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The evolutionary history of Antarctic organisms is becoming
increasingly important to understand and manage population
trajectories under rapid environmental change. The Antarctic
sea spider Nymphon australe, with an apparently large
population size compared with other sea spider species, is
an ideal target to look for molecular signatures of past
climatic events. We analysed mitochondrial DNA of specimens
collected from the Antarctic continent and two Antarctic islands
(AI) to infer past population processes and understand current
genetic structure. Demographic history analyses suggest
populations survived in refugia during the Last Glacial
Maximum. The high genetic diversity found in the Antarctic
Peninsula and East Antarctic (EA) seems related to multiple
demographic contraction—expansion events associated with
deep-sea refugia, while the low genetic diversity in the
Weddell Sea points to a more recent expansion from a shelf
refugium. We suggest the genetic structure of N. australe
from AI reflects recent colonization from the continent. At
a local level, EA populations reveal generally low genetic
differentiation, geographically and bathymetrically, suggesting
limited restrictions to dispersal. Results highlight regional
differences in demographic histories and how these relate to the
variation in intensity of glaciation—deglaciation events around
Antarctica, critical for the study of local evolutionary processes.
These are valuable data for understanding the remarkable
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success of Antarctic pycnogonids, and how environmental changes have shaped the evolution and n
diversification of Southern Ocean benthic biodiversity.

1. Introduction

The Southern Ocean (SO) marine biota is unique in terms of ecology, phylogeography and diversity [1]
as a consequence of the long isolation, the unique geological and climatological history, and recurrent
glacial cycles. There is evidence that ice sheets covered the Antarctic continental shelves during the
glaciation periods [2] and until recently, models of the ice sheet cover and extent during the Last Glacial
Maximum (LGM) (approx. 70-10 ka) predicted ice sheet advances to the shelf break of most of the
Antarctic continent [3]. The general thought then has been that species presently found on the Antarctic
shelf (including terrestrial species) had to recolonize the Antarctic continental shelf and the ice-free low
altitude terrestrial surfaces from elsewhere, e.g. the deep sea or the southern margins of other continents
[4,5]. However, recent biogeographic and molecular genetic analyses on Antarctic marine and terrestrial
taxa give strong evidence that both shelf and terrestrial taxa could have also survived in ice-free habitats
through glacial periods [6-10]. Also, the most recent reconstructions of the Antarctic Ice sheet during the
LGM suggest that it did not reach the shelf edge all around Antarctica and that the spatial pattern of
deglaciation was highly variable, especially on inner shelves [11], enabling the presence of shelf refugia.
This variability in the nature of ice extent and the way in which it retreated probably had differential
effects on the recolonization and expansion of marine populations, resulting in different evolutionary
trajectories around Antarctica. The multi-national, SO-wide expeditions linked to the Census of Antarctic
Marine Life (CAML) enhanced the collection, sharing and barcoding of specimens [12], enabling detailed
phylogeographic analyses on selected taxa to study their relatively recent evolutionary history [8,9,13—-
17]. These datasets are now contributing to understanding how populations around Antarctica survived
through past environmental change.

One of the key features of the Antarctic benthos is the relatively high abundance and diversity of
Pycnogonida (sea spiders); more than 20% of the global species diversity of this ancient, cosmopolitan
Class distantly related to Chelicerata [18,19] is found in the SO. With high rates of endemism (70%)
and an apparent lack of biogeographic subregions [20,21], the SO pycnogonid diversity suggests that
species have not only survived past climatic events but successfully dispersed and diversified; however,
mechanisms and patterns of dispersal and diversification are yet unknown.

In general, pycnogonids are known as brooders with no planktonic dispersal stage as the fertilized
eggs and sometimes post-larval stages are usually attached to the male [22]. This condition has led
to assumptions of limited dispersal, high speciation rates and the likely presence of cryptic species
[23]. Recent studies have investigated the validity of apparently circumpolar, eurybathic and abundant
SO pycnogonid species using the partial cytochrome ¢ oxidase subunit I (COI) barcoding marker for:
Pallenopsis spp. [15,24], Austropallene cornigera (Mobius, 1902) [25], Colossendeis spp. [16,26], and Nymphon
australe, the first species studied at the population level using COI [13,27].

