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1.1 Abstract 

Dune slacks are biodiverse seasonal wetlands which experience considerable fluctuation in water 

table depth. They are under threat from lowered water tables due to climate change and water 

abstraction and from eutrophication. The biological effects caused by the interactions of these 

pressures are poorly understood, particularly on soil processes. We used a mesocosm experiment 

and laboratory assays to study the impact of lowered water tables, groundwater nitrogen 

contamination, and their synergistic effects on soil microbial processes and greenhouse gas 

emissions. This study showed that just a 10 cm decrease in water table depth led to a reduction in 

denitrification and to a corresponding increase in soil nitrogen content. Meanwhile N2O emissions 

occurred for longer durations within dune slack soils subject to higher concentrations of 

groundwater nitrogen contamination. The results from extracellular enzyme assays suggest that 

decomposition rates increase within drier soils shown by the increase in β-glucosidase activity, with 

further sensitivity to groundwater nitrogen contamination shown by the increase in phenol oxidase 

activity. Dune slack soils with a 10 cm lower water table had significantly lower methane emissions, 

http://dx.doi.org/10.1016/j.soilbio.2016.04.018
http://www.sciencedirect.com/science/article/pii/S0038071716300554
mailto:jenny_rhymes@outlook.com
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nearly 5 times lower in the drier soils. Our findings demonstrate that dune slacks are sensitive to 

both small changes in groundwater levels and to groundwater nitrogen contamination. The 

biological impacts from lowered water tables are likely to be intensified where there is also 

groundwater nitrogen contamination. 

 

1.2 Introduction 

Wet dune slacks are seasonal wetlands occupying low-lying areas within a sand dune system which 

support a diverse flora of high conservation value (Grootjans et al., 2004). They are subject to 

seasonal variations in water tables, with water tables highest during the winter and falling during the 

summer (van der Laan, 1979; Stratford et al. 2013). These fluctuations play a key role in controlling 

nutrient and carbon processes within dune slack soils, conserving the low nutrient status required by 

dune slack species (Berendse et al., 1998). These habitats are however, at threat from 

eutrophication and lowered water tables from climate change and/or water abstraction. It is 

therefore of importance to identify the effect of predicted water table lowering (Clarke and 

Ayutthaya, 2010) and increases in nitrogen availability (Galloway and Cowling, 2002) on dune slack 

soil biogeochemistry and nutrient cycling. 

The impacts of atmospheric nitrogen deposition on dry dune habitats have been investigated in a 

number of studies (e.g. Plassmann et al., 2009, Remke et al., 2009, Jones et al., 2013). Far fewer 

studies have investigated the impacts of nitrogen inputs on dune slack ecology (e.g. Willis et al., 

1959, Plassmann et al., 2010). In particular, the role of groundwater rather than atmospheric 

nutrient inputs is little studied. In The Netherlands, studies have showed the effects of high nitrogen 

and phosphorus concentrations in groundwater on the botanical composition of dune wetlands 

(Meltzer & van Dijk 1986), while a recent UK study focusing on nitrates provides evidence of impacts 

from dissolved inorganic nitrogen (DIN) contamination at concentrations as low as 0.2 mg/L (Rhymes 

et al., 2014). 

Denitrification is important in regulating nitrogen concentrations within wetland ecosystems 

(Camargo and Alonso, 2006), including dune slack habitats that are vulnerable to nitrogen 

contamination (Seitzinger et al., 2006). Denitrification rates are controlled by multiple factors 

including soil moisture content (Hefting et al., 2004), nitrate concentrations (Merrill and Zak, 1992) 

and soil O2 levels (Burgin et al., 2010). During periods when dune slack soils are waterlogged, the 

anaerobic conditions for denitrification are met (Berendse et al., 1998) and soil nitrate is reduced to 

gaseous nitrogen products (N2, N2O and NO) by microbial processes (Knowles, 1982). Under 
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complete anaerobic conditions N2 is the end product, at higher  oxygen levels denitrification stops 

with the formation of NOx (Brady and Weil, 2002). N2O production however, tends to occur at low 

soil pH or high nitrate concentrations. The measurement of N2O within wetland studies is therefore 

often used as an indicator of soil denitrification (Bernot et al., 2003, DeLaune and Jugsujinda, 2003) 

as it is difficult to measure N2 production against high atmospheric N2 background concentrations 

(Groffman et al., 2006). 

