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Abstract: A number of European countries run large scale pesticide monitoring schemes in 

watersheds aimed at identifying and evaluating the presence of pesticide residues in the 

environment. These schemes provide national and regional scale assessments of pesticide 

concentrations within the context of environmental quality assessment, aiming to ensure some 

degree of ecological protection. This study is aimed at evaluating the joint effects of the pesticide 

mixtures detected in monitoring programs, using a process based mixture modelthat was 

parameterised for Daphnia magna. In total over 15,000 samples containing over 1 million 

individual measurements were evaluated for effects. 

It was found that there are only a small number of places where we can expect to have 

effects on daphnids, based on measured concentrations. The most polluted samples would cause 

extinction of a daphnid population within only 30 hrs. The results show that effects are mostly 

triggered by a limited nr of pesticide residues at locations with high emissions. It was also shown 

that the analytical detection limits are basically too high to exclude mixture effects. So despite all 

the effort that is put into chemical monitoring programmes it remains a challenge to make 

statements on whether or not the environment is protected. The paper ends with 

recommendations for a different setup of monitoring programs to improve on this. This article is 

protected by copyright. All rights reserved 
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INTRODUCTION 

The typical procedure in any environmental monitoring scheme is that measured 

concentrations of individual compound are compared with their respective Environmental 

Quality Standard (EQS). If each of the measured concentrations is below its EQS, then no 

chemical impact on the environmental compartment under consideration is anticipated[1, 2]. If 

EQS are exceeded, this suggests an effect of some severity for a certain number of unknown 

species. This approach to environmental protection is in itself a chemically driven approach 

based on individual chemicals; concentrations are measured and compared to some fixed 

concentration (the EQS). The biological component of the assessment is ‘hidden’ in the 

derivation of the EQS.  

In general terms, linking environmental concentrations to toxicological effects is not a 

straightforward process.Relations between observed effects and exposure concentrations are non-

linear and real life exposure for organisms is characterised by time-varying concentrations, short 

term peak concentrations, sequential exposures, simultaneous exposure to multiple compounds 

and changing environmental conditions. Generally uncertainties resulting from these factors are 

(assumed to be) accounted for when deriving an EQS by placing safety factors on a metric 

derived from the toxicity values available for the chemical. Especially effects of simultaneous 

exposureto multiple chemicals can be severe[3] but effects of combined exposureare not 

generally considered[4] with some exceptions, e.g. the evaluation of surface water quality if it is 

used to obtain drinking water: the sum of all pesticides is not allowed to exceed 0.5 µg/L[5]. 

However this is not a true mixture approach. Rather it derives an EQS for the combined pesticide 

exposure,without taking aspects such as potency into consideration.  
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Within the current philosophy based on comparing measured concentrations with their 

EQS, the consequences for populations of any species, or indeed species assemblages, of 

exceedancesof the EQS are not identified. Further, even when no EQS is exceeded, it is still not 

possible to be sure that species in the environment considered are indeed protected. This is 

particularly true when low concentrations of multiple chemicals are present. We have shown 

before that surface waters can comply with EQS for all individual compounds but the mixture 

effect can be such that a population of daphnids will go extinct within 24 hrs of an exposure [3]. 

Therefore predicting the joint effects of the pesticides mixtures is important.Developing an 

approach that takes mixture effects in account is possibleif relevant exposure and toxicological 

data is available.Exposure data is typically available for pesticides as many (European) countries 

do have more or less elaborate pesticide monitoring schemes operational, which are typically 

costly.With such investments made, it is important that we can interpret the resultswithin their 

appropriate protection context for indicator populations, such as D. magna, and communities[6]. 

Typically for pesticides EQS are low as pesticides in general are developed with the intention to 

exert serious effects in very low concentrations and they are directly released into the 

environment as a result of the normal utilisation. In this research we have compared monitoring 

data from a focussed regional pesticide sampling programme in the UK with the more standard 

large scale monitoring programme in the Netherlands. The UK Catchment Sensitive Farming 

(CSF) programme[7] is specifically targeted at monitoring pesticide concentrations and loads in 

the outlet of 7 catchments containing drinking water protected areas and surface water protected 

areas. In contrast, the Dutch monitoring programme contains all areas of the Netherlands[8] and 

is more comparable to the normal UK nation-wide monitoring programme. Our aim is to go 

beyond EQS comparison to evaluate the detailed predicted effects of the pesticides detected in 
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monitoring programs for sentinel populations Daphnia magna - a species providing a 

toxicologically rich data resource. This modelling approach is used to establish the potential 

(mixture) effects of pesticides measured in these environmental monitoring programs and how 

this relates to possible population consequences. 

APPROACH 

Available monitoring data 

The UK Catchment Sensitive Farming scheme is aregional program with a river 

catchment focus. In contrast, the monitoring scheme used in the Netherlands includes 

measurements for sites located across virtually the entire country, with emphasis given to regions 

with the highest agricultural intensity [8].  

In the Netherlands a large very dense network of small water-bodies surrounding (nearly) 

every individual field with agricultural activities can be found, so direct emissions during 

spraying (including drift) are believed to be the major cause of contamination [9]. In the UK, the 

major pathway for surface water contamination with pesticides is run-off. The most important 

factor that determines emission due to run-off events is rainfall, especially the timing and 

intensity of the first substantial rain after pesticide application [10]. The extent to which releases 

through these different pathways are true drivers of measured concentrationsin surface water is 

disputed[11]. Thus including concentrations measured from both schemes allows investigation of 

different exposure routes and subsequent concentrations and effects. A detailed description of the 

CSF and Dutch measurement schemes is given below. 

Catchment Sensitive Farming monitoring data 

Seven river catchments containing drinking water protected areas and surface water 

protected areas in England have been monitored by the Environment Agency for pesticide levels 

since 2006 as part of the CSF programme[7], for maps see  supplemental data, section 3. The aim 
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of the associated monitoring is to detect changes in pesticide concentrations / loads arising from 

the CSF activity and is run as a special project complementary to the nation-wide pesticide 

monitoring programme; the latter being more comparable to the nationwide Dutch programme. 

