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Abstract. Gravity waves play a critical role in the transport of energy and momentum 

throughout the atmosphere. It has been suggested that small mountainous islands located in 

regions of strong winds may generate significant fluxes of these waves. Such fluxes would be 

important because these islands are not well resolved in global circulation models. Thus, there 

is a need to determine the magnitude and variability of gravity wave generated from such 

islands: South Georgia (54°S, 37°W) has the highest mountains of these islands. Here, we 

present the first report of gravity waves measured by radiosondes over South Georgia. The 

measurements were made in two intensive campaigns as part of the South Georgia Wave 
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EXperiment (SG-WEX), a multi-instrument and modelling campaign investigating gravity 

waves above South Georgia.  The two intensive radiosonde campaigns were held in 2015, one 

in January and one in June/July, totalling 89 successful launches. We use these new 

observations to determine gravity wave properties in the lower stratosphere.  The summer 

campaign observed an average wave energy density (kinetic+potential+vertical) of 3.6 JKg-1 

and an average pseudo-momentum flux of 2.3 mPa . In the winter campaign the values 

observed were larger; an average wave energy density of 8.4 JKg-1 and an average pseudo-

momentum flux of 8.7 mPa . Strikingly, analysis reveals that in winter 66% of waves were 

propagating downwards, in summer only 8% did so. These results suggest that there may be 

additional sources of waves in the winter stratosphere. We propose that the differences 

between wave properties observed during the summer and winter campaigns are due to a 

complex combination of factors including differences in surface wind conditions (linked to 

orographic wave generation), frequency of storms and the proximity of the Polar stratospheric 

jet. These results demonstrate a large increase in gravity wave activity in winter above South 

Georgia.  

1 Introduction 

Gravity waves are launched by sources mostly found in the lower atmosphere (e.g. strong 

winds blowing over mountains, the polar stratospheric jet and storm systems). These waves 

naturally grow in amplitude as they ascend into the upper atmosphere (assuming no 

dissipation) transporting large amounts of energy and momentum as they do so. When they 

dissipate, like a wave breaking on the beach, they deposit their energy and momentum locally 

in the atmosphere, driving atmospheric circulation (Fritts and Alexander, 2003).  These 

atmospheric waves are relatively small-scale (10 km-1000 km horizontal wavelength) and, as 

such, a significant part of their spectrum have to be represented in global circulation and 
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numerical weather prediction models through parameterisations.  Despite the importance of 

gravity waves there is a lack of knowledge about the variability of their sources. There is a 

need for observations to help understand this variability and refine the model 

parameterisations (Alexander et al., 2010a).   

One example of a deficiency arising due to incomplete gravity wave representation in models 

is the “missing” gravity wave momentum flux in models around latitude 60°S.  This 

momentum flux deficit is thought to be responsible for the delayed spring break-up of the 

polar vortex and the for polar middle atmosphere being too cold in most models (McLandress 

et al., 2012). Recent satellite studies have shown that small, mountainous islands, in regions 

of strong winds, are likely to be an intense source of gravity wave activity (Alexander et al., 

2009a;Alexander and Grimsdell, 2013;Hoffmann et al., 2016). It is thought that they 

contribute significantly to the “missing” momentum flux in atmospheric models over the 

Southern Ocean, an estimate of the magnitude of this missing flux is a zonally averaged value 

of ~10mPa (McLandress et al., 2012).  One of the small mountainous islands in the Southern 

Ocean that has been studied with satellite observations is South Georgia (Fig. 1, taken from 

(Bannister, 2015)). This is a very mountainous island and is subject to the strong Antarctic 

circumpolar winds.  Its orientation is such that, on occasion, these winds can cross the 

mountain range perpendicular, ideal conditions for generating orographic gravity waves.  