Nymphon australe Hodgson 1902 is the most abundant and frequently collected SO species with wide
bathymetric (8—4136 m depth) and geographical ranges. It has been recorded from around the Antarctic
continent, the southern tips of South America, South Africa and New Zealand, although New Zealand
representatives are considered a subspecies N. australe caecum Gordon, 1944 [20,28]; in general, non-SO
records are yet to be validated with genetic data. Based on morphological characteristics of SO specimens,
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N. australe is a single widespread species with intraspecific variation of some characters sometimes
overlapping interspecific differentiation [13]. Initial molecular studies examining the species validity of
N. australe, based on 57 specimens from the Antarctic Peninsula (AP) [27] and later with an extended
dataset including 74 specimens from the Weddell Sea (WS) and East Antarctic (EA) [13], pointed to
N. australe as a true circumpolar species with distinct genetic differentiation among individuals from
different localities and regions.

The present study aimed to: (i) investigate the genetic differentiation and demographic histories of
N. australe populations around Antarctica to understand the wide geographical distribution proposed for
the species, and (ii) relate the genetic structure observed with historic events including refugia survival
during LGM and population expansion during deglaciations. We examined the genetic structure of the
species at a range of spatial (1000s km to 100s km) and bathymetric scales taking advantage of: (i) large
geographical coverage of the dataset, one of the largest for benthic SO invertebrates; (ii) wide bathymetric
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Figure 1. Records of N. australe from the Southern Ocean. Coloured circles represent location of the samples used in this study. Crosses
indicate historical records of N. australe showing known distribution of the species. TA, Terre Adélie; RS, Ross Sea; DS, Davis Station; BR,
Bruce Rise; AP, Antarctic Peninsula; WS, Weddell Sea; SSI, South Sandwich Islands; BI, Bouvet Island.

range with individuals collected from 25 to 1260 m depth; and (iii) the unusual and relatively large
number of individuals collected at several locations in the EA.

2. Material and methods

2.1. Sampling and taxonomy

The present dataset is based on material from institutional projects and collections, and from
international collaborative efforts (under CAML) aiming to collect, determine and curate well-preserved
SO benthic fauna [29]. Expeditions details and voucher information are in the electronic supplementary
material, S1 and S2. The dataset consists of 364 N. australe specimens collected by a variety of sampling
means from diving to trawling at 69 sites in the SO between 2007 and 2011 (figure 1; details of localities
in the electronic supplementary material, S1). Pycnogonids collected during expeditions were preserved
in 96% ethanol and posted to the Queensland Museum (QM) for morphological determination by CPA
and further analyses. Molecular identification was based on COI divergences for Nymphon species as
in Mahon et al. [27] and Arango et al. [13]. Sequences from previous studies are included in the current
dataset (haplotypes GenBank accession numbers in the electronic supplementary material, S3).
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2.2. Mitochondrial DNA sequencing and data analysis

Most of the samples were submitted to the Canadian Centre for DNA Barcoding as part of the barcoding
agreement between CAML [11] and the Canadian Centre for DNA Barcoding; DNA extractions and COI
sequencing were performed under their standard procedures [30]. Additional sequences were obtained
at the QM following protocols in Arango et al. [13]. Other genetic markers such as fragments of the
rRNA 165 (463 bp, 57 individuals) and the rRNA ITS including ITS1, 5.8S, ITS2 and small parts of the
185 and 28S regions (890 bp, 15 individuals) were attempted for a multi-marker approach; however, the
fragment of rRNA 16S showed no sequence variation [13] and the rRNA ITS fragment attempted for 15
samples from the WS and East Antarctica sequenced as in Arango & Brenneis [31] showed very little
divergence (p-distance < 1%), discouraging the use of this ITS fragment for within-species level analyses
in N. australe. The use of microsatellites to complement this COI dataset was also attempted; however,
the developed markers were too conserved. Four markers were monomorphic for all analysed samples
with half of them showing no polymorphism even across species boundaries [32].

Uncorrected pairwise distances among the COI sequences were calculated with 1000 bootstrap
replicates under a J-K model in MEGA v. 7 [33]. Nymphon mendosum (Hodgson, 1907), an Antarctic
species closely related to N. australe [13], was included as a reference of interspecific distance. The overall
p-distance mean among N. australe sequences was 0.01 while between N. australe and N. mendosum
was 0.08. A haplotype parsimony network was constructed using TCS 1.21 [34] with 95% connection
limit. A haplotype matrix was analysed under a Bayesian inference approach (BI) in MRBAYES 3.1.2
[35] using MRMODELTEST v.2 [36]. Based on the Akaike information criterion [37], the HKY + 1+ K was
chosen. Two simultaneous sets of one chain were run for subsequent sets of numbers of generations
sampling trees every 100 generations (ngen = 8 million; nruns = 2, nchain = 1; samplefreq = 100). After
this number of generations, the standard deviation of split frequencies had reached 0.02 and the potential
scale reduction factor was 1.00 for all parameters suggesting convergence had been reached.