The core of the CSF programme consists of 7 sampling points. But over the years samples were 

taken at 25 different locations in the area, the additional samples were taken on an ad hoc basis 

and were usually analyzed for a limited nr of pesticides. 

Each core site is sampled on a regular basis for 3 standard pesticides suites (Phenoxy 

Herbicides, Urons and Nitrogen or Phosphorous containing Pesticides); a list that together covers 

88 pesticides (see Supplemental data, section 2). The selection of pesticides to be measured was 

based on land-use and earlier pesticide surveys. Some pesticides within the suites are classed as 

historical, banned or in the process of being phased out. These are, however, still measured 

because they are part of the analytical package and not necessarily because they are known to be 

used in the different catchment areas. The current assessment used data from samples taken from 

March 1st 2006 to October 29th 2014, spanning a period of some 8.5 years. Samples were taken 

throughout the year. 

Typically a sampling frequency of 2 samples per week is used, however, on 

occasionssamples can be taken on consecutive days at the core sampling locations linked to 

major run-off events. Samples are collected, transported and analysed by the Environment 

Agency’s national laboratory service within 24 hrs. In total 5400 samples have been taken and 

analysed. Out of this total, 3585 have been analysed for more than 10 different pesticides. In the 

vast majority of the measurements the analytical detection limits (DL) for individual compounds 

are not exceeded. The DL of a specific compound can vary in different samples, even for the 

same compound, because laboratory methods can change over time and also because some 
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samples show analytical interference with an effect on DLs. In extreme cases this can increase 

the DL by more than 2 orders of magnitude. An overview of the basic statistics of the CSF 

pesticide monitoring scheme is given in Table 1. 

Dutch monitoring data 

In the Netherlands the responsibility for surface water quality and quantity lies with the 

regional water boards, with the exception of the main rivers and large lakes which fall under the 

responsibility of the ministry of ‘Rijkswaterstaat’. The Dutch water boards have a well-

established program for monitoring pesticide contamination of surface waters. These monitoring 

data have been processed into a graphic format the pesticide atlas, which is accessible online 

(http://www.bestrijdingsmiddelenatlas.nl) [6]. This pesticide atlas is designed to provide insight 

into pesticide presence in surface waters and trends over time. The data are evaluated in terms of 

exceeding environmental quality standards (EQS) and regression based analyses are carried out 

to evaluate the long-term behaviour of measured concentrations or to evaluate national pesticide 

policies [6, 8]. Within the pesticidesatlas there is also the functionality to visualise the geospatial 

relationships between land use and pesticides residue EQS exceedances. Some regions of the 

Netherlands like ‘het Westland’ (greenhouses) or ‘de bollenstreek’ Lisse and surroundings 

(flower bulbs), ‘Flevoland’ (arable farming), ‘Friesland’ (cattle farming), all have local highly 

intensive agricultural activities with their own characteristic set of pesticide use that can lead to 

specific water quality concerns. Therefore different regions under different land management can 

have a specific measurement setup within the monitoring program, with dedicated measurement 

frequencies and specific analytical packages.  

The number of different sampling points in the Dutch Monitoring Program differs 

slightlybetween years, but has been in the order of 600in recent years. Each year a total of 600-
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700 different active ingredients of pesticides are monitored. The vast majority of assessed 

pesticides are never found above the analytical detection limits at any location. This almost 

certainly often reflects their lack of use, although in addition some of the pesticides are difficult 

to quantify at the required very low environmental levels. As we will show results below the 

detection limit may still be important from a regulatory point of view, but to get a clear picture 

on the actual occurring effects we decided to give all pesticides that were never measured above 

their analytical detection limit at any location in the year for which the data were analysed a 

default concentration of zero. This choice might underestimate the real effect however any 

(arbitrary) chosen value other than 0 would present a bigger possible problem, since this would 

by necessity increase the predicted effect without knowledge on whether or not the compound is 

actually present. A complete overview of the pesticides taken up in this analysis is given in 

Supplemental data I. 

The underlying raw, but checked, data off the pesticide atlas were kindly made available 

for this study. We evaluated the years 2013; 2009 and 2005, which spans more or less the same 

period as the CSF monitoring data. In Table 2 some general statistics of the Dutch monitoring 

schemes are presented. 

Modelling the effects 

The effect analysis was carried out using a process-based mixture model that relates 

environmental concentrations to effects on survival onDaphnia magna. We chose daphnids 

because this taxon is commonly used for aquatic chemical hazard assessment and daphnids are 

considered to be representative for the invertebrates that along with fish and algae should be 

considered in the initial pesticide registration process in Europe [12].And we have shown in the 

past that themixture model can make excellent predictions on mortality of in situ exposed 
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daphnid populations exposed to actual environmental concentrations of complex mixtures [3]. 

We will come back to this choice, including its value and limitation for assessing predicted 

impacts, in the discussion. 

Short description of the model 

The model builds up the effect of the mixture from the individual compounds assuming 

no interactions in the mixture [13]. For the individual compounds it consists of a scaled one-

compartment model to describe the kinetics and a hazard model to link exposure to effects on 

survival. This allows calculating the whole time-course of toxic effects. For single compounds a 

description of the model can be found in [14], or in the OECD-guidelines [15]. An excellent 

description of allcurrently available different single compound survival models and how the 

different models relate can be found in [16].  

The model can be readily applied to single compound data and can be extended to summarise 

the effects of chemicals in combination. A mathematical and conceptual description of the model 

application for mixtures assessment can be found in [17]. Since the mixture effect is based on the 

known individual compounds,their toxicological parameters must be known for the species of 

interest and typically these parameters are derived from the development of toxic effects over 

time.In this respect the choice of Daphnia for model parameterisation is supported because of the 

extensive toxicological data available for this taxon. For each component in the mixture, three 

parameters relevant for determining the time-course of toxicity have to be determined: 

• the elimination rate (ke), a measure for how fast the equilibrium between internal 

and external concentrations is set (expressed in d-1); 

• the No Effect Concentration (NEC), a toxicological threshold below which no 

effects on survival will occur even after prolonged exposure times (expressed in µmol/L); 
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• the killing rate (kr), a measure for the toxic potency of a compound (once the NEC 

is exceeded) (expressed in (µmol/L)-1.(d)-1). 