Studies of the gravity wave activity above South Georgia have shown that it can be a source 

of intense gravity waves.  However, satellites alone cannot view the whole gravity wave 

spectrum e.g. even combined satellite observations can’t capture the short vertical wavelength 

gravity waves (less than 5 km) across a wide range of horizontal wavelengths (5 km – 200 km 

) (Wright et al., 2016).  In order to study the gravity wave field of such an island in detail, and 

to determine the gravity wave momentum flux it generates, a combined instrument-modelling 

approach is needed. 
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The South Georgia Wave EXperiment (SG-WEX) aims to investigate the nature, variability 

and influence on atmospheric circulation of the gravity wave field above South Georgia using 

a range of modelling, satellite and ground based observations.  Radiosondes provide a 

complimentary dataset to the satellite observations as they can observe the part of the gravity 

wave spectrum that satellites cannot capture, i.e. short vertical wavelength waves. Part of SG-

WEX involved two radiosonde campaigns being undertaken, one in austral winter, one in 

austral summer (note: all references to summer and winter in this paper from now on refer to 

the austral summer and austral winter respectively).  This paper (part one of two) presents the 

radiosonde gravity wave observations from King Edward Point (KEP) research station on 

South Georgia, focussing on the energy density, momentum flux and vertical and horizontal 

direction of propagation of waves in the lower stratosphere. Part two will focus on the 

individual properties of the waves detected, e.g. phase speeds, wavelengths.  

2 Observing gravity waves above South Georgia with radiosondes 

2.1 South Georgia climatology and terrain 

South Georgia is situated 1200 km southeast of the Falkland Islands at 54º S, 37º W. The 

main island of South Georgia is approximately 170 km long and between 2 and 40 km wide. 

The island is very mountainous with the highest mountain on the island a height of 2.9 km, 

(GSGSSI, 2016).  KEP station is located on the northern shore of South Georgia in a bay 

surrounded by high mountains (Fig.2). 

The local climate of South Georgia is classified as sub-Antarctic i.e. a wet, cold windy 

environment which also has substantial glaciation. This climate is due to its location in the 

Southern Ocean; it is located in a region of strong eastward winds and, with its knife-like 

terrain, it acts a barrier to these winds, experiencing frequent storm systems.  These winds 

mean that the western side of the island often experience more severe weather conditions than 
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the eastern side, as it is exposed to the fast, eastward moving depressions that track though 

this region of the Southern Ocean. 

2.2 South Georgia radiosonde campaigns 

South Georgia, due to its nature as a small, remote, mountainous island, is difficult to access.  

A semi-regular monthly ship route runs between KEP and the Falkland Islands throughout the 

year, a journey which can take over 4 days.  The site of KEP itself presents its own difficulties 

as a radiosonde launch site: depending on wind direction the radiosonde could be taken 

behind the mountains, thus losing signal and data. The island also experiences strong surface 

winds that can hamper the launch of the radiosonde balloon. However, during January, June 

and July 2015 two successful radiosonde campaigns were undertaken from KEP, with twice 

daily launches at 11UT and 23UT as standard.  Additional radiosondes were launched to 

coincide with overpasses by the A-Train satellite constellation or when forecasts predicted 

strong winds perpendicular to the spine of the island (conditions suitable for strong 

orographic wave generation). Each radiosonde also included a parachute so descent data were 

also recorded.  For this paper only results from the ascent data are used as the descent rate 

data is at a much lower height resolution and not suitable for the analysis technique used here. 

The radiosondes used were the Vaisala RS92-SGP model (Vaisala, 2013).  The radiosonde 

data are composed of altitude profiles of temperature, wind speed, wind direction, pressure, 

humidity and dew point at both 10 second and 2 second resolution.  The 2 second resolution 

data also contains the balloon ascent rate. For both campaigns a mix of 500g and 800g 

balloons were available, with 500g balloons having an expected 26 km burst altitude and 

800g balloons having an expected 28 km burst altitude (although no difference in burst 

altitude is detectable in the campaign data).  800g balloons were used when the wind direction 

forecasts predicted favourable conditions for strong mountain wave generation..   Of the 89 
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successful launches 70 launches reached above the tropopause (~10 km altitude) and 56 

reached 25 km or above.  

Figures 3a and 3b shows all the temperature profiles from the summer and winter campaigns 

respectively. The tropopause can be clearly shown to be around 10 km altitude.  From the 

radiosonde wind direction and wind speed data we can also derive the balloon trajectory.  

Figure 4 shows the balloon trajectories from KEP for the two campaigns. In winter the 

balloons travel further horizontally from KEP (up to 650 km compared with ~200 km 

maximum during the summer campaign), due to the stronger eastward winds present at this 

time of year in the stratosphere. 