2.3. Genetic diversity and population structure

Based on the sampling localities, COI sequences were grouped in one of four main SO geographical
regions: Antarctic Peninsula (AP), East Antarctic (EA), Weddell Sea (WS) and Antarctic Islands (AI).
Furthermore, the EA was divided into four subregions: Terre Adélie (TA), Ross Sea (RS), Davis Station
(DS) and Bruce Rise (BR). Within the Al, there were two subregions: Bouvet Island (BI) and South
Sandwich Islands (SSI) (electronic supplementary material, S1, S2; figure 1). Genetic diversity of N.
australe was measured for each SO region and for the subregions within the EA using DNASP v. 5.00.7
[38]. Departures from values expected under panmixia (i.e. Fst =0) among SO regions and within the
EA, and the corrected p-values for population differentiation among pairs of populations were tested
with ARLEQUIN v. 3.0.1 [39] with 10000 permutations of the data. The partitioning of genetic variation
among subregions within the EA was determined using analysis of molecular variance (AMOVA) based
on 2000 permutations.

To infer the spatial genetic structure of N. australe, the number and the composition of panmictic
groups as well as the spatial boundaries among them were estimated using a Bayesian model computed
with GENELAND v. 2.0.0 [40] in the R environment (R, v. 3.2.3 [41]). The software implements a Markov
chain Monte Carlo (MCMC) procedure to determine the best clustering of samples based on genetic and
geographical information. Geographical information has been taken into account at the Bayesian prior
level, so that clusters corresponding to spatially structured groups are considered to be more likely than
clusters that are randomly distributed in space. Five million MCMC iterations sampled each 1000 steps
with a 50 000 burn-in period, and a maximum number of clusters K =10 were run to estimate the model
parameters and posterior probabilities of group membership (P).

2.4. Demographic analysis

To detect demographic changes such as population expansion or contraction in N. australe at various
spatial and temporal scales related to glacial refugia [42], the number of private haplotypes (PH, those
endemic to subregions or regions) and the proportion of private haplotypes for each region (number
of unique haplotypes/total number of haplotypes) was calculated. Tests for neutrality (Tajima’s D and
Fu’s Fs) were run in DNASP to estimate deviations from the mutation-drift equilibrium and infer past
population processes. The observed distribution of pairwise differences between sequences (mismatch
distribution analysis) was examined in ARLEQUIN under a model of population expansion and the
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resulting shape of the distribution was compared to a simulated dataset under a spatial expansion model
[43,44] and a sudden population expansion. The overall validity of the estimated demographic model
was evaluated by two different goodness-of-fit tests, tests of raggedness index (RAG) and the sum of
squared differences (SSD) [45]. Significance of RAG and SSD were assessed by parametric bootstraps
(10000 replicates).

We used the coalescent-based method implemented in FLUCTUATE 1.4 [46] to estimate the exponential
rate of population growth/decline relative to the neutral mutation rate () and the 6 parameter (the
effective population size scaled by the mutation rate, i.e. Neu), the initial value of # was estimated
using the approach of Watterson [47]. All runs employed the following strategy: 1000 short chains with
200 generations and two long chains of 400000 steps. Sampling increment was 20 for short and long
chains. The transition/transversion rate was set to 3.99, determined by MEGA5 under the Tamura-
Nei model. Runs were repeated five times to ensure consistency of estimates. Based on the significant
genetic differentiation found among Antarctic regions, genetic panmixia cannot be assumed to analyse
the demographic history of the whole Antarctic dataset; instead, each of the four regions is separately
analysed. For the same reason, demographic analyses within EA were also run after excluding the
significantly different DS samples (figure 1).

Molecular clock estimates were used to approximately date the timing of population expansions
as in Rogers [48], calculating (T) for the analysed COI fragment based on T = t/(2uk), where t is the
expansion time estimator,  the mutation rate and k the sequence length [49]. The demographic expansion
parameters of initial and final effective population sizes were estimated following 69 =2Nou (before
population growth/decline) and 61 =2N7u (after the population growth/decline). Here, we apply a 10-
fold correction when estimating N. australe population expansion times, as it has been suggested that the
short-term mutation rate is 10-fold higher than long-term substitution rates [50,51].

3. Results

3.1. Genetic diversity and geographical structure

The final COI alignment of 364 sequences of N. australe had a length of 554 bp and represented 85 unique
haplotypes (see the electronic supplementary material, S2 and S3) of which 10 were common haplotypes
(represented by 10-87 individuals), while the majority were uncommon haplotypes with only one or two
representatives (figure 2). We detected intermediate levels of genetic polymorphism, 59 nucleotides were
variable and 35 were parsimony informative. The overall mean distance among sequences was 0.007
(range 0-0.02).

