nerc.ac.uk

Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information

Harper, Anna B.; Cox, Peter M.; Friedlingstein, Pierre; Wiltshire, Andy J.; Jones, Chris D.; Sitch, Stephen; Mercado, Lina M.; Groenendijk, Margriet; Robertson, Eddy; Kattge, Jens; Bönisch, Gerhard; Atkin, Owen K.; Bahn, Michael; Cornelissen, Johannes; Niinemets, Ülo; Onipchenko, Vladimir; Peñuelas, Josep; Poorter, Lourens; Reich, Peter B.; Soudzilovskaia, Nadjeda A.; Bodegom, Peter van. 2016 Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information. Geoscientific Model Development, 9 (7). 2415-2440. 10.5194/gmd-9-2415-2016

Before downloading, please read NORA policies.
[img]
Preview
Text
N514199JA.pdf - Published Version
Available under License Creative Commons Attribution.

Download (4MB) | Preview

Abstract/Summary

Dynamic global vegetation models are used to predict the response of vegetation to climate change. They are essential for planning ecosystem management, understanding carbon cycle–climate feedbacks, and evaluating the potential impacts of climate change on global ecosystems. JULES (the Joint UK Land Environment Simulator) represents terrestrial processes in the UK Hadley Centre family of models and in the first generation UK Earth System Model. Previously, JULES represented five plant functional types (PFTs): broadleaf trees, needle-leaf trees, C3 and C4 grasses, and shrubs. This study addresses three developments in JULES. First, trees and shrubs were split into deciduous and evergreen PFTs to better represent the range of leaf life spans and metabolic capacities that exists in nature. Second, we distinguished between temperate and tropical broadleaf evergreen trees. These first two changes result in a new set of nine PFTs: tropical and temperate broadleaf evergreen trees, broadleaf deciduous trees, needle-leaf evergreen and deciduous trees, C3 and C4 grasses, and evergreen and deciduous shrubs. Third, using data from the TRY database, we updated the relationship between leaf nitrogen and the maximum rate of carboxylation of Rubisco (Vcmax), and updated the leaf turnover and growth rates to include a trade-off between leaf life span and leaf mass per unit area. Overall, the simulation of gross and net primary productivity (GPP and NPP, respectively) is improved with the nine PFTs when compared to FLUXNET sites, a global GPP data set based on FLUXNET, and MODIS NPP. Compared to the standard five PFTs, the new nine PFTs simulate a higher GPP and NPP, with the exception of C3 grasses in cold environments and C4 grasses that were previously over-productive. On a biome scale, GPP is improved for all eight biomes evaluated and NPP is improved for most biomes – the exceptions being the tropical forests, savannahs, and extratropical mixed forests where simulated NPP is too high. With the new PFTs, the global present-day GPP and NPP are 128 and 62 Pg C year−1, respectively. We conclude that the inclusion of trait-based data and the evergreen/deciduous distinction has substantially improved productivity fluxes in JULES, in particular the representation of GPP. These developments increase the realism of JULES, enabling higher confidence in simulations of vegetation dynamics and carbon storage.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.5194/gmd-9-2415-2016
CEH Sections: Reynard
ISSN: 1991-959X
Additional Information. Not used in RCUK Gateway to Research.: Open Access paper - full text available via Official URL link.
NORA Subject Terms: Ecology and Environment
Meteorology and Climatology
Date made live: 08 Aug 2016 10:03 +0 (UTC)
URI: http://nora.nerc.ac.uk/id/eprint/514199

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...