 

3 Methods 

3.1 Gravity wave energy density 

Gravity wave energy density is a measure of gravity wave activity (Allen and Vincent, 1995). 

It can be calculated using radiosonde profiles of temperature and wind perturbations due to 

gravity waves. Here, the perturbations of temperature and wind are determined by fitting a 

third-order polynomial to the profile and then subtracting this from the original profile, thus 

removing the background atmosphere and leaving only gravity waves in the profile. This 

fitting method is applied only to the height range of the profile that is of interest: for this 

paper between 12 km and 25 km altitude, allowing us to detect gravity waves with a vertical 

wavelength less than 13 km. An example fit and residual perturbation profile for temperature 

and wind can be seen in Fig. 5.  

The total energy density, ET can be calculated using Eq. (1). The three terms on the left hand 

side are as follows: horizontal kinetic energy density (KE), potential energy density (PE) and 
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vertical kinetic energy density (VE), where u’, v’, w’ and '

^
T are the zonal, meridional and 

vertical wind and the normalized temperature perturbation (temperature perturbation 

normalized by the background temperature) profiles respectively and N is the Brunt-Väisälä 

frequency. An overbar signifies averaging over height. 
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Using the radiosonde ascent rate the vertical wind velocity perturbation can be calculated. For 

the SG-WEX data the vertical wind velocity perturbation (w’) can be determined by taking 

the 2 second resolution ascent rate and removing the frequencies associated with the balloon’s 

motion through the atmosphere (Gong and Geller, 2010).  The perturbation in the resulting 

time series can then be assumed to be a reasonable representation of the perturbation of 

vertical wind due to gravity waves (Zhang et al., 2012).  Although the vertical energy term is 

quite small in magnitude compared to the kinetic and potential energy values it is very 

sensitive to the high frequency part of the gravity wave spectrum (Geller and Gong, 2010) and 

can provide important information about the frequency composition of the wave field. 

3.2 Gravity wave momentum fluxes 

Gravity waves have an associated vertical flux of horizontal momentum (hereafter referred to 

as momentum flux).  It is this momentum that is transferred to the atmospheric flow when the 

waves break, driving the atmospheric circulation (Fritts and Alexander, 2003).  

The perturbations of wind velocity and temperature can be used, through the use of the 

polarisation equations, to calculate the pseudo-momentum flux for each profile.  (Vincent et 

al., 1997).    The zonal pseudo-momentum flux is calculated using Eq. (2) (the meridional 
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pseudo momentum flux is calculated by replacing u’ with v’ in Eq. 2.) where 90

^
'+T  is the 

Hilbert transformed normalised temperature perturbation.  The average spectral frequency 

(ω ) is given by Eq. 3.  
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Where 
N
ff =ˆ  and p = 5/3 (Vincent et al., 1997). 

3.3 Gravity wave propagation directions 

The horizontal and vertical direction of propagation of a gravity wave observed in radiosonde 

data can be determined using a hodograph technique; where the meridional and zonal wind 

perturbations over the altitude range are plotted against each other, forming an elliptical or 

circular shape (Wang and Geller, 2003).  The direction of rotation of the resulting hodograph 

gives vertical propagation information: if it is anti-clockwise then the wave has upward 

energy propagation, if it is clockwise then it has downward energy propagation.  The 

horizontal direction of propagation of the wave is along the major axis of the hodograph 

ellipse. An example of a hodograph for a wave with downward energy propagation can be 

seen in Figure 6. 

It is assumed, based on the results of previous studies (Moffat-Griffin et al., 2011;Zink and 

Vincent, 2001a), that the radiosonde will sample multiple gravity waves during its ascent.  
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Thus, if we wish to use the hodograph method to reliably determine each gravity wave’s 

direction of propagation we need to first isolate the individual wave events.  

A proven methodology to do this with radiosonde data is to use wavelet analysis, as detailed 

in Zink and Vincent, 2001. A Morlet wavelet transform is applied to the wind and 

temperature perturbations to identify the wave events in altitude and wavenumber space. An 

inverse wavelet transform (Torrence and Compo, 1998) is then applied to the region where 

the wave events exist, resulting in temperature and wind perturbation profiles associated with 

a single wave event.  Where there are multiple wave events detected in one profile, (Moffat-

Griffin et al., 2013) the Zink and Vincent method allows any overlapping waves (in either 

altitude or wavenumber space) to have their variance shared before reconstructing their 

perturbation profiles using the inverse wavelet transform, thus ensuring there is no 

contamination between the waves. The hodograph technique can then be applied to these data 

without risk of contamination of the results from other wave events.  