The genetic diversity varied across the SO regions. The number of haplotypes (k) was lowest in Al
(k=06) and highest in EA (k=50), although this was probably related to the different sampling effort
in each locality given that haplotype diversity was similar in these two locations (see the electronic
supplementary material, S1 and S3). Genetic variation was low in the WS, which had around half the
haplotypic diversity of the other localities, as well as the lowest average number of nucleotide differences
(IT) and mean nucleotide diversity (). The number and the proportion of private haplotypes were
lowest in Al although this was the region with the smallest sample size (table 1).

There was significant genetic differentiation among the four regions sampled around Antarctica
(AMOVA, Fst=0.424, p<0.001). COI pairwise Fst relationships and significance comparisons
supported the structuring of SO regions (table 2), with relatively high and significant Fst values among
all localities. WS samples were the most distinct from all other regions (Fst between 0.51 and 0.68),
while Fgr values between EA and Al samples were the lowest, but still significantly greater than zero
(Fst =0.10).

A Bayesian phylogenetic analysis did not show segregated, well-supported clades related to region;
however, the COI haplotype network coupled with the Bayesian consensus while supporting N. australe
as a single species with a circum-polar distribution, also showed clear regional differences in the
distribution of haplotypes (figure 2a). Most haplotypes were found only within a single region except
for the AI where a large proportion of haplotypes were found elsewhere. Furthermore, the haplotype
network had a predominant star-like pattern at the regional level, particularly for EA (figure 2b). Bayesian
models computed with GENELAND detected three main clusters (K=3, figure 3): cluster A included
individuals from the WS and BI (figure 3a), cluster B grouped all EA individuals with the SSI (figure 3b),
and cluster C included all AP individuals (figure 3c). Values of cluster membership were approximately
P =0.65 for each cluster locality.
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Figure 2. (a) Phylogenetic analysis of the 85 COI haplotypes. (b) Mitochondrial COI haplotype network of N. australe showing the
haplotypes identified throughout the Antarctic locations. Haplotypes are coloured by region and the size of their circle is proportional
to its frequency in the whole sampling effort. White small circles represent haplotypes that have not been collected but should exist.

AMOVA and Fgr results within the AP and WS indicated low differentiation within regions, over
90% of the variation was owing to the differences within populations. Within the EA region, there was
significant genetic differentiation among the five subregions sampled (AMOVA, Fst =0.238, p < 0.001),
although this was largely a result of the large and significant differences between DS samples and those
from all other subregions (table 3). We also detected low but significant differences between the RS and
other EA subregions (table 3), although the TA and BR populations were not differentiated (among these
populations Fst < 0.025). Bayesian cluster analysis revealed two clusters (K =2; figure 4), one included
individuals collected in the vicinity of the Australian DS (cluster B, figure 4), and the other one grouped
all other EA populations (BR, TA and RS) (cluster A, figure 4). Values of cluster membership were high
for all localities (p > 0.90). Samples from DS were all collected in about 25 m depth, whereas most other
EA samples were collected deeper than 200 m. A subset of the TA samples collected by the REVOLTA
program from approximately 40 m depth showed no evidence of significant genetic differentiation from
deeper TA samples (table 3), suggesting that segregation of the DS vicinity populations could be related
more to geographical isolation than mere bathymetric differences.

Genetic differentiation within AP was significant owing to differences between northeastern and
southernmost populations of the AP (Fs =0.08, p <0.05). The Al populations (BI and SSI) were also
significantly different (Fst = 0.51, p < 0.05), while the WS did not show significant differences (Fst = 0.03,
p>0.05) between the easternmost and westernmost populations. (Within-regions AMOVA and Fst
results in the electronic supplementary material, S4.)
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Table 1. Genetic diversity indices and neutrality tests of N. australe COl sequences from each Antarctic region, the entire Antarctic dataset,
and areas within the EA region. (k, number of haplotypes; PH, number of private haplotypes; H, haplotype diversity; S, number of
polymorphicsites; 77, average number of nucleotide difference; 7z, nucleotide diversity.)

n k PH PH/k H S n bis
locality

619021 % Psuado 20y B10‘Buiysigndfaposieforsoss

Weddell Sea Antarctic Islands

3.2. Demography

The significantly negative values of D and Fs and unimodal mismatch distributions obtained for the
whole dataset (Tajima’s D=—1.842, p <0.05; Fu’'s Fs=—-95.972, p <0.001) seem to indicate that N.
australe populations have gone through relatively recent expansions. We obtained a similar pattern in
separate analyses of the WS, EA and AP data. Either an L-shaped or a unimodal distribution of pairwise
differences was obtained for each region, supporting the existence of a demographic expansion in each
region; this pattern was corroborated by the negative and significant Fu’s Fg test values and the non-
significant goodness-of-fit tests. Tajima’s D was not significant (p > 0.05) for AP and EA, suggesting
there has not been historical reduction in effective population size in these regions (table 4; electronic
supplementary material, S5).

