over 21 September–16 October (ozone hole 
maximum period) have increased since 1998 at a 
rate of 1.2 DU yr−1 (90% confidence level). The 2015 
ozone hole area, averaged over 7 September–13 Oc-
tober, was estimated at 25.6 million km2, the fourth 
largest over the 1979–2015 record. Since 1998, this 
area is decreasing at a rate of –0.09 million km2 yr−1, 
but this trend is not statistically significant. The 
decline of chlorine concentrations should eventually 
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