Decomposition rates are controlled by temperature and soil moisture content, where cooler and 

wetter soils reduce soil decomposition and subsequently increase soil development (Jones et al., 

2008). In systems which are N limited, elevated nitrogen inputs tend to increase decomposition 

rates. Decomposition can be measured by soil respiration, an indicator of aerobic microbial 

decomposition, and by methane emissions, an indicator of anaerobic microbial decomposition of soil 

organic matter (Whalen, 2005). 

The measurement of extracellular enzyme activities within soils can further quantify biogeochemical 

processes linked to nutrient and carbon cycling, allowing an understanding of microbial ecology 

under different environmental conditions. Extracellular enzyme activities and their response to 

environmental change have been investigated in multiple soil types (Henry, 2012), however, to our 

knowledge these measurements have not been carried out within dune slack soils. The hydrolase 

enzyme N-acetyl-β-glucosaminidase (NAG) is responsible for the breakdown of chitin, an essential 

process in nitrogen cycling (Kang et al., 2005) and β-glucosidase (BG) for the degradation of cellulose 

to glucose, providing one of the most important sources of labile carbon for soil microbes (Deng, 

2011). Phenol oxidase enzyme (POX) degrades phenolic material (McLatchey and Reddy, 1998). Even 

though this is not involved with nitrogen cycling directly, the build-up of phenolics from low POX 

activity can affect the activity of hydrolase enzymes, such as NAG (Freeman et al., 2001). The 

measurement of POX therefore helps the interpretation of NAG and BG responses to nitrogen 

contamination and climate change. 

This study aimed to investigate the impacts of lowered water tables (Clarke and Ayutthaya, 2010), 

predicted increases in nitrogen availability (Camargo and Alonso, 2006) and their interaction on 

dune slack biogeochemistry. We tested the following research questions using analysis of soil 

chemistry, extracellular enzyme activities and greenhouse gas measurements: Do lowered water 

tables decrease denitrification? Do lowered water tables increase soil decomposition? Does 

groundwater nitrogen contamination increase dune slack soil denitrification? and does groundwater 

nitrogen contamination increase soil carbon processes?  
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1.3 Methods 

Dune slack soil was collected from a previously uncontaminated Salix repens-Calliergon cuspidatum -

Campylium stellatum dune slack community at Aberffraw (Anglesey, North Wales, UK, 53°11’N, 

4°27’W), identified by the presence of pristine vegetation communities and very low groundwater 

NO3 concentration (Rhymes et al., 2014). Soil was separated into two horizons; an organic top 10 cm 

layer and mineral sand from depth range -10 to -50 cm. Roots were removed by hand and soil was 

homogenised with a clean cement mixer and used for two complementary experiments. 

 Mesocosms of soil and vegetation representing more natural conditions run for a period of nine 

months and microcosms for laboratory assays to allow close control of potentially confounding 

factors and to investigate the effect of nitrogen contamination further. 

1.3.1 Experimental designs 

Mesocosm experiment 

The mesocosm experiment investigated lowered water levels, N loading, and their interactions 

under controlled water level conditions using reconstructed dune slack soils, planted with four 

representative dune slack plant species. Each mesocosm was constructed with plastic pipe (50 cm 

height and 16 cm diameter) with a mesh-lined perforated plastic base attached to the bottom for 

drainage. The first 42 cm was filled with mineral sand with no organic matter (described above), 

whilst the top 8 cm was filled with homogenised organic matter to replicate a mature slack soil. Each 

mesocosm was planted with four typical dune slack species (2 sedge and 2 forb species): one 

specimen each of Carex arenaria, Carex flacca, Leontodon autumnalis and Prunella vulgaris. The 

mesocosms were then placed into individual buckets filled with a re-created groundwater 

composition and the nutrient treatments (see details below). Holes within the side of the buckets 

were used to control water table regimes and were attached to plastic tubing to collect any 

overflow. Black plastic was used to cover the opening of the bucket to exclude light, to prevent 

rainfall mixing directly into the groundwater and to avoid water loss through evaporation. The outer 

part of the mesocosms, buckets and outlet bottles were wrapped in foil to minimise absorption of 

the sun’s heat. 