The N. australe samples from the islands (AI) showed non-significant neutrality tests, rejecting the
population expansion model (table 4). Although the goodness-of-fit tests indicated that the model
of rapid population expansion cannot be rejected, the calculated probability was very close to the
significance level (p=0.09 and 0.07 for SSD and RAG, respectively) (table 4). However, the unimodal
mismatch distribution of pairwise differences suggested a recent demographic expansion (table 4;
electronic supplementary material, S5). The estimates of change in population size relative to the
mutation rate were consistent with previous analyses and ensured convergence on the correct parameter
estimates for each region; replicate runs with alternate random seeds produced comparable results.
Results of the coalescence analysis showed positive values providing evidence of different degrees of
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Figure 3. Spatial representation and relative location of sampled N. australe populations. Number of clusters predicted based on the
Bayesian clustering algorithm shown as per figure on bottom right (K = 3; GeneLanD output). Cluster A, Weddell Sea and Bouvet Island;
cluster B, South Sandwich Islands and East Antarctica; cluster C, Antarctic Peninsula. Based on this spatial output, darker and lighter
shading are proportional to posterior probabilities of membership clusters, with lighter (yellow) areas showing the highest probabilities
of clusters. Number of clusters predicted with the Bayesian clustering algorithm.

Table 3. Pairwise (Ol Fq; values among the distinct areas within the EA region analysed in N. australe. (All significant values (p < 0.05)
are shown in italics.)

DS BR TA shallow TA RS

population expansion at each of the four regions, ranging from g=2187 (s.d. =170.970) in EA to g=8151
(s.d.=403.155) in WS (table 4).

Sudden growth model analyses detected a population expansion at about 15 thousand years before
present (kyr BP) at EA (13 kyr BP at EA excluding DS from the analysis) and an older expansion at
the AP (21.2 kyr BP). These estimates (obtained after applying the 10-fold correction) are in agreement
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Figure 4. Spatial representation and relative location of sampled EA N. australe populations. Number of clusters predicted based on the
Bayesian clustering algorithm as per figure on top right (K = 2; GeneLAND output). Cluster A, Bruce Rise, Terre Adélie, Ross Sea; cluster
B, Australian Davis Station. Darker and lighter shading are proportional to posterior probabilities of membership clusters, with lighter
(yellow) areas showing the highest probabilities of clusters.

with the high genetic diversity calculated for each of the two regions. On the other hand, WS and Al
populations with lower values of haplotype and nucleotide diversity seem to have gone through more
recent population expansions around 4.3 and 5.9 kyr BP, respectively (figure 5).

4. Discussion

The circum-Antarctic sea spider, N. australe is comprised of regionally distinct populations that appear
to have undergone recent population expansion. Here, we show: (i) further evidence to confirm
that N. australe, a benthic brooder, is indeed circum-Antarctic; (ii) that the AP and EA populations
are genetically more diverse suggesting multiple demographic contraction-expansion events possibly
associated with deep-sea refugia, while the low genetic diversity at the WS points to a more recent
expansion possibly of shelf ice-free refugia; (iii) N. australe seems to have undergone demographic
expansions during the mid-Pleistocene (15-21.2 kyr BP), suggesting multiple LGM refugia; (iv) support
for population expansion in the Al associated with colonization from the continent, and (v) no genetic
boundaries detected in East Antarctica, except for the clear segregation of samples from the vicinity of
DS, an area particularly isolated from the more open habitats sampled off TA.

4.1. Nymphon australe, a circum-Antarctic species

Our study supports previous work proposing N. australe as a circum-Antarctic species [13]. Here,
we found relatively high genetic homogeneity in COI among the N. australe individuals from across
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Figure 5. Demographic expansion time estimates for N. australe based on the (Ol gene fragment.