The approach to mixture assessment provides the possibility to calculate the NEC of the 

mixture. This represents the threshold for a toxic effect for the mixture. When this mixture 

threshold exceeds 1, the survival probability of the daphnids is affected by the toxic pressure of 

the mixture and the whole time course of the toxic effects can be calculated. 

 There is a similarity in how the behaviour of the NECof the mixture is treated in this 

model with the more widely used Concentration Addition and Independent Action models [18, 

19]. Compounds with a similar mode of action share their NEC. In this contextdifferent 

thresholdsexist for the different modes of action that are represented by chemicals found in a 

mixture. If the mixture NECfor at least one mode of action is exceeded there will be an effect on 

survival for the exposed species. Thisapproachalso allows calculating the contribution of each 

compound in the mixture to the overall toxic effect. 

As a starting point for assessment, the most parsimonious approach to chemical 

assessment and categorisation for effects on the target taxon is to take the insecticides as a group 

sharing the NEC based on neurotoxicity.The herbicides and fungicides are considered as a 

second group that share effects through baseline toxicity, because relevant biochemical targets 

are absent in Daphnia. This is of course a simplified approach that can ultimately be refined as 

specific mode of action data becomes available for the target species. Nonetheless it has already 

shown good predictive power in the assessment of effects of mixtures e.g. [3, 20, 21] and so 

represents a tractable starting point. We will come back to this approach for categorisation in the 

discussion. 
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Taking this simplified initial approach, the first step in applying the model is to calculate 

the mixtureNECfor each of the shared modes of action. This is a simple step and it involves the 

environmental concentration and the NEC of the compounds in the mixture, according to: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = �𝑐𝑐𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖�

𝑛𝑛

𝑖𝑖=1

 

With 

NECmix = the mixture threshold forthe available compounds 

ci = the measured concentration of compound i 

NECi = the No Effect concentration of compound i 

n = the number of compounds in the mixture, sharing the NECmix 

If a mixture threshold exceeds 1 the survival probability of the exposed organisms will be 

affected by the exposure to the combined exposure to the pesticides. How much the survival 

probability is affected depends on how far the mixture threshold is exceeded and the properties 

of the compounds in the mixture. So the most important parameter to estimate is the NEC of the 

mixture and therefore the NEC of the individual compounds. 

The model was previously successfully deployed to link effects of a mixture to the 

survival of in-situ exposed daphnids in an agricultural part of the Netherlands [3]. These 

mixtures contained almost 100 different compounds including pesticides, metals, nutrients and 

PAHs. The model proved able to make reliable predictions on both survival (if the mixture 

threshold was below 1) and mortality (if the mixture threshold exceeded 1) of exposed 

organisms. The more frequently used Concentration Addition and Independent Action models 

could not make reliable predictions on both survival and mortality in this real life situation 

[3].The problem is that these models are conceptuallyinappropriate to be used in an approach 

like this. First of all, it is not clear how to derive an actual effect level from exposure to toxic 
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units. If we have a mixture exposure of 0.2 toxic units, this cannot be translated to an actual 

survival probability (for any point in time). Only if all toxic units are derived from say 48 hr 

LC50(the concentration that leads to a 50% effect on survival) values, a toxic unit of 1 would 

imply a 50% survival probability at 48 hrs. For any other survival probability new toxic units 

need to be derived. In addition toxic units are only valid for a fixed single exposure time, so for 

each exposure time new toxic units need to be derived to allow effect predictions.  

Model parameters 

The optimum approach for modelling would be to estimate all relevant parameter values 

for all chemicals from raw survival data for organisms exposed to multiple concentrations and 

monitored in time. However, even in a well-studied taxon like Daphnia, full dose-response data 

are usually not available and only the 48 hr LC50value is reported. This is despite the fact that 

the OECD test guidelines for Daphnia toxicity tests also prescribes monitoring survival at 24 hrs 

exposure[22]. Since raw survival data for effects on Daphnia survival were not available for any 

of the compounds, a different approach to the derivation of model parameters was taken. 

Because theNEC is the most important parameter as it defines the concentration below which 

survival will not be affected,independent of the exposure time, our initial focus was to provide an 

estimate for this value for exposed Daphnia. We made a distinction between parameter estimates 

for the insecticides and the herbicides/fungicides. 

Model parameters for the insecticides 

Insecticides are designed generally to be biologically targeted to arthropods. This means 

that they have a high potential toxicity to this group of organisms. For daphnids the toxicity of 

insecticides typically exceeds that for herbicides and fungicides by some 5-6 orders of 

magnitude.  
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For the estimate of the toxicity parameters we can make use of the temporal aspects of 

toxicity. For survival it has been long established that LC50s calculated from temporal 

experimental survival data tend to decrease over time, approaching an asymptote represented by 

the incipient LC50[23] (Figure 1). This clearly indicates that a single time-point LC50 value 

merely gives a snapshot of the actual toxicity of a compound. From an observation at only one 

point in time it is impossible to know whether the (e.g. 48 hr) LC50 was measured in the steep 

section or tail of this time dependent curve. Further, over long-term exposure, the asymptotic 

LC50 can be shown to be numerically equal to the NEC[24]. Hence by knowing how LC50 

changes with time, an estimate of the toxicity parameters becomes possible. 

If we have at least three LC50 values at different points in time, then the shape of the 

LC50time curve can be established and the relevant toxicity parameters (NEC, ke, kr) can be 

estimated. Finding time dependent LC50data, thus, provides a solution for toxicity parameter 

derivation. As a first step the USEnvironmental Protection Agency (USEPA) ECOTOX [25] 

database was used as a starting point to look for toxicity data at different points in time. If such 

information was present, then the parameters could be derived directly. If suitable time LC50s 

are not reported, but there is a 10 day (or longer) LC50 values present, then this value is taken as 

the incipient LC50 and therefore as the NEC, however with the loss of kinetic information (since 

single time-point toxicity information by definition does not contain kinetic information). If the 

ECOTOX database did not have LC50 values at different points in time or long-term LC50s, then 

the Pesticide Property Data Base [26] was used to obtain a 48 hr LC50 for daphnids. From this 

48 hr LC50, a simple but tractable approach was then used to derive a NEC from the observed 48 

hr LC50value. The 48 hr LC50 value was then divided by 2.7, this is the median value of the 

fraction of the 48 hr LC50s and the NEC for the compounds where both the 48 hr LC50 and the 
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NEC could be derived, see Table 3(data for this research are extracted from the ECOTOX 

database [25]). 