This experiment ran from October 2013 to July 2014 in Bangor, North Wales, UK (53°13'32.0"N, 

4°07'55.1"W) and involved three groundwater DIN treatments; control (0.0 mg/L of DIN), low (0.2 

mg/L of DIN) and high (10 mg/L of DIN) in factorial combination with a wet or dry hydrological 

regime, each with eight replicates of each water level x nitrogen combination, giving 48 mesocosms 
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overall. The hydrological regimes followed a three-stage seasonal pattern. Wet hydrological regimes 

were altered from -10 cm water table depth in the winter months to -20cm in spring, to -30 cm in 

the summer months, whilst the dry hydrological treatments were altered to consistently be 10 cm 

lower than the wet treatment. The artificial groundwater was synthesised by adding the listed 

compounds (Table 1) to 20L of de-ionised water, to reproduce concentrations of cations, anions and 

the groundwater pH measured at Aberffraw (Rhymes et al., 2014). Due to rainfall and evaporation 

the water tables fluctuated in line with typical hydrological regimes in the field, although were 

unable to flood. On the 1st of July 2014 two litres of artificial groundwater (Table 1) was added to 

each mesocosm due to a long period without rainfall. Nitrogen treatments were maintained by 

monitoring the groundwater chemistry monthly and calculating the amounts of ammonium nitrate 

required to meet the targeted DIN treatment concentrations. 

Table 1 Artificial groundwater recipe; compound weights added to 20L de-ionised water  

 

 

 

 

 

Microcosm experiment 

The microcosm experiment investigated N loading only, under controlled conditions, using just the 

homogenised organic soil. Microcosms were prepared in 50 ml falcon tubes (Corning inc.) wrapped 

in foil with 15 g of the organic homogenised dune slack soil. Once arranged the microcosms were left 

to equilibrate for 24 hours and kept in complete darkness at 18 °C for the duration of the 

experiment. Groundwater treatments with a wider range of N concentrations were produced by 

adding calculated volumes of ammonium nitrate to groundwater collected from a dune slack with 

low nitrogen background concentrations (0.075mg/L of DIN), to produce concentrations of 0, 1, 3, 

and 10 mg/l of DIN. 5 ml of treatment was then added to 15 replicate microcosms for each 

treatment (10 replicates for enzyme sampling and 5 replicates for gas sampling). Microcosms were 

sampled for enzyme activity 24 and 74 hours after treatment addition and gas samples were 

collected 1, 4, 8, 24, 48 and 72 hours after treatment was added. 

Compound Weight (g) 

CaCO3 0.941 

CaCl2. 6H2O 7.541 

MgSO4.7H2O 0.370 

MgCl2. 6H2O 0.996 

KCl  0.089 

NaHCO3 6.082 



6 

 

1.3.1 Gas sampling 

Both mesocosm and microcosm gas samples were taken using a 20 cm3 syringe fitted with a two-way 

valve (Sigma, Aldrich Ltd.) and a short bevel hypodermic needle then injected into 12 ml evacuated 

exetainers (Labco Ltd., Lampeter, UK). Mesocosm gas samples were taken 30 min and 1 hour after 

attaching an air-tight transparent chamber fitted with a Suba-Seal® rubber septa (Sigma Aldrich Ltd., 

Dorset, UK) (N2O gas concentrations measured 30 min after incubation and 1 hour for CO2 and CH4, 

ensuring gas linearity). Samples were taken from four randomised replicates of each treatment on a 

winter day (29/01/14) and summer night (21/07/14) and 6 replicates of each treatment for summer 

days, over 3 days (22nd to 24thof July, 2 replicates per treatment per day), which coincided with the 

mesocosm soil sampling (See below). Three ambient samples were taken prior to attaching the 

chamber. Microcosm lids were fitted with a Suba-Seal® rubber septa and placed onto individual 

microcosms, with gas samples being collected after an hour. This procedure was carried out 1, 4, 8, 

24, 48 and 72 hours after the addition of DIN groundwater treatment. Three ambient gas samples 

were taken prior to enclosing each microcosm with a lid. 