4 Results 

All results presented in this paper use ascent data from radiosondes that reached at least 25 

km altitude.  The lower boundary is taken to be 12 km so that it is above the potential 

distorting effects of the tropopause on the analysis techniques used. This constraint gives 24 

radiosonde profiles in summer and 22 profiles in winter.  

4.1 Energy density 

The kinetic, potential and vertical energy density were calculated using each whole profile 

between 12 km and 25 km altitude. Geller and Gong (2010) have shown the kinetic energy is 

sensitive to low frequency gravity waves, potential energy to a mix of low and high frequency 
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waves and vertical energy to high frequency waves.  By comparing all three values the 

frequency composition of the gravity wave field can be inferred. 

Figures 7 and 8 show these three different energy density components for the summer and 

winter campaigns respectively. The most striking difference between the two datasets is the 

much higher values of all three energy measurements during the winter campaign compared 

to the summer campaign.  Both seasons show day to day variability in gravity wave activity, 

with the variability being larger in the winter, i.e. standard deviation of kinetic energy density 

for the summer campaign is 0.5 JKg-1 but for the winter campaign is 2.2 JKg-1.  

During the summer all components of the gravity wave energy density are relatively constant 

in their magnitudes, implying a near constant gravity wave field of mixed frequencies. The 

exception to this is a period towards the end of the campaign, starting half way though the 17th 

January and extending until the 19th January.  This small increase in KE, PE and VE occurs 

during one of the intensive campaigns where balloons were launched every 4 hours for 2 

days.).  The increase in energy densities isn’t as large in KE as it is in PE and VE, suggesting 

a larger increase in higher frequency gravity waves (with intrinsic frequency (ω) tending 

towards the Brunt-Väisälä frequency (N)) than low frequency waves (with ω tending towards 

the inertial frequency (f)).   

Figures 9a and 9b show time series of ERA-interim reanalysis data for the zonal and 

meridional wind components against altitude over KEP during the summer campaign (Figures 

10a and 10b show the same but for the winter campaign). During the period of enhanced 

wave energy (17th-19th January) discussed above we see that the wind becomes more south-

eastward, resulting in strong cross flow across the island.  In addition during the same period 

there was a storm system that was moving close to and across South Georgia (the only one to 

come this close during the summer campaign), which resulted in increased surface and close 
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to surface wind speeds ((BAS), 2015).  The storm system itself is a source of gravity waves 

but the increased wind speeds associated with it, combined with the wind direction, would 

have resulted in ideal conditions for strong orographic wave generation (Alexander et al., 

2009a).   

During the winter months the circumpolar winds are much stronger and more consistently 

eastward throughout the lower atmosphere than in the summer (compare Figures 9a and 10a). 

There are also more frequent, deeper, low pressure storm systems (Alexander and Grimsdell, 

2013;Hoskins and Hodges, 2005;Jewtoukoff et al., 2015).  Both of these factors, combined 

with favourable conditions for wave propagation to the stratosphere (i.e. eastward winds at all 

heights, compared with the summer where there is a critical level due to the wind reversal at 

~22 km altitude), are likely to account for increased gravity wave activity seen in the winter. 

During the winter campaign there is a lot of variability between the three energy densities, 

implying that different frequency gravity waves dominate on different days. The most distinct 

increase in energy density occurs between 28th June and 1st July for KE and PE with increased 

VE levels being seen 4 days before this date and until the end of the dataset.  This period 

coincides with the wind being aligned in a favourable direction across the island (i.e. winds 

perpendicular to the mountainous spine of the island), the wind at the altitude above the 

mountains (~3 km) being strong and also storms passing directly over the island.  These 

combination of factors would generate strong orographic waves and these are most likely the 

reason for the marked increase in energy density. 