Some pesticides were neither in the ECOTOX database nor in the PPDB, in these cases a 

further literature search, using peer-reviewed articles found via the Web of Science database, on 

LC50s for the specific compound was conducted (see Supplemental data 1).  

Herbicides and fungicides 

For derivation of the toxicity parameters for the herbicides and fungicides, we adopted a 

simple and parsimonious approach. Our assumption was that in the absence of relevant 

biochemical targets, herbicides and fungicides will show only baseline toxicity as a first estimate 

of their toxic effects. The NEC is plotted against log Kow for the compounds where a NEC could 

be derived (Figure 2) (see Supplemental data 1). The NEC of most herbicides and fungicides 

correlates well with their octanol/water partition coefficients or log Kow values, giving a slope of 

approximately -0.82. This relationship provides confirmation that despite the simplicity of our 

assumption the largemajority of compounds do have a toxicity to Daphnia which approximates 

to baseline toxicity [27-29]. Two notable exceptions to this are Linuron and Monolinuron, which 

are both about an order of magnitude more toxic than baseline toxicity for daphnids. This higher 

potency, suggests there may be an additional mode of action for this group of chemicals with 

respect to effects on survival. Excluding these compounds from the  analysis, gives a better fit 

with a slope of -0.92, so very close to the theoretical value of -1 for narcotic acting compounds 

[30](Figure 3), and in close accordancewith the experimentally observed value of -0.90 found in 

a dedicated QSAR study for narcotics[29].In Figure 4 we plotted the observed NEC against the 

predicted NECs based on the log Kow values (for compounds where the time course of effects 

was available) including 95% confidence limits. The figure shows that experimentally 
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determined NECs are within 0.8 log units of predictions, so actual values are within a factor of 6 

of the theoretical numbers. Since comparable differences can be found in direct measured LC50 

values even for the same compound in literature, this level of agreement supports the general 

validity of the approach.  

While showing an overall validity, typically compounds with a high log Kow value tend to 

not fit with the overall approach. Fenpropimorph (fungicide) for example, was found to be far 

less toxic than its predicted baseline toxicity. Since baseline toxicity is a general property, this 

does not appear to be valid[31, 32]. This result can, however, easily be explained when temporal 

aspects are regarded.  Fenpropimorph has a log Kow of 5.5, therefore it can be expected to have 

an elimination rate less than 0.01 h-1[33]. With such an elimination rate 95% of steady state 

internal concentration can be expected to be achieved only after approximately 12 days of 

exposure [27]. In addition, these compounds have a NECin the order of 1 µmol.L-1[29]. Between 

log Kow of 5 and 6 the water solubility decreases from approximately 90 to 0.6 µmol.L-1[34], 

therefore exposure to a concentration well above the NEC within 2 days needed to derive a 48 hr 

LC50 valuecannot be achieved resulting in an unrealistic value for the 48 hr LC50. As a result of 

this issue, this compound was excluded from our analysis. 

To summarize, we used the log Kow values for the herbicides and fungicides in a first 

approximation in estimating the toxicity parameters.The urea based pesticides showed toxicity 

higher than baseline toxicity, so for this group of pesticidesthe NEC was derived in the same way 

as for the insecticides, based on LC50 values in time or on 48 hr LC50 values.This general 

approach gives a first estimate of toxicity parameters and avoids problems with the kinetic 

aspects of toxic effects such as with fenpropimorph. The approach is evaluated in the discussion. 
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Evaluation of the monitoring data 

One of the difficulties for any mixture analysis for a complex environmental sample is 

how to deal with measurementsbelow the analytical detection-limit (DL). One approach is to 

assign below DL results a concentration of zero so treating them as if they were truly absent 

from the sample. This approach is problematic because it is recognised that even low 

concentration can contribute to a mixture effect[35]. The Water Framework Directive states that 

below DL results still have to be accounted for by using half the DL as the actual 

concentration[5]. Following this, it was shown from the CSF data-analysis, that compounds that 

were not measured above their DLs at any location during the entire 8.5 years for which we 

analysed the data would still have a major contribution to the predicted mixture effect. Some 

compounds are in a monitoring scheme because they are part of the analytical package, 

notbecause they are priority substances known to be used in a certain area. Recognising this in 

our approach, mixture effects estimates for the Dutch monitoring data were made by discounting 

the compoundsthat were never detected in a certain year at any location (i.e. they were assigned a 

default concentration of zero). Bias caused by an increase in compounds that were likely not 

present was, thus, avoided.  

For the remaining detected chemicals, the monitoring data-sets were analysed for effects on 

daphnids in two different ways,accounting for both single compound and mixture effects 

anddetected and non-detected concentrations. 

1) Establishing if the mixture threshold is exceeded, discarding all measurements 

below the detection limit 
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In this approach we evaluated if the mixture thresholds were exceeded.Only actually 

measured concentrations were taken into account, so below detection limit results are set to zero 

for this analysis. 

2) Taking all measurements below the detection limit as fixed different proportions 

of the DL detection limit and check if the mixture threshold is exceeded 

Setting the below DL measurements at different proportions (0.1, 0.25, 0.5, 0.75 and 0.9) 

illustrates how this choice influences the results of the analysis. Note that the detection limit of a 

specific compound can be different in different samples. First of all because laboratory methods 

can change over time but it is also possible that some samples show interference with an effect 

on detection limits. 

RESULTS 

Evaluation of CSF monitoring data 

In two of the 5400 analysed samples, the mixture thresholdexceeded 1, implying that a 

daphnid population at these locations would go extinct if sufficiently long exposed to the 

measured concentrations. In both cases the predicted mixture effect is related almost exclusively 

to the presence of diflubenzuron. In the supplemental data, section 3, the measured 

concentrations and their contributions to the mixture threshold of all the individual pesticides 

measured above the DL for these two samples are summarised. 