1.3.2 Soil sampling 

Mesocosm soil samples were collected over a 3 day period from 22nd to the 24th July 2014, from six 

replicates of each treatment (2 replicates per treatment per day), where 4 cm length x 6 cm width x 

8 cm height soil samples were taken from the middle of the mesocosm and placed into a sealable 

plastic bag. Samples were then de-rooted, homogenised by hand and weighed (see analysis below). 

Both mesocosm enzyme activity and soil chemistry were analysed immediately after soil collection 

and preparation. Ten replicate microcosms were sampled for determining enzyme activity, 5 

randomly selected replicates were utilised at 24 and another 5 (Total= 10) at 74 hours after 

treatment for each treatment. Soil samples from each microcosm were homogenised with a spatula 

and weighed out. 

1.3.3 Laboratory analysis 

Gas analysis 

Gas samples were analysed by gas chromatography using a Varian model 450 gas chromatograph 

(GC) instrument, equipped with a flame ionisation detector (FID) with a CO2 to CH4 catalytic 

converter (methaniser), to measure concentrations of CO2 and CH4 and an electron capture detector 

(ECD) for N2O. Two mL of sample gas was injected via a 1041 on-column injector system onto a 

PoroPak QS (1.83m x 3.18mm) 80/100 column. Methane, CO2, and N2O (retention times 1.08, 1.87 
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and 2.25 minutes respectively) were quantified by comparison of peak area with that of the 

standards of known concentration used in the preparation of a standard curve. 

Calculating the gaseous fluxes concentrations, from set time periods was achieved by the following 

equation (adapted from Levy et al. 2011):  

 

Where δC is rate of change in the gas concentration over the time period; δt is the change in time 

from the background reading to the final measurement in hours; V is volume of the headspace of 

the chamber (m3); M is the molecular weight of the gas; a is the area of the surface of the 

mesocsom, this is substituted for mass (g) of the soil/water sample in the microcosms and the units 

changed accordingly; Vmol is the volume of a mole of gas (air) at a given temperature (m3 mol-1) 

calculated by: 

 

Where p is pressure (kPa); R is equal to 8.314 (the ideal gas constant) and K is temperature (Kelvin). 

We used global warming potential carbon dioxide equivalents of 34 for CH4 and 298 for N2O (Myhre 

et al., 2013) on all measurements. 

Soil moisture content and LOI 

In both mesocosm and microcosm experiments a sub sample (6-8 g of fresh soil) was weighed, dried 

at 105 °C and re-weighed to measure moisture content within 24 hours of collection. The samples 

were then heated in a furnace at 375 °C for 16 h and re-weighed to calculate organic matter content 

through loss on ignition (Ball, 1963). 

Soil chemistry 

A sub sample of soil from the mesocosm experiment was prepared for chemical analysis using a 

water extraction of 5 g of homogenised soil, mixed with 40 ml ultra-high purity water (1:10 wt/vol) 

for 24 hours on an orbital shaker (Chantigny, 2003). The solution was then centrifuged for 15 min at 

5000 rpm and filtered through 0.45 µm nylon syringe filter (Avonchem, Maccelsfield, UK). Nitrate, 

nitrite and ammonium were quantified on an ion chromatograph (Metrohm, UK Ltd., Runcorn, UK). 

Dissolved inorganic nitrogen (DIN) was calculated as the sum of NO3-N, NO2-N and NH4-N. Total 

nitrogen (TN) and total carbon (TC) were analysed by thermal oxidation on a Thermalox TOC/TN 
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analyser (Analytical Sciences, Cambridge, UK), whilst total inorganic carbon (TIC) was measured 

using a TIC-reactor on the same instrument. Dissolved organic nitrogen (DON) was calculated by the 

difference between TN and calculated DIN. 