An additional characteristic of this period is that PE>KE for most of its duration.  This 

contradicts linear gravity wave theory where we would expect to see the ratio of KE:PE to be 

between 2 and 1.67 (Nastrom et al., 1997).  However, this ratio comes from a spectral 

approach and assumes that the waves are dominated by low frequency inertia waves, in the 
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case of orographic waves it might be expected that they have an intrinsic frequency quite high 

relative to f, so this ratio would not hold. The fact that PE stays greater than KE for a 

prolonged period also suggests that it is likely to be a real feature, and not down to 

contamination of the data (e.g. from the tropopause featuring in the temperature data, (Moffat-

Griffin et al., 2011;Smith et al., 2008).  Such features have been seen in other radiosonde 

studies (Sato and Yoshiki, 2008) and it has also been suggested from numerical studies that 

this scenario could arise when large amplitude gravity waves are present or gravity wave 

shearing is occurring (Fritts et al., 2006). As the zonal stratospheric winds during this time are 

so large (> 60 ms-1) and there is a likelihood of strong orographic waves being generated at 

this time it could be that linear gravity wave theory no longer holds in this height region.   

The differences seen between the summer and winter season at KEP are consistent with those 

from previous Antarctic and small Southern Ocean island radiosonde stratospheric gravity 

wave studies ((Murphy et al., 2014;Vincent et al., 1997;Yoshiki et al., 2004;Yoshiki and Sato, 

2000;Zink and Vincent, 2001a;Moffat-Griffin et al., 2011;Moffat-Griffin et al., 2013;Innis et 

al., 2004)) where there is an increase in the wintertime values.  However, each of these studies 

uses a slightly different method (e.g. use of whole profile compared with individual waves, 

use of lognormal statistics) and altitude range to calculate their energy density values. This 

can make comparison of the energy density magnitudes difficult.  It has been shown that the 

use of lognormal statistics can reduce the estimate of energy density by around a factor of 2 

(Murphy et al., 2014).  There is also a reduction in energy density values when only using the 

individual waves in a profile compared to the whole profile (e.g Zink and Vincent (2001) 

compared to Vincent (1997)). 

In Vincent (1997) the total energy density is calculated for summer and winter using the 

whole profile and over the same height range as this paper.  The data used is from Macquarie 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
Island, a small island (less mountainous than South Georgia) at a latitude of 55°S.  For 

summer they present a value of 4.2 JKg-1, close to the value of 3.6 ± 0.5 JKg-1 for South 

Georgia.  For winter a value of 6.7 JKg-1 is given, this is smaller than the South Georgia value 

of 8.4 ± 2.2 JKg-1 although within the standard deviation bounds of our result. Although the 

Macquarie Island results are seasonal averages and our values are two snapshots from part of 

each season the degree to which the South Georgia winter values of total energy density are 

larger does imply that South Georgia will have more gravity wave activity in winter months 

than Maquarie Island. 

4.2 Gravity wave pseudo-momentum fluxes 

Figures 11 and 12 show the meridional and zonal pseudo-momentum fluxes for the summer 

and winter campaigns respectively.  

As expected from the analysis above, the pseudo-momentum flux values shown in Figures 11 

and 12 are generally larger in winter than in summer: a summer campaign average of Fu = -

2.19 mPa and Fv = -0.58 mPa   compared to a winter campaign average of Fu = 6.36 mPa and 

Fv = -5.96 mPa.  In the summer data we see the most variability in the pseudo-momentum flux 

at a time that corresponds directly with the increase seen in the energy density around the 18th 

January 2015.  .  The winter zonal pseudo-momentum flux is more consistently and stronger 

westwards than during the summer campaign, consistent with the deep persistent eastward 

winds that dominate in winter months. In both the meridional and zonal winter pseudo-

momentum fluxes we see the largest values of flux occurring at the same time as the largest 

peak in energy density between the 28th June and 1st July. 

The South Georgia results are compared to those values from Vincent (1997) (which use the 

same method of calculation and altitude range as this paper) in Table 1.  
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Both Islands have similar flux values for both seasons, although in winter it can be seen that 

the results from Vincent (1997) are larger in both the zonal and meridional directions.  

However, in the winter the South Georgia data has a large increase in energy density that has 

already been highlighted.  It can be seen from Figure 12 that the associated pseudo-

momentum flux with this event would dominate any averages.  As the Macquarie data is from 

a seasonal value any such events may dominate their mean values too. 