There are 16 compounds (typically insecticides with two exceptions) that are part of the 

measurement program, which were never observed above their detection limits (Table 4). 

Almost all of these pesticides have been subject to use restriction in Europe meaning that 

for general applications their use is no longer permitted. The results of the different ways to 

interpret the data for mixtures are summarised on a per sample basis (Table 5).  
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In general terms setting below DL measurements to fixed levels of the DL greatly 

increases the number of sites where an extinction risk for daphnid population may be present for 

fractions > 0.25 DL. Applying the WFD prescribed guideline to set below DL measurements at 

0.5 DL gives a total of 168 samples where the mixture threshold exceeds 1, instead of the 2 

samples if below DL limit measurements are set to 0. The table also clearly shows that the vast 

majority of the cases where the mixture threshold is exceeded with concentrations set at a 

proportion of 0.5 or higher of their DL are caused by the insecticides listed in table 4 that were 

never observed above the DL simply because they are banned and therefore no longer used.  

The possibility for effectsis driven by a limited number of compounds: diflurobenzuron, 

diazinon, coumaphos, ethion and pirimiphos-methyl. Diflurobenzuron has a detection limit 

between 0.01and 0.04 µg/L, a concentration of 0.02 µg/L already represents a contribution of 

29% to the mixture NEC threshold. 

Dutch Pesticide Monitoring Program 

The summarized results of the data analysis are shown in Table 6.  

Specific data on when and where the mixture threshold was exceeded for the samples 

where below detection limit results were set to 0 and which compounds were involved can be 

found in the Supplemental data, section 3.The overall pattern of the results reflects those 

observed in the CSF data-set with a somewhat higher number of samples where the mixture 

threshold exceeds 1. Because of the greater overall size and complexity of the Dutch data-set the 

trends are amplified. When measurement below DL are assigned a zero concentration then a 

small number of samples show a mixture thresholdhigher than 1. The majority of themeasured 

concentrations are below DL, including these below DL compounds at different fractions of their 

DL has a profound effect on the number of samples where the mixture threshold exceeds 1, with 
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a sharp increase at 0.25 DL. If the WFD guidelines are followed and below DL results are 

included at half the DL the mixture threshold would be exceeded in 20 to 35% of all samples.  

DISCUSSION 

Modelling approach 

For the majority of the insecticides we only had a 48 hr LC50 value available and had to 

use this as a basis for calculating NECs. The incipient LC50 was not reached for any of the 

pesticides during the 48 hr of a standardised test, where we had data available and therefore the 

48 hr LC50 value underestimates the actual toxicity of the different compounds. We are aware 

that the use of the median factor between the 48 hr LC50 and the incipient LC50 (Table 3) is 

only a rough approximation and there is no kinetic information available to refine these estimates 

at a chemical specific level. Hence in some cases, the NEC will be slightly over- or 

underestimated with a tendency for the NEC to be overestimated,so some effects might be 

missed. When multiple chemical effects are considered, this approach is, however, pragmatic and 

more likely to produce a realistic set of values than a worst case scenario of dividing all LC50s 

by a the maximum value listed in Table 3 or just take the 48 hr LC50as we know the incipient 

LC50 is likely to be lower than the 48 hr LC50. 

For mixture effect prediction, an approach was needed in which the possible effects of 

insecticides, herbicides and fungicides could be combined in a systematic way. The key for an 

approach was considering whether the NEC is shared by different compounds and hence whether 

the compounds contribute together or separately to threshold exceedance. We took a practical 

approach in modelling the effects based on specific mode of action considerations. The 

insecticides were classed as one group which were considered to have a similar mode of action 

(neurotoxicity) and so to be able to jointly contribute to mixture effect. The herbicides and 
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fungicides were then classed as a second group, also sharing a mode of action (narcosis) and so 

share aNEC. Treating the fungicides and herbicides as a single group of toxicants exerting base-

line toxicity to the daphnids seems a rather crude generalisation. However plotting the NECs 

against log Kow does give a relation that is completely in agreement with the expectation for 

baseline toxicity (with the exception of the uron herbicides and fenpropimorph). This finding is 

supported by the absence of key receptor of specific herbicide and fungicide effects in Daphnia. 

Further, it has also been noted for other chemical classes. For example, Cleuvers used a similar 

approach as applied here to show that different pharmaceuticals exhibited largely  base-line 

toxicity to daphnids [36].Should specific information emerge to suggest an alternative mode of 

action for any herbicide or fungicide group to Daphnia, then there is no reason that such 

chemical could not be considered as an addition group in the mixture. This would, however, only 

be important if the additional mode of action class of compounds showed toxicity substantially 

above that expected for baseline toxicity.  

There will always be some uncertainty about how a specific compound affects some 

parameter, starting with the level inside the organism at which the interaction takes place on a 

molecular level or on a higher level inside an organism [20, 37, 38].The insecticides typically 

target the nerve function. Even if the target is not mediated by the same molecular initiating 

event (e.g. acetyl cholinesterase binding, nicotinic receptor binding or sodium channel binding). 

We used this approach before and exceedence of 1 for the NECmix proved to be an excellent 

proxy for predicting daphnid survival after exposure to complex mixtures [3].This general 

approach is in line with other research with both the CA and IA model to predict mixture effects 

for different pesticides [21, 39], though with some tendency for moderate synergistic effects in 
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binary mixtures. Further, it also accords with the work of De Zwart and Posthuma [20] who 

modelled effects of complex mixtures on single and multiple species. 

Since most of the pesticides are used at comparable application rates[40], herbicides, 

fungicides and insecticides are typically measured at comparable concentrations. For daphnids, 

our analysis and modelling of the available effects data indicated that insecticides are generally 

some 5 – 6 orders of magnitude more toxic to this taxon than herbicides and fungicides. Hence, 

when assessing effects of environmental exposure to daphnids, the insecticides cause the effect. 

In all cases where the mixture threshold exceeded 1 the contribution of the herbicides and 

fungicides to the mixture effects is below 0.01%.  