Enzyme analysis 

In both experiments soil samples were assayed with fluorogenic-4-methylumbelliferone (MUF) 

labelled substrates for the activity of three extracellular enzymes, the names and functions for each 

enzyme are listed in table 2. Hydrolase enzyme activity (N-acetyl-β-glucosaminidase and β-

glucosidase) was measured using 1 g of soil and a modified method from Freeman et al. (1995). 

Phenol oxidase activity was measured using 1 g of soil and a modified method from Pind et al. 

(1994). Modifications for both methods are described by Dunn et al. (2014). (It should be noted that 

complete saturation curves were not explored for dune slack soils and must therefore not be 

compared with the wider literature however, the technique allows for the comparison of potential 

enzyme activity across treatments rather than absolute activity). Substrates and soils were 

incubated at 16 °C for mesocosm soils and 18 °C for microcosm soils (16 °C was the recorded 

temperature during mesocosm soil sample collection, whilst 18 °C was the optimal soil temperature 

recorded within the field). 

Table 2 MUF-labelled substrates required to measure specified extracellular enzyme activity. 

Substrate 

 

Enzyme Abbreviation Enzyme 

commission 

number 

Function 

4-MUF N-acetyl-
β-glucosaminide 

N-acetyl-β-
glucosaminidase 

NAG 3.2.1.96 Breaks down chitin 

4-MUF β-
glucopyranoside 

β-glucosidase BG 3.2.1.21 Hydrolyses carbohydrate 
molecule 

L-Dopa Phenol oxidase POX 1.10.3.2 Oxidises phenolic 
compounds 

 

1.3.4 Statistical analysis 

All statistical analyses were performed using Minitab v.16. The normality of data were tested using 

the Kolmogorov-Smirnov test; data that proved not normally distributed were transformed using a 

Johnson’s transformation, which selects the optimum transformation for the data to achieve a 

normal distribution.  
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Mesocosm enzyme activity and gas data were averaged for each treatment over the three day 

sampling period. Differences in the mesocosm enzyme activity, soil chemistry and greenhouse gas 

production were tested separately for each time point using general linear models (“water table” 

“nitrogen” “water table * nitrogen”). The model tested for the individual differences between  wet 

and dry treatments, nitrogen treatments and their interactions. Statistical differences in microcosm 

enzyme activity and N2O production were also tested between treatments separately for each time 

point using ANOVA with Tukey HSD post hoc tests. 

1.4 Results 

1.4.1 Mesocosm 

The hydrological regimes (wet or dry treatment), within the mesocosm study showed significant 

effects on soil chemical parameters, enzyme activity and greenhouse gas fluxes (Fig 1). Soil moisture 

content at the end of July was 31.83 ± 0.37 % within the wet treatment and 28.07 ± 0.47 % in the 

dry. Soil nitrite, nitrate and DIN concentrations were significantly higher within the dry treatment 

than those exposed to the wet treatment (Fig 1 a,b & c), whilst TC and DIC concentrations were 

significantly lower within the dry treatments than within the wet treatments (Fig 1 d & e). Soil DOC: 

DON ratios (Fig 1 f) were unaffected by hydrological regimes. 
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Fig 1 Mean water extractable soil a) nitrite b) nitrate c) DIN d) TC e) DIC and f) DOC: DON ratio. 

Asterisks denote significance between wet and dry hydrological treatments. 

Hydrolase enzyme activities NAG and BG were significantly affected by the hydrological treatment, 

where soil NAG activity was significantly higher within the wet treatment than within the dry 

treatment (Fig 2 a) and BG activity was significantly lower within the wet treatment than within the 

dry treatment (Fig 2 b). POX enzyme activity showed no significant differences between wet and dry 

treatments (Fig 2 c). 