 

 Winter Fx (mPa) Winter Fy (mPa) Summer Fx (mPa) Summer Fy (mPa) 

South Georgia -6.4 -5.9 -2.2 -0.5 

Macquarie Island 

(results taken from 

Vincent (1997)) 

-9.3 -11 -2.6 -1.3 

 

An analysis of AIRS satellite data in the region around South Georgia provided information 

on the winter monthly mean values of momentum flux (Alexander and Grimsdell, 2013).  For 

June and July they found an average of 50 mPa, in this study we have an average magnitude 

momentum flux of 8.7 mPa.  This is a much smaller value (although it is consistent with 

similar radiosonde studies) but several considerations have to be taken into account. Firstly 

the two instruments have very little overlap in terms of gravity waves they can observe 

(Wright et al., 2016) (satellites can see much longer vertical wavelength waves (12 km 

minimum compared with a maximum of 13 km for radiosondes). Secondly the satellite values 

are an average across a spatial region that will encompass much more wave activity than the 

radiosonde, on its single transit through the atmosphere, can observe.  In this context the 

difference in magnitude between the two values is not unexpected.  However, even though the 
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radiosonde winter monthly mean momentum flux is an order of magnitude smaller than the 

satellite observations, it does show that there is still a significant momentum flux being 

transported by the shorter vertical wavelength gravity waves. 

4.3 Gravity wave direction of propagation 

The previous sections used the whole radiosonde profile between 12 km and 25 km to 

estimate the energy densities and momentum flux of the gravity wave field in this region. In 

this section we use the individual wave packet profiles generated by the wavelet analysis to 

calculate the wave direction parameters.  

Figures 13 and 14 show the horizontal directions of propagation for summer and winter 

respectively.  The left-hand side of each figure shows the directions for downward 

propagating waves and the right shows directions for upward propagating waves.  The 

horizontal direction of propagation is mainly westward in both seasons, but the distribution of 

upward and downward propagating waves is markedly different with the percentage of 

downward propagating waves increasing from 8% to 66% of the total observed waves from 

summer to winter. 

The horizontal direction of propagation of the waves observed are consistent with what is 

expected due to the background wind conditions in the troposphere and stratosphere in the 

summer and winter.  In winter there are stronger, more constant eastward winds (see Figure 

10a), so the majority of eastward propagating waves are subject to critical level filtering 

(Whiteway and Duck, 1996) and do not reach the observation region.  In the summer there is 

more variability in the direction of the wind (see Figure 9), so both eastward and westward 

propagating waves can make it though, although the majority are still westward propagating. 
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An interesting result is the difference in downward and upward propagating waves from 

summer to winter.  It is expected that the source of the upward propagating waves are in the 

troposphere (i.e. storms, orographic waves), but it is not as clear what the sources are for the 

downward propagating waves.  The increase in downward propagating waves in winter has 

been reported in other radiosonde studies (Moffat-Griffin et al., 2013;Yoshiki and Sato, 

2000;Moffat-Griffin et al., 2011;Guest et al., 2000;Murphy et al., 2014;Zink and Vincent, 

2001a). It is possible that the increase in these downward propagating waves is due to the 

presence of the stratospheric jet close to South Georgia.  Downward propagating waves have 

also been shown to be generated as a result of partial reflection of waves from an area of high 

static stability higher in the stratosphere and also from non-linear processes related to large 

amplitude orographic waves (Sato et al., 2012). To try and determine the likely cause of the 

downward waves observed in this campaign we examined ERA-Interim zonal winds and 

looked at the position of the stratospheric jet with respect to South Georgia over two different 

time periods.  From the 13th-17th June the wave profiles are dominated by downward 

propagating waves, for the 20th -22nd June they are mostly dominated by upward propagating 

waves. Figure 15 shows the zonal wind at 10 hPa for the following scenarios: (a) The whole 

time period, (b) the subtraction of the two time periods, (c) 13th-17th June and (d) 20th -22nd 

June.  It can be seen that during the period of downward propagation (Fig, 15c), the jet is 

strengthened in the 45W-45E sector, with SG lying to the south of the strongest winds in the 

jet core. During the upward propagation period (Fig. 15d), the strongest winds in the jet have 

moved eastwards and now lie between 0 and 45E, with weaker winds over South Georgia.  