The analysis shows that organophosphates, carbamates and pyrethroidshave the dominant 

contribution to effects. In line with what could be expected, based on their sensitivity to different 

groups of pesticides [41]. In contrast, neonicotinoid compounds that frequently exceed water 

quality standards rarely appear as problem compounds in this analysis. This is because of their 

comparatively low toxicity to Daphnia. Hence including their contribution to the NECmix with 

the other insecticides or treating these compounds separately from the other insecticides does not 

greatly influence the effect estimate for survival in daphnids.A similar analysis for a species that 

is sensitive to these compounds would, however,come to a different conclusion.Such species 

may include for example insect larval species, but not groups such as commonly tested fish or 

algae species, which also have a relatively low sensitivity to neonicotinoids.  

Daphnia have a historyof being recognised as a valuable model species for 

ecotoxicological research[42, 43] and based on toxicity data availability, they are probably the 

only taxon for which a mixture effect analysis such as the one conducted here is feasible. Some 

of the main principals that arise from this analysis for daphnids would be expected to apply to 
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other taxa such as fish. Though there will be some divergence of NECs, the compounds that 

govern the effects and to some extent the comparable risk predicted between different samples 

and sites will be similar for fish and daphnids. A recent study by Bundschuh et al. [44] where the 

CA model was used for algae, invertebrates (characterised by D. magna) and fish for samples 

from the Swedish monitoring system showed that the toxic pressure for fish and invertebrates is 

comparable with slightly higher toxic pressure for the invertebrates. Risks for algae were found 

to be higher because of high herbicide exposure. Hence evaluation of monitoring schemes on 

effective protection across multiple taxa, requires multiple mixture based risk assessments. 

Data quality 

Any approach to chemical monitoring that aims to predict the frequency and/or 

magnitude of possible toxic effects, is dependent on both the quality of the available analytical 

chemistry and also importantly on the totality of available toxicity data. The analytical data that 

describe pesticide concentration measurements are typical for national monitoring programmes. 

Study design may be randomised or untargeted, while analyses are conducted by approved 

analytical laboratories. Over time method and pesticides included may vary, although the 

demand to maintain consistency and a regulatory inertia limits the rate of change. For effect 

estimation, the data in the PPDB [26] are considered reliable, as these are usually both recent and 

come from GLP studies conducted in order to bring a pesticide to market. However for some 

compounds large differences in reported 48 hr LC50 values remain; a factor of 10 is not 

uncommon. However, even despite the difference, when taking information for multiple 

chemical to effect prediction an accurate predictions of the mixture effects on the survival of 

daphnids as an indicator taxon can be made [3]. 

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

Exceedence of the mixture threshold in CSF and Dutch monitoring data 

In total well over 15,000 samples and well over 1,100,000 individual concentration 

measurements were evaluated. The measurements clearly show that a limited number of actually 

measured compounds (some 10-15 in the Dutch data and around 5 in the CSF data) contribute to 

the mixture effect for daphnidsandso present a toxicological hazard to individuals and probably 

topopulations. Half ofthe cases (only measured concentrations above DL are included) 

whereNECmix>1 are caused by a single compound, with the other cases being due to 

contributions from multiple compounds. 

In the CSF programthe NECmix exceeds 1 on onlytwo occasions out of 5400 samples. In 

both casesdiflubenzuron alone was responsible.In the Dutch monitoring program, the number of 

cases whereNECmix>1seems to increase over time (19 in 2005, 18 in 2009 and 49 in 2013), 

though this time series is too limited to make a firm statement on this. A high proportion (~ 43 

%) of the increase in the number of samples where the NECmix exceeds 1 (based only on 

concentration above DLs) are for mixtures containing the pyrethroids fenvalerate, esfenvalerate, 

alpha-cypermethrin and lambda-cyhalothrin. These compounds were not included in2005, but 

were in 2009 although they did not substantially contribute to mixture effect in that year. In 

2013, fenvalerate and esfenvalerate are usually found in the same ratios (a fenvalerate 

formulation contains esfenvalerate). This observation suggests a high release of these two 

compounds, although usage data on these compounds over time is not available making 

confirmation of this difficult. In addition to the above compounds, other pesticides causing 

individual NEC and NECmix exceedance includedpirimiphos-methyl, for which the 

individualNECwas exceeded by up to a factor of 20. Such concentrations would have a profound 

effect on the survival of daphnids (e.g. 90% mortality within 30 h, Figure 5). Pirimicarb was also 
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a major contributor to mixture effects and in 2005 coumaphos was an importantcontributor, 

although this latter compound did not contribute significantly to mixture effects 2009 or 2013. 

Both datasets clearly show issues associated with the inclusion of measurements below 

DL for understanding whether there is a mixture hazard. If below DL measurements are taken as 

increasing fractions of the DL, the number of cases when NECmix exceeds 1.0 increased from 2 to 

538 (0.04 –9.8% of all cases)in the CSF dataset. Including the below DL measurements at 

0.5DL, leads to 168 (3.1%) cases where NECmix> 1.A similar but amplified trend due to the 

higher nr of compounds taken up in the measurements is visible in the Dutch data. Including 

below DL measurements as half the detection limit would then lead to 350 -1200 (or 20 – 35%) 

cases where NECmix> 1 depending on the year, or up to 50% off all samples if below DL 

measurements would be included as 0.9DL.  

In both approaches exceedence of the mixture threshold is completely governedby the 

additive effect of below DL concentrations. If compounds that were never observed above their 

DL were to be included, effect prediction for the Dutch data-set would suggest risk for the vast 

majority of samples. This is, not a realistic scenario as even pesticides that are banned are 

included, which leads to overestimation of effects[45]. The current structure of the WFD 

approach, however, does not include a specific provision within its focus for single chemicals.  

Comparison of Dutch and CSF monitoring data 

InTable 7 the results for measurements above the detection limit for the CSF and the 

Dutch data are summarised. 

Reichenberger et al. [11] stated that total emissions to water from run-off are driven by 

rain-fall and are likely to be considerably higher than direct emissions.However, despite the 

higher frequency of the CSF measurements with the focus on sampling capturing high 
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concentrations following rain events, the average concentrations, the highest concentrations and 

nr of measurements >10 µg/L are substantially higher in the Dutch dataset than in the UK 

dataset. The percentage of measurements above the DL is comparable for both datasets.So the 

results suggest that direct emission routes overall lead to higher exposure concentrations than 

indirect emission routes. 