 

Fig 2 The activity of enzyme a) N-acetyl-β-glucosaminidase (NAG) b) β-glucosidase (BG) and c) Phenol 

oxidase (POX) within mesocosm soils. Asterisks denote significance between wet and dry 

hydrological treatments. 
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Hydrological treatment had no effect on CO2 uptake (i.e. through photosynthesis) measured on 

winter (29/01/14) and summer days (22nd to 24th of July), however CO2 emissions measured on a 

summer night (21/07/14) were significantly higher (F= 15.07 df= 1 p= 0.001) within wet treatments 

compared to dry treatments (Fig 3 a). Methane emissions measured on a winter day (F= 5.82 df= 1 

p= 0.024), summer day (F= 39.84 df= 1 p= 0.000) and summer night (F= 38.80 df= 1 p=0.000) were all 

significantly greater within mesocosms subject to the wet treatment than the dry treatment; with 

greater methane emissions within the summer than in the winter (Fig 3 b). While there was no effect 

of water table on N20 fluxes (Fig 3 c), there was a consistent, but non-significant, trend of increased 

N2O emissions with increasing groundwater nitrogen treatment (Fig 4). 
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   1 

Fig 3 Wet and dry hydrological treatment effects on the emissions of a) CO2 and b) CH4 and c) N2O. Gas samples collected on a winters day (29/01/14), 

summer day (coincides with soil sampling for enzyme activity, 22nd to 24th of July) and summers night (21/07/14). Comparisons were only made between 

treatments for a winter day, summer day and summer night. An asterisk denotes significance between wet and dry hydrological treatments at a single time 

point (i.e. winter day). 

b) c) 
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 2 

Fig 4 The effects of groundwater nitrogen treatment (Control, low and high) on N2O emissions. Gas 3 

samples collected on a winters day (29/01/14), summer day (coincides with soil sampling for enzyme 4 

activity, 22nd to 24th of July) and summers night (21/07/14). Comparisons were only made between 5 

treatments for a winter day, summer day and summer night. 6 

1.4.2 Microcosm 7 

In the microcosm experiment, the enzyme assays showed that POX activity was significantly higher 8 

in the 10 mg/L DIN groundwater treatment than the 0 mg/L at 72 hours post treatment addition (Fig 9 

5 c), yet was not significantly different at 24 hours. NAG and BG were also not significantly different 10 

between groundwater DIN treatments (at both 24 and 72 hours after groundwater nitrogen 11 

treatment addition, Fig 5 a & b). NAG and BG hydrolase enzyme activities within all treatments, 12 

however decreased from the 24 hour sampling point to the 72 hour sampling point (Fig 5 a & b). Soil 13 

moisture percentage decreased from 36.10 ± 0.45 at the 24 hour sampling point to 35.31 ± 0.33 at 14 

the 72 hour sampling point, although this data is not shown. 15 
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 16 

Fig 5 The activity of enzyme a) N-acetyl-β-glucosaminidase (NAG), b) β-glucosidase (BG) and c) 17 

Phenol oxidase (POX) in microcosm soils 24 hours and 72 hours after the addition of different 18 

groundwater DIN treatments (0, 1, 3 and 10 mg/L of DIN). Enzyme activity is reported as a mean ± 19 

one standard error. Letters denote significance between treatments  at the 24 hour and 72 hour 20 

time points respectively. 21 

N2O gases were measured at intervals to help identify the time course of denitrification activity 22 

within the soils following the addition of DIN groundwater treatments. Negligible amounts of N2O 23 

gas were produced within all DIN treatments for the first 8 hours post treatment addition (Fig 6). At 24 

24 hours post DIN treatment addition a peak in N2O production was measured for all treatment 25 

concentrations, with significantly higher production (F= 3.86 df= 3 p= 0.025) in the 10mg l-1 nitrogen 26 

treatment than the 3 mg l-1 treatment (Fig 6). At 48 hours N2O gas production had decreased within 27 

all treatments (Fig 6), but remained elevated (F= 2.37 df=3 p= 0.000) in the 3 mg l-1 and 10 mg l-1 28 

nitrogen treatments compared with the 0 mg l-1 and 1 mg -1 nitrogen treatments, and was 29 

substantially higher in the 10 mg l-1 nitrogen treatment than in the 3 mg l-1. 30 

a) b) c) 
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 31 

Fig 6 Time series of N2O production following the addition of groundwater DIN treatments. 32 