Antarctica that together formed a single haplotype network precluding any suggestion of cryptic
speciation (either geographical or bathymetric) within the species. Although the use of a single
mitochondrial marker is often considered limiting in the context of detecting recent speciation and
inferring spatial genetic structure [9,52], our efforts to incorporate additional genetic markers were futile
as there was low or no intraspecific sequence divergence, even for nuclear markers that should be highly
variable, e.g. microsatellites [32] and ITS which has been successful in segregating within-species clades
in other pycnogonid species [16,31]. Thus, COI appears to be the marker of choice for interrogating
genetic patterns in N. australe.

Pycnogonids in general are thought to be poor dispersers; for a benthic invertebrate with no pelagic
stages, slow-moving, and with fertilized eggs and post-embryonic stages remaining attached to the father
for some variable time, a circum-Antarctic distribution seems unusual. In other Antarctic pycnogonids
studied, such wide distributions have been challenged, and restricted gene flow eventually leading to
cryptic speciation has been proposed (e.g. Colossendeis megalonyx Hoek, 1881 [26,53]; Pallenopsis patagonica
(Hoek, 1881) [15,24]); similar patterns are evident for many other Antarctic invertebrates too (e.g. Isopoda
[54-57]; Amphipoda [58,59]; Ostracoda [60], Nudibranchia [61]; Crinoidea [52,62]). By contrast, data for
Antarctic taxa with pelagic stages do not give evidence of geographical genetic structure and tend to
reflect a circum-Antarctic distribution [9,63,64]. The absence of allopatric speciation in N. australe is thus
surprising, and raises questions on how to reconcile a wide distribution, more characteristic of a species
with pelagic dispersal, with the life-history traits of the species (benthic, crawler, late post-larval instars
carried by the male [65]). The roles that environmental (e.g. ocean currents and ice movement) and
ecological (e.g. hosts associations, drifting substrates, parasitism) factors may play in the maintenance
of a circum-Antarctic species and Antarctic pycnogonid populations in general are yet to be studied.
On the other hand, the clear genetic differentiation among Antarctic regions (Fst, table 2; haplotype
network, figure 2) may well be seen as evidence of premature stages of speciation [13]. Unfortunately, no
fossil records exist that help understanding the species history; assuming populations were established
posterior to the LGM, it should be considered whether there have been sufficient generations for
speciation to occur.

4.2. High genetic diversity and population structure of N. australe

The genetic diversity estimated for N. australe (H=0.918; 7 =0.00657) is higher than that for other
invertebrates distributed throughout Antarctica including echinoderms [66] and arthropods [60] in
which either distinct morphospecies are detected, or genetic homogeneity is associated with the
occurrence of a pelagic stage [63]. The observed genetic structure of Antarctic benthic taxa may be
explained by the combination of widely dispersed and well-connected SO species, with the result of
impacts of local events controlling gene flow including isolation and expansion processes. The high
levels of genetic diversity in the EA and AP populations (in agreement with Mahon et al. [27] for
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the AP), higher haplotype and nucleotide diversities, high number of exclusive haplotypes and high
proportions of their ancestral haplotypes might be related to region-specific conditions. On the other
hand, the singular grouping of BI together with WS and SSI together with EA is rather unexpected.
There is the assumption of lack of connectivity between the islands and the shelf [20] and Antarctic
areas are seen as a separate zoogeographical region mainly influenced by the Antarctic Circumpolar
Current (ACC). This pattern has been found in A. cornigera, in which distant populations on the Antarctic
continental shelf (WS and TA) clustered together while the islands segregated as distinct clusters [25].
Domel et al. argue that A. cornigera dispersal is limited by the ACC acting as major dispersal barrier, and
by a relatively restricted depth range (max of 1180 m) limiting access to the deep sea. Here, the results
could be seen as support for the hypothesis of connectivity between the SO islands and the continent
[16,26] being enhanced by deep currents in eurybathic species such as N. australe (known max depth
4136 m); however, the large and significant Fsr values found indicate regions are not connected. An
alternate explanation for the grouping of samples from the islands with those from the continent is that
these geographical populations are isolated and are in the process of diverging, but owing to post-LGM
colonization, ancestral genetic signatures might remain.

4.3. Past population histories differ among regions

It is understood that the differences in mutation rates across lineages may impact estimates of molecular
time-scales and demographic parameters from mitochondrial sequence data [67]. Based on published
datasets, a 10-fold correction of the proposed mutation rate seems to be the most accepted in the literature
(see [50,68-73] among others). Applying the 10-fold correction infers a period of an order of magnitude
more recent than applying no correction to the mutation rate. Here, we apply such correction to our
estimates of expansion of N. australe populations, as corrected estimates (instead of 40220 kyr BP with
no correction applied) fit well with accepted hypotheses of benthic invertebrate refugia survival and
population expansions associated with deglaciation events after the LGM about 20 kyr BP [9,25,61,71,74].
Although molecular clock estimates should be regarded with caution, and especially in Pycnogonida that
still awaits dated phylogenetic hypotheses, the estimated timing of N. australe populations expansion
(figure 5) matches that for other pycnogonid species [16,24] and other invertebrates (e.g. Nacella concinna
[68]; Nematocarcinus lanceopes [63]; Pareledone turqueti [9]), as well as estimates of raising temperatures
(end of the LGM) according to the Antarctic temperature anomaly (discussion in [75]).