Significance of results for environmental management 

The aim of monitoring schemes for pesticides is to provide both an overview of the 

current range of active ingredients present in water courses and to assess whether these pose any 

risk to human health and ecosystems. Such an aim encompasses protection of all trophic levels 

from primary producers to higher tier consumers. With multiple chemical monitoring the 

potential for mixture effect assessment is also feasible as we show here.  

Low concentration levels of compounds can make a contribution to mixture effects and so need 

to be considered, this requires DLs around 0.001*NEC for individual compounds. At present DL 

are typically are 0.1-0.01*NEC. In the standard evaluation (i.e. comparing monitoring data with 

EQS) of the Dutch data within the framework of the ‘Bestrijdingsmiddelenatlas’ (see section 2), 

compounds with a low EQS cannot be assessed because to DLs that are too high. Our data 

analysis indicates how despite the physical and financial effort put in to each monitoring 

programmes, current DLs in the monitoring programmes are insufficient to rule out mixture 

effects even for a relatively simple case as the survival (!) of daphnids. The reality of course is 

different the measurements indicate limited exposure to only a few chemicals where mixture 

effects are unlikely to occur, though it cannot be ruled out. Scheme designs do not provide either 

enough information or a way to deal with data below DL that supports decision making on the 

likelihood that the environment is being protected. 
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 While current practice may be satisfactory for assessing single chemical effects, for 

mixtures it needs more guiding information. An effect analysis like the one described here can be 

used to get the monitoring programme focus on the compounds that are closest to exceed the 

NEC (with detection limits that are low enough, for the three trophic levels algae, daphnids and 

fish). Further, sites that have the highest possibility for mixture effects, especially those where 

measured concentration contribute, can be identified for focussed direct toxicity assessment.  

With the current practise elaborate monitoring schemesbecome penalised in their ability 

to truly exclude the potential for adverse effects when chemical below DL are included at even a 

fraction of the DL. In the Dutch monitoring data, some samples are analysed for more than 400 

different individual pesticides of which only a handful are actually found above their DL. Under 

the WFD guidelines for such a sample it is very likely that NECmix exceeds1.  

In Table 1 of supplemental data section 4, we have summarised the NEC and Dutch EQS 

for the 25 compounds with the lowest NEC for daphnids. This shows a very striking mismatch 

between the EQS and the NEC for fenvalerate; this compound has an EQS of 9.7E-03 µM and a 

NEC of 2.65E-05 µM1

                                                            
1 Even the 48 hr LC50 value for daphnids for fenvalerate is lower than the EQS, it appears that this EQS is not 
appropriate and is currently under investigation due to this finding. 

. If this compound is left out of further analysis, the concentration levels 

of the EQS of the 24 remaining insecticides fills 47.6% of the toxic threshold for survival of 

daphnids of the mixture. So the average contribution of an individual insecticide at its EQS is 

approximately 2%or in other words this implies an average safety factor of app. 50. In general 

terms this is enough to rule out lethal effects for daphnids, though sub-lethal effects of course 

cannot be ruled out especially as for two individual compounds (fenpropidin and diazinone) the 

difference between the NEC for survival of daphnids and the EQS is less than a factor 10. 
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Ultimately, if monitoring data are to be used to evaluate if the environment is actually 

protected or not, it is important that the right chemicals are included in the suites of analysis. To 

better achieve this, monitoring schemes would need to be reviewed regularly, based on what is 

known from standard measurements and probably also market surveillance. Such practice is 

commonly used in human health protection (e.g. annual choice of strains of flu to include in the 

flu vaccine) so it is not beyond the realms of feasibility to do so considering we can/should have 

a good idea what pesticides are sold and in use at least for countries like the UK and The 

Netherlands. Including compounds not actually used adds unnecessarily to the number of 

samples with analytes below DL which according to strict WFD practice still contribute to the 

effect prediction through inclusion at 0.5 times DL. However, missing out commonly used 

pesticides or having high DLs for these compounds raises the risk of missing something that is 

actually having an effect. A more focussed monitoring programme is also likely to be cheaper, 

despite the higher standards needed for the detection limits and ultimately will deliver a better 

true picture of actual concentrations. 

CONCLUSIONS 

Pesticide concentrations measured in a relatively small scale monitoring program in the 

UK and the nation-wide pesticide monitoring program in the Netherlands were analysed with a 

process-based mixture model parameterised for effects on the survival of daphnids. In total well 

over 15,000 samples, containing well over 1 million individual pesticide concentration 

measurements were evaluated. This led to the following conclusions: 

• In the Netherlands higher average and peak concentrations are measured, most 

likely caused by the more direct emissions to surface waters during application; 
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• Of all the different pesticides taken up in the monitoring schemes (almost 600 in 

the Dutch monitoring scheme and 88 in the CSF monitoring scheme) only a handful are 

predicted to cause possible acute effects for daphnids. If only measurements above the 

detection limits are regarded some 0.5 – 1.5 % of the samples in the Dutch dataset would 

cause acute effects. In the CSF dataset from the UK some 0.1 % of the samples would 

cause acute effects; 

• The most polluted samples would cause a daphnid population to go extinct within 

30 hrs.  

• If below detection limit measurements are included in the analysis (in the way the 

Water Framework Directive ascribes), in up to 35% of the Dutch samples the effect of the 

simultaneous exposure to all pesticides is such that a direct threat to the survival of 

daphnids exists. 

• Detection limits for the insecticides are generally too high to make reliable 

predictions on effects, based on the monitoring schemes when effects of multiple 

exposures are included. So despite all the effort that is put in the monitoring programmes 

the current detection limits in the monitoring programmes are insufficient to make firm 

statements on whether or not the overall aquatic community is affected at the sampling 

sites. The improvement of detection of targeted effects based analysis in combination 

with predictive modelling could provide a solution to this issue.  

Supplemental Data—The Supplemental Data are available on the Wiley Online Library at DOI: 

10.1002/etc.xxxx. 
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Figure Captions: 

Figure 1. Example of the development of LC50 values over time (example for Daphnia magna 

exposed to Pirimiphos-methyl). 