Although the data set is limited it does imply that there is a relationship between the position 

of the stratospheric jet and the dominace of downward propagating waves in the data.  It is 

highly likely that the downward propagating waves in this data are due to the presence of the 

stratospheric jet over South Georgia. 
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In the winter there is a known increase in wave activity and it is likely that this increase is due 

to the strong orographic waves generated by South Georgia.  It is also possible that we can see 

orographic waves generated by the Andes region too, which can travel as far as South Georgia 

(Alexander and Teitelbaum, 2011;Alexander et al., 2010b;Alexander et al., 2009b). 

4.4  Comparisons with the Unified Model 

To determine the proportion of energy density and momentum flux due to orographic waves 

above South Georgia simulations from a high horizontal resolution version of the Unified 

Model (UM) have been used.  Simulations were run with a 1.5 km horizontal resolution (with 

the lateral boundaries being filled by data from the global UM at 25 km horizontal resolution), 

the model orography was created from the Shuttle Radar 167 Topography Mission (SRTM) 

digital terrain dataset (~90 m resolution).  There are 118 vertical levels, with the vertical spacing 

ranging from 500m to 1 km over the lower stratosphere. The model lid was at 78 km but there 

was a dampling layer applied to the top 20 km. This UM version is designed to capture gravity 

waves generated due to orography and no gravity wave parameterisations are included 

(Jackson et al., 2017). 

For each radiosonde launch an equivalent profile was created by “flying” a radiosonde 

through the model data and producing an equivalent profile.  Additionally, as the UM and 

radiosonde data have different height resolutions, a “low resolution” radiosonde profile was 

created where the radiosonde profile data was interpolated onto the model vertical resolution.  

The UM and low resolution profiles were then analysed in the same way as the original 

radiosonde profiles.  We focus on the winter campaign as this is when the largest energies and 

pseudo-momentum fluxes occur and also when strong orographic waves are expected to 

occur.  Figures 16 and 17 show results for the radiosonde, low resolution and UM profiles for 

kinetic energy density and the zonal pseudo-momentum flux respectively.   
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In Fig. 16 there is mostly good agreement in the variation of the energy density except where 

downward waves dominate the radiosonde profiles (at the start and end of the campaign), in 

these periods the difference between the UM and two radiosonde datasets is larger.  This 

strongly indicates that the large increases we see in the energy density are due to orographic 

wave activity from South Georgia.  The low resolution radiosonde data and UM data are close 

in agreement during the period where upward waves dominate, the differences can be put 

down to non-orographic waves also being present in the radiosonde data and in the UM 

results differences can occur due to small model errors in the wave field accumulating with 

height (Jackson et al., 2017). 

In Fig. 17 there is reasonable agreement in magnitude and direction between the three 

datasets.  Where there is a large deviation in pseudo-momentum flux we see a reduced value 

from the UM data compared to the two radiosonde values, this is likely due to the same 

reasons outlined above for Fig. 16.  It is interesting to note that during the periods of 

increased downward wave activity we don’t see a major difference between the two datasets, 

unlike in Fig. 16.  This implies that the pseudo-momentum flux is dominated by the upward 

propagating waves including the orographic waves. 

5 Summary 

The observed increase in  magnitudes of energy density (and thus wave occurrences) and 

momentum flux from summer to winter is consistent both with satellite observations of the 

region (Alexander et al., 2009a;Alexander and Grimsdell, 2013;Alexander et al., 

2009b;Hindley et al., 2015) and also radiosonde studies of Antarctic and southern mid-

latitude locations  (Moffat-Griffin et al., 2011;Yoshiki et al., 2004;Yoshiki and Sato, 

2000;Moffat-Griffin et al., 2013).  An increase of nearly 60% in the magnitude of gravity 

wave energy density observed from summer to winter is quite striking. Radiosonde data from 
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the Falkland Islands (which are at a comparable latitude to South Georgia, but has flatter 

terrain and not as exposed to the strong circumpolar winds) shows an increase in energy 

density of around 25% from summer to winter (Moffat-Griffin et al., 2013). Macquarie Island 

sees an increase of around 40% in the summer to winter energy densities. These comparisons 

show that the results we see are due to a greater generation of gravity waves on South Georgia 

than on the Falkland Islands or Macquarie Island. The position of South Georgia means that it 

is exposed to the strong circumpolar winds and storm systems that can generate orographic 

waves.  In the winter the island is exposed to stronger winds, more frequent storms and there 

are favourable conditions for these orographic waves to reach the stratosphere.  Comparisons 

with the high horizontal resolution UM have provided evidence that the large increases in 

energy density and momentum fluxes observed in this paper are mainly due to orographic 

waves from South Georgia.    