There is strong evidence that, during the last glaciations, ice sheets extended to cover the continental
shelves of Antarctica [76]; however, different rates of cover have been proposed for different Antarctic
regions [11]. It has been suggested that the shelf benthic fauna was depleted during the LGM, but there
are no sufficient data to fully understand the recolonization processes. Distinct scenarios have been
proposed for explaining recolonization of the Antarctic shelf: (i) fauna found refugia ex situ, on the shelf
of neighbouring continents or sub-AI [16,77]; (ii) fauna found refugia in situ on the continental slope and
deeper waters of the SO [5]; and (iii) survival of fauna throughout the last glaciation in situ in shelf refugia
[6,7,75,76,78]; a variety of taxa seems to agree with one of these scenarios ([8,16,25] and others). Allcock
and Strugnell [8] reviewed studies on genetic structure of SO organisms and suggested that much of this
fauna would have survived the Quaternary glaciations in situ. Our N. australe findings agree with those
views, but, different hypotheses apply (2 and 3 above) depending on the region.

The demographic history inferred for the EA and AP regions seems to follow a similar pattern of
in situ survival. All demographic analyses (table 4 and figure 5) and the considerable degree of genetic
diversity observed (table 1) suggest that these regions experienced a process of population expansion
with no signs of historical bottleneck (Tajima’s D test not significantly negative). These time estimates
of expansion, 15.5 kyr BP at EA (13.6 excluding the differentiated DS samples), and 21.1 kyr BP at the
AP, fit with the dating of post-LGM deglaciation events in these regions (approx. 14 kyr BP in EA and
approx. 19.5-16 kyr BP in AP [75,79]). It has been hypothesized that well-grounded ice sheets across the
continental shelf displaced organisms from the shelf, some finding refugia on the slope or deeper waters
evading population bottlenecks [7,63].

It is plausible to assume that N. australe populations from EA and AP are genetically diverse
possibly owing to repeated colonization events from shallow to deep and deep to shallow and changing
landscape owing to ice expansion and retraction, supporting the hypothesis of multiple independent
glacial refugia [25]. Also, eurybathic species like N. australe could be expected to retain high levels of
genetic diversity [16,27,63], different to taxa bathymetrically restricted to shallow waters not migrating
to deeper waters and that may have suffered severe population reductions during the glacial periods
diminishing their genetic diversities [68].
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Contrary to those from the AP and the EA, levels of genetic diversity in N. australe from the WS are
rather low. The strongly reduced diversity, lower estimates of theta and higher growth rates (coalescent
modelling) detected in WS populations compared to EA and AP (table 4 and figure 5) agree with the
hypothesis of population expansion following events that might have reduced populations to one or
very few in situ refugia, perhaps ice-free areas of the WS shelf [7,76,80]. The subsequent population
expansion may have occurred rather recently (approx. 4.25 kyr BP) compared to other regions in which
the expansion process occurred much earlier (e.g. EA and AP).

4.4. Colonization of the islands

The genetic signal from samples collected from BI and SSI (Al in figure 1) shows a different pattern,
reflecting more recent colonization directly from the continent. None of the six haplotypes from the
Al are shared among the two island populations. The haplotype network shows the three haplotypes
from BI closely related to WS (haplotypes 30, 31, 36; figure 2), while the three haplotypes from SSI are
closer to EA (haplotypes 1, 5, 37; figure 2). This result is also well supported by the Bayesian-based
clustering analysis that segregated each island into two distinct groups (figure 4). The configuration of
the AT haplotypes within the network suggests that BI haplotypes are more divergent from WS, than the
SSI ones from EA. This could be explained by the remoteness of BI, located at approximately 1700 km
from the continent or any other island [81]. It might be feasible that a small number of migrants from the
WS (H31) colonized the isolated island aided by the Weddell Gyre [81] and later derived into H30 and
H36 (haplotypes exclusive to Bl). In the sea spider C. megalonyx a strong connection between populations
from Bl and WS is also proposed, but in contrast to N. australe, C. megalonyx from BI (n = 43) belong to a
single haplotype that is also the most common in the SSI [16]. The N. australe results support the notion of
a recent, ‘founder effect’ type of colonization of BI from the WS, rather than a potential insular refugium,
a hypothesis already proposed for a crinoid species [52]. This scenario would agree with other genetic
evidence, suggesting that ocean currents transport adults and larvae from Antarctic shelf areas to the
outlying islands, rather than vice versa [7,16,27,77]. Larger sample sizes and better cover of neighbouring
Antarctic continental shores are needed to better understand these colonization processes.