N2O production is reported as mean ± one standard error. Letters denote significance within 33 

individual time points. 34 

1.5 Discussion 35 

This study investigated the potential impacts of climate change and eutrophication on dune slack soil 36 

nitrogen and carbon cycling and specifically, the effects on biogeochemistry, soil processes and 37 

greenhouse gas emissions. 38 

Just a 10 cm lowering in water table was sufficient to affect soil chemistry, enzyme activity and 39 

greenhouse gas emissions. For  nitrogen cycling, the 2-3 fold increase in soil nitrite, nitrate and DIN 40 

concentrations in the dry treatment is likely to be as a result of the lowered water table increasing 41 

the aerobic zone, resulting in less favourable conditions for denitrification. This is in accordance with 42 

the decreased NAG activities also found within the dry treatment. 43 

Soil-water TC concentrations were lower in the dry treatment, possibly due to decreased 44 

contributions of soil carbon from DIC (dissolved CO2), rather than DOC. The smaller contributions of 45 

DIC observed can be explained by the increase in BG activity together with decreased anaerobic 46 

conditions in the dry treatment, which are known to increase the rates of decomposition and 47 

methanogenisis. In agreement, the night-time CO2 fluxes, representative of both plant and microbial 48 

DIN 
Treatment 

mg l-1 

Time (hours) 
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respiration, were lower in the dry treatment as a result of either; 1. decreased root respiration, 2. a 49 

decrease in incomplete decomposition of soil organic matter under more aerobic conditions 50 

(Whalen, 2005), 3. decreased methanogenesis, where CO2 can also result as a by-product of 51 

methane production, dependant on the nature of the terminal electron acceptor or by anaerobic 52 

methane oxidation (Ferry, 1993) and/or 4. a combination of these processes. Indeed, here, methane 53 

production was lower in the dry treatment, which is in line with the consensus (Segers, 1998, 54 

Whalen, 2005). Limited data also suggests that uptake of CO2 within the winter and summer months 55 

indicate that CO2 intake from photosynthetic processes is greater than CO2 emissions from soil 56 

respiration. 57 

Conversely, the wet treatment conserved soil carbon as soil respiration and decomposion rates were 58 

reduced by the anaerobic environment (Kang and Freeman, 1999, Flanagan and Syed, 2011). 59 

However, in broad agreement with the literature (e.g. Whalen, 2005), methane production was 60 

greater in the wet treatment at each season measured. This was expected due to methane 61 

production primarily being an anaerobic process (Segers, 1998, Whalen, 2005); where the anarobic 62 

conditions reduce the consumption of methane by methanotrophic bacteria, resulting in an increase 63 

in methane released to the atmosphere (Pearce and Clymo, 2001). As methane emissions are 64 

sensitive to soil conditions and temperature (Whalen, 2005), methane emissions here show 65 

temporal and seasonal variation. 66 

The greater BG activity in the dry treatment might suggest increased degradation of cellulose within 67 

these soil conditions as a result of increasing microbial biomass (Turner et al., 2002) resulting in 68 

increased enzyme synthesis. This is unlikely however, as if this was the case we would see similar 69 

results with POX enzyme activity. A more likely explanation is that the BG enzyme is being 70 

synthesised by soil microorganisms in response to the occurrence of appropriate carbon substrates 71 

or by the increase of inorganic nutrients (Fenner and Freeman, 2011), in this case, soil nitrate and 72 

nitrite. Phenol oxidase was not affected by water table, which could be due to the extremely low 73 

availability of substrate for this enzyme is sandy soils, i.e. phenolic concentrations (Freeman et al., 74 

1996), however, this was not measured here. These findings therefore suggest that with lowered 75 

water tables, cellulose decomposition rates are likely to increase, through BG activity, without 76 

demonstrable increases of soil respiration. The implications discussed, from a mere 10 cm lowered 77 

water table depth, suggests that such effects are likely to be intensified by climate change, as water 78 

tables are predicted to lower by up to 100 cm by 2080 (Clarke and Ayutthaya, 2010). 79 

