A dropout-regularised neural network for
mapping arsenic enrichment in SW England

using MXNet

1. Why arsenic?

Mapping arsenic is important: at sufficiently elevated
concentrations it presents a hazard to the health of humans
and the environment. However, it’s impact is not all negative:
arsenic is also a useful guide when exploring for precious
metal deposits. This is because arsenic behaves similarly to
precious metals in hydrothermal mineralisation systems, but
is generally more abundant. This abundance means that
measurements can be made with a higher signal-to-noise
ratio, providing better data from which to guide exploration.

However, accurately modelling and mapping the distribution
of arsenic (and other hydrothermally mobile metals) is a
challenge; these elements tend to have highly skewed
distributions — high concentrations are rare occurrences
which tend to be associated with ‘nuggety’ hydrothermal
mineralisation governed by complex processes which are
difficult to predict.

This poster presents a neural network solution to the
modelling and mapping of arsenic in the stream sediments of
south west England. By providing both point-sampled arsenic
data and high resolution geophysical survey data to a neural
network, a model is constructed through which arsenic
concentrations are predicted using a combination of
geophysical context and location. The output is a map in
which geological and topographic features are captured, thus
offering the user a detailed and accurate visualisation from
which to perceive the controls on arsenic distribution.

2. The network:

The optimal network architecture is
dependent on the nature of the
relationships within the data and true
optimization is likely to require the use of
evolutionary algorithms. For simplicity this
study just used a network with two hidden
layers of 240 and 120 neurons respectively
Aetiation (16 and 8 times the 15 predictor variables.
relu See computation chart, left).

The network was trained on a dataset

Lo o consisting of arsenic concentrations at 3395
sample sites, appended with location
information (easting, northing and
elevation) and a suite of geophysical
variables from gravity, magnetic,

¥ radiometric and topographic surveys.
Activation
e To prevent overfitting each hidden layer
] neuron was given a 10% chance of being
temporarily removed from the network
during each training iteration. This

procedure, called dropout, forces the nodes
of the network to learn independently of
one another, improving generalisation. In
addition, through per-epoch validation
against a set of held-out test data, early
linearregressionoutput | Stopping was used to prevent the network
from overtraining.
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3. Results: Easting (metres BNG)

The best model, realised after 242 epochs, achieves an RMSE of 0.47 on fﬁé‘%?é&'é’tfféIiéiﬁié’ﬁiﬁféz?fat&?lﬁﬂi'? Eéii‘é’tﬁi)éii?t?éﬁ
. e . . in geographic space (see legend map, below
the held-out test data, providing a ‘real world’ R? of 0.7 (see training and

validation plots, below). This is a good outcome and indicates that the map

has good accuracy. For interest, a random forest trained on the same data ' g k‘ : b
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19- Plot of training progression 7 Model validation results:

e training RMSE = 0.47
e testing | R#=0.70
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The predicted arsenic map (top) reveals the relationship between arsenic o s el e
mineralisation and the granite intrusions of the Cornubian Batholith: T TR
arsenic has been concentrated by hydrothermal activity around the | . | ‘
margins of the granites. Interestingly the network has recognised a e T st C 8 d b o
particularly pronounced tendency for arsenic enrichment in stream
channels around the Carnmenellis Granite in the far south west, the area
which has historically been most heavily mined. The map also captures
structural features and there is some evidence of variations in arsenic
concentrations associated with different granite phases.

Scatter plot colour legend - RGB by xyz geographic position
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The scatter plots to the right give an idea of the complexity of the system
that the network has learned. Despite complex interactions between
predictor variables and arsenic concentrations the neural network delivers
an impressively high degree of accuracy. Could even the most diligent
human expert be expected to understand such a system at the level
required to offer comparably accurate predictions?
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