Haplotype sharing between the volcanic SSI and the EA region is somewhat unexpected for N.
australe. Effect of homoplasy in an expanding population is a possibility, but also animals being
transported from EA by oceanic hitchhiking or rafting, or by drifting on the ACC has been proposed
[82]. SSI faunal composition has been shown as one of the most dissimilar when compared with the
Antarctic continental shelf [7,20]; seemingly, the ‘stop” at SSI might act as a filter retaining individuals,
as suggested by the benthic insular refuge hypothesis [20,81]. In N. australe, this event seems relatively
recent as haplotypes from SSI are mostly shared with EA haplotypes (figure 2). A similar pattern was
found for the Antarctic octopus Paraledone turqueti [9].

The low genetic diversity together with indication of strong and significant population growth in
N. australe from the AI may suggest expansion processes after the colonization from the continent,
i.e. the expansion after the founder effect. Further sampling of N. australe from sub-Al and Antarctic
archipelagos is needed for a better understanding of population patterns.

4.5, Genetic structure within the East Antarctic

The N. australe EA populations were represented by 50 distinct haplotypes leading to relative
considerable levels of genetic diversity (table 1). The most probable ancestral haplotype (H5), and the
star-like shape network (figure 2b) reveal a lack of geographical structure within the EA. Low Fsr
estimates among localities and Bayesian clustering corroborated a single group (i.e. BR, TA and RS
localities), except for the DS samples. In contrast to the AP with its complex topography seemingly
facilitating the heterogeneity of populations within the region [9,27], the EA populations appear as short
branches of the network, suggesting either gene flow with small differentiation among localities or very
recent patterns of divergence. Although the near shore EA area is complex with small rocky islands and
fjords, depths increase rapidly to greater than 200 m where most of our samples were collected, reaching
open basins of sedimentary substrate [83]. It is likely that such conditions are not necessarily barriers
to gene flow and could lead to connectivity in organisms with a high bathymetric plasticity [82] as is
the case of N. australe. On the contrary, species restricted to shallow waters might form distinct faunistic
communities on rocks and algae [83] and may find more difficulty in circulating even short distances and
thus presenting high levels of genetic substructure as observed in the amphipod Orchomenella [59]. The
slight differences between the RS and the BR and TA populations might suggest either a glacial refugium
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in the RS coastal ice-free polynyas [78] or movement of TA individuals to the RS polynyas during periods
of ice sheet coverage.

Pycnogonids from DS seem to represent the most genetically distinct population. DS is enclosed
in a well-sheltered ice-free bay of 400 km? situated in the Vestfold Hills (see www.antarctica.gov.
au). Segregation may be attributed either to a depth constriction (a maximum depth of 25 m) or to
geographical isolation. This genetic differentiation of the DS samples from the remaining EA individuals
is also found in other studies [52,58] and may be attributable to its local geographical and oceanographic
conditions, given the extensive shallow areas of the Vestfold Hills coastal region trapping the shallow
fauna forcing them to be inshore residents. Haplotype diversity in the DS population is rather low
compared to the remaining EA areas, 10 out of the 13 individuals had the same haplotype H58 (figure 2b),
probably because all samples were taken from a relatively small area by SCUBA.

Clearly, N. australe genetic structure within EA suggest that the eurybathic condition of the species
has allowed gene flow over extensive areas of EA, as there is no evidence of bathymetric constraint for
the migration of this species. Individuals collected by the REVOLTA program from TA at 40 m depth
clustered with deeper waters samples from EA collected between 200 and 1230 m.

In conclusion, our results confirm that N. australe is one of the Antarctic brooding invertebrates with
the widest distribution. The species shows different demographic histories depending on the Antarctic
region, possibly shaped by the characteristics of the deglaciation events post-LGM. The study reinforces
the notion of the strong effect of climatic events and environmental conditions on the patterns of diversity
and structure in Antarctic benthic fauna. Nymphon australe is a key species for the understanding of
microevolutionary forces that could reveal connectivity and dispersal mechanisms and demographic
processes in the SO.
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