The increased numbers of downwardly propagating waves observed during the winter (66% 

of the observed waves compared to 8% in the summer) suggest that there is a stratospheric 

source in this region.  Analysis of ERA-Interim data have shown that the periods when 

downward waves dominate are coincident with the proximity of the stratospheric jet to South 

Georgia, making this a likely source of these waves. The horizontal direction of propagation 

of the waves are generally westward in both campaigns.  In the summer though there are more 

eastward propagating waves.  This is likely to be due to filtering effects occurring at lower 

altitudes.  In the winter the wind direction is more constantly eastward, so the majority of 

waves that reach the stratosphere are westward propagating.  In the summer there is more 

variability in the wind direction so both eastward and westward propagating waves can reach 

the stratosphere at times. 
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This study has shown that South Georgia is a strong source of gravity waves. During 

wintertime the conditions are often favourable for strong orographically generated gravity 

waves to propagate up to the lower stratosphere.  We have shown that the short vertical 

wavelength waves (observable by the radiosondes) contribute large quantities of energy and 

momentum to the stratosphere, especially during the winter months. South Georgia is a 

hotspot of gravity wave activity and it is very likely that it is a main contributor to the 

“missing” gravity wave momentum flux around the 60°S belt.  These results have shown that 

the momentum flux contributions from South Georgia needs to be included in atmospheric 

models if they wish to start to rectify the issue of the “missing momentum flux” around 60°S 

and to improve  representations of the duration of the winter Polar Vortex stratospheric 

temperatures and ozone loss rates. 
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Figure 1. Map of location of South Georgia 

 

Figure 2. Topographic map of South Georgia, showing the largest mountains and locations 

around the island (Bannister, 2015) 

Figure 3. Temperature profiles for the summer (a) and winter (b) radiosonde campaigns. Each 

temperature profile is separated by 20K. 

Figure 4. Radiosonde balloon trajectories for the summer (left) and winter (right) campaigns. 

Green diamond marks the location of KEP. 

Figure 5. Example of temperature and wind profile fitting for 13th June 11 am launch. The top 

row of figures show the temperature profile between 12 km and 25 km with a 3rd order 

polynomial fit and the residual temperature. The bottom row shows the same but for the wind 

speed profile. 

Figure 6. Example hodograph using data from 17th June 9 am launch 

Figure 7. The kinetic, potential and vertical energy densities during the summer campaign. 

Figure 8. As Figure 7 but for the winter campaign. 

Figure 9. Era40 summer wind plots above KEP (a) shows zonal wind (positive eastwards), (b) 

meridional wind (positive northwards). 

Figure 10. As Figure 9 but for winter. 

Figure 11. Zonal (top) and meridional (bottom) pseudo-momentum flux from the summer 

campaign. 

Figure 12. As Figure 11 but for the winter campaign. 
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Figure 13. The horizontal direction of propagation of individual gravity waves in the summer 

campaign data. The left plot is for downward propagating waves, the right plot is for upward 

propagating waves. 

Figure 14. As Figure 13 but for the winter campaign data. 

Figure 15. ERA Interim zonal wind at 10 hPa: (a) 13th-22nd June, (b) c and d subtracted (c) 

13th-17th June and (d) 20th-22nd June. 

Figure 16. Kinetic energy density calculated using winter campaign radiosonde data (black 

solid line), Unified model data (blue dashed line) and low resolution radiosonde data (red dot 

dash line). 

Figure 17. Zonal pseudo-momentum flux calculated using winter campaign radiosonde data 

(black solid line), Unified model data (blue dashed line) and low resolution radiosonde data 

(red dot dash line). 

 

Table 1: Pseudo-momentum flux summer and winter measurements from South Georgia and 

Macquarie Island. 
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