 

Figure 2. Toxicity (NEC) for all the herbicides and fungicides plotted against their log Kow 

values. 

 

Figure 3. Toxicity (NEC) for the herbicides and fungicides plotted against their log Kow values, 

with the urons monolinuron and linuron left out. 

 

Figure 4. Predicted vs. observed NEC for the fungicides and herbicides, with 95% conf. 

intervals. 

 

Figure 5. Predicted survival of Daphnia magna after exposure to different concentrations of 

Pirimiphos-methyl, from left to right 20; 6; 8; 4 and 2 times the No Effect Concentration. 
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Table 1 Some general characteristics of the results of the Catchment Sensitive Farming Monitoring 

Scheme, with the nr of samples, reported concentrations and concentrations above the Detection Limit 

(DL) 

CSF pesticide monitoring data 2006 – 2014 
 
Nr samples, total 5400 
Nr of individual reported concentrations 311152 
Nr of individual reported concentrations > DL 20039 
Nr samples with at least 10 compounds 3585 
Nr Sampling points 25 
Nr samples >= 10 compounds measured above DL 149 
Nr of compounds, analysed total 88 
Nr of compounds found above DL 72 
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Table 2. Some general characteristics of the results of the Dutch Monitoring Scheme, with the nr of 

samples, reported concentrations and concentrations above the Detection Limit (DL) 

 Base-year 2005 Base-year 2009 Base-year 2013 
 

Nr samples 2985 3822 3565 
Nr individual reported concentrations 159493 299058 391242 
Nr individual reported concentrations > DL 10888 18708 18588 
Nr Sampling points 495 608 462 
Nr samples > 10 compounds  2985 3818 3537 
Nr samples with at least 10 compounds > DL 159 408 516 
Nr of compounds sampled 294 596 532 
Nr of compounds measured > DL 181 283 232 
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Table 3 Overview of 48 hr and incipient LC50 data for the different insecticides (see text) 

Compound 48 hr LC50 
µmol/L 

Incipient LC50 
µmol/L 

48 hr LC50/incipient 
LC50 

Reference 

Diazinone 1.6 E-04 1.1 E-03 1.5 [3] 
Dichlorphos 4.7 E-01 2.8 E-01 1.7 [3] 
Dieldrin 4.6 E-01 2.7 E-01 1.7 [3] 
Diflubenzuron 1.93 E-02 2.2 E-04 87 This research 
Disulphotone 4.7 E-02 3.4 E-02 1.4 [3] 
Endosulphansulphate 1.23 1.0 E-01 12 [3] 
Endrin 1.1 E-02 1.5 E-03 1.7 This research 
Methoxychlor 4.6 E-02 1.7 E-02 2.7 This research 
Mevinphos 5.8 E-03 4.5 E-03 1.5 [3] 
Parathion-ethyl 4.6 E-03 9.3 E-04 4.9 [3] 
Pentachlorophenole 1.5 5.3 3.5 This research 
Pirimiphos-methyl 6.7 E-04 1.5 E-04 4.5 [3] 
Propoxur 4.3 14.1 3.3 This research 
Thiomethon 3.1 E+1 2.8 E-02 15 This research 
Tolclophos-methyl 1.6 E+1 1.0 E+1 1.6 [3] 
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Table 4 List of pesticides that were never detected above the detection limits of the analytical method 

used in all of 5,400 samples taken 

Compound Type of pesticide  
 

Allowed to be used in the 
UK? 

Chlorfenvinphos Insecticide No  
Chloroxuron Herbicide No  
Dichlorvos Insecticide No  
Ethion Insecticide No  
Fenchlorphos Insecticide No  
Fenthion Insecticide No  
Ioxynil Herbicide Yes 
Methabenzthiazuron Herbicide No  
Methiocarb Insecticide Yes 
Metoxuron Herbicide No  
Mevinphos Insecticide No  
Neburon Herbicide No  
Parathion-ethyl Insecticide No  
Parathion-methyl Insecticide No  
Pirimiphos-ethyl Insecticide No  
Triazophos Insecticide No  
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Table 5 Number of samples where the mixture NEC exceeds 1 for the different ways to analyse the CSF 

pesticide monitoring data, with detection limits (DL) concentrations set to 0, 0.1, 0.25, 0.5, 0.75 and 0.9 

times the detection limit, including all compounds or only the compounds that were present in at least 

one sample 

 All compounds included 
                                          

Excluding the pesticides listed in 
table 4 

< DL set to 0 2 2 
< DL set to 0.1 DL 4 4 
< DL set to 0.25 DL 4 4 
< DL set to 0.5 DL 168 5 
< DL set to 0.75 DL 176 170 
< DL set to 0.9 DL 538 170 

 

  

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

Table 6 Number of samples where the mixture NEC exceeds 1 for the different ways to analyse the 

Dutch monitoring data, with below detection limits (DL) concentrations set to 0, 0.1, 0.25, 0.5, 0.75 and 

0.9 times the detection limit, including all compounds or only the compounds that were present in at 

least one sample 

 2005 
                                          

2009 2013 

< DL set to 0 19 18 49 
< DL set to 0.1 DL 22 28 227 
< DL set to 0.25 DL 29 235 486 
< DL set to 0.5 DL 335 739 1284 
< DL set to 0.75 DL 718 1239 1833 
< DL set to 0.9 DL 726 1290 1835 
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Table 7 Comparison of Dutch and CSF concentration measurement characteristics 

Dataset 
 

% measured 
concentrations 
> DL 

Average 
concentration
above DL µg/L 

Measurements  
> 10 µg/L 

Measurements 
> 0.1 µg/L 

Highest measured 
concentration 
µg/L 

CSF 6.4 0.072 0  3159 (1.0 %) 6.1 (Carbetamide) 
Dutch 2005 6.8 0.25 26 (1.6 E-02 %) 3355 (2.1 %) 128 (MCPA) 
Dutch 2009 6.3 0.17 15 (5.0 E-03 %) 4372 (1.5 %) 120 (Ethofumesaat) 
Dutch 2013 4.8 0.16 13 (3.3 E-03 %) 4033 (1.0 %) 76 (Propamocarb) 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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