 80 
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Previous studies demonstrate the temporal variability of soil denitrification in response to increases 81 

in soil water content (Rudaz et al., 1991, Martin et al., 1988), with N2O production measured within 82 

30 minutes in dry grassland soils (Rudaz et al., 1991) and longer in other studies. In the microcosms, 83 

we found that denitrification lasted longer within dune slack soils with higher groundwater nitrogen 84 

concentrations. As denitrification has been found to significantly increase with N availability (Merrill 85 

and Zak, 1992), it is likely that N stores within the higher DIN treatments are larger than those 86 

treated with lower DIN treatments, causing denitrification activity rates to last longer. These findings 87 

however were not significant in the mesocosm experiment, where there was a clear increasing N2O 88 

emission trend with increasing nitrogen groundwater treatments, but high variability between 89 

replicates. The microcosm experiment illustrates that in these sandy soils, groundwater nitrogen can 90 

increase denitrification and therefore N2O emission, and that this is likely to occur in the field. 91 

Indeed denitrification is proposed as a mechanism by which some dune slacks maintain a low 92 

nutrient status, despite many years of plant and soil development (Adema et al., 2005)(Adema et al. 93 

2005 ).  94 

The effect of nitrogen addition on carbon cycling, and POX activity in particular, varies significantly 95 

across different studies and the responses are largely explained by the quantity of lignin in plant 96 

litter (Waldrop et al., 2004). Peatland soils subject to increased atmospheric nitrogen are seen to 97 

have higher POX activity (Bragazza et al., 2006). Our findings are in accordance with those of 98 

Bragazza et al. (2006), where POX activity increased within microcosms subject to higher 99 

groundwater nitrogen contamination 72 hours after nitrogen treatment addition. In turn, the 100 

increase in POX activity reduces polyphenol concentrations and can indirectly stimulate the activity 101 

of hydrolase enzymes, such as NAG and BG, by means of the phenol oxidase latch mechanism 102 

(Freeman et al., 2001), which ultimately increases decomposition rates. The latch response however 103 

was not observed within this study, with NAG and BG activity unaffected by the increased POX 104 

activity. Nonetheless, the increase in POX activity suggests that dune slack soil decomposition rates 105 

are sensitive to groundwater nitrogen contamination leading to increased decomposition and 106 

subsequently the potential for increased carbon losses under elevated groundwater nitrate. 107 

1.6 Conclusions 108 

Our findings suggest that dune slack habitats are highly sensitive to both groundwater nitrogen 109 

addition and modest changes in water tables. Should drier conditions prevail, as a result of climate 110 

change (Clarke and Ayutthaya, 2010) or water abstraction, dune slack soils are likely to become drier 111 

and this, in turn, will reduce denitrification rates, leading to greater nitrogen retention and therefore 112 
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a greater eutrophication impact. At the same time, the global availability of nitrogen is increasing 113 

(Galloway and Cowling, 2002) and it is therefore likely that DIN availability within dune slack soils will 114 

increase, irrespective of water table changes. Subsequently, dune slacks are likely to experience 115 

plant community shifts from both a decrease in soil water content (Curreli et al., 2013) and an 116 

increase in soil nitrogen availability, both posing a serious threat to endangered dune slack species 117 

(Rhymes et al., 2014). With regard to carbon cycling within dune slack soils, BG measurements 118 

suggest that decomposition rates are increased with lowered water tables, and with increased 119 

groundwater nitrogen concentrations, thereby potentially reducing carbon sequestration in this 120 

habitat. Taken together, our findings suggest that there is a hierarchy with hydrology being the 121 

dominant factor followed by nitrogen contamination, and so climate change poses more of a threat 122 

than eutrophication. The response of dune slack soil processes to such threats are still poorly 123 

understood and further research is required to understand the future prospects of dune slack 124 

ecology and dune wetlands in a changing environment. 125 
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