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Abstract The ability of Atmosphere-Ocean General Circulation Models (AOGCMs) to capture the statistical
behavior of sea level (SL) fluctuations has been assessed at the local scale. To do so, we have compared
scaling behavior of the SL fluctuations simulated in the historical runs of 36 CMIP5 AOGCMs to that in the
longest (>100 years) SL records from 23 tides gauges around the globe. The observed SL fluctuations are
known to manifest a power law scaling. We have checked if the SL changes simulated in the AOGCM exhibit
the same scaling properties and the long-term correlations as observed in the tide gauge records. We find
that the majority of AOGCMs overestimates the scaling of SL fluctuations, particularly in the North Atlantic.
Consequently, AOGCMs, routinely used to project regional SL rise, may underestimate the part of the
externally driven SL rise, in particular the anthropogenic footprint, in the projections for the 21st century.

1. Introduction

Assessing the rate of current mean sea level rise (SLR) and projecting its future changes are issues of growing
practical significance in climate studies given its broad impact on coastal regions. Globally, SLR is driven by
changes of ocean water volume due to ocean-mass addition (land water, glaciers, and ice sheets), oceanic
warming, and by the deformation of the solid Earth changing the shape of oceanic basins [Mitchum et al.,
2010]. At the regional scale, SLR can significantly differ from the global average not only on the short-term
but also on the interannual to decadal time scales. This pronounced regional sea level variability is a conse-
quence of changing ocean-atmosphere circulation as well as of local solid-Earth processes such as sediment
compaction and tectonics [Church et al., 2004; Jevrejeva et al., 2006; Cazenave and Llovel, 2010; Nerem et al.,
2010; Becker et al., 2012; Stammer et al., 2013]. The diversity and complexity of processes driving regional
SLR make it challenging to approach the understanding and projections of sea level in a comprehensive
and coherent manner. The Atmosphere–Ocean General Circulation Models (AOGCMs) are one of the main
tools currently used for forecasting SLR at global and regional scales. These models provide, on one hand,
the “dynamical ocean component,” i.e., changes in local sea surface heights (SSH) resulting from temperature
and salinity variations and momentum fluxes and, on the other hand, the global mean of steric sea
level change that must be added to SSH, as the AOGCMs are volume conserving models [Griffies and
Greatbatch, 2012]. The Coupled Model Intercomparison Project (CMIP) under the World Climate Research
Program undertakes regular intercomparisons of the AOGCM outputs. A reasonable approach for assessing
the AOGCM performances is to compare the modeled SSH to observations from sea level stations and
satellite altimetry. In comparing the AOGCM CMIP5 outputs to the available 20 year long satellite altimetry
observations, Landerer et al. [2014] noticed that most CMIP5 models overestimated the observed standard
deviation of SSH fluctuations; likewise, Bilbao et al. [2015] revealed regional inconsistencies between the
AOGCMs and the altimetry data due to inadequate modeling of internal sea level variability. However, a per-
iod of only 20 years is too short for evaluating the AOGCM performance on a longer time scale. Alternatively,
historical tide gauge (TG) records provide a unique set of sea level measurements over the past centuries.
Comparing them with the AOGCMs outputs can therefore shed some light on the performance of models
over a longer term, at decadal and centennial time scales.

Sea level fluctuations result from complex interactions between diverse physical processes and, as many
other geophysical signals, exhibit long-term correlations (LTC), also called long-term memory or long-term
persistence [Agnew, 1992], that can be effectively modeled as outcomes of stochastic power law process with
a Hurst exponent H> 0.5 [Beretta et al., 2005; Barbosa et al., 2008; Bos et al., 2013]. The Hurst exponent
0.5<H< 1 indicates the presence of LTC that manifest themselves as persistent low-frequency oscillations

BECKER ET AL. AOGCMS AND THE SEA LEVEL COMPLEXITY 5176

PUBLICATIONS
Geophysical Research Letters

RESEARCH LETTER
10.1002/2016GL068971

Key Points:
• AOGCMs overestimate long-term
correlations in sea level fluctuations
in the North Atlantic

• The NCAR CESM1-CAM5 historical run
gives the best fit to observed sea level
scaling

• CMIP5 AOGCMs can mask the part of
sea level trend driven by external
forcings

Supporting Information:
• Supporting Information S1
• Table S1
• Table S2
• Figure S1

Correspondence to:
M. Becker,
melanie.becker@ird.fr

Citation:
Becker, M., M. Karpytchev, M. Marcos,
S. Jevrejeva, and S. Lennartz-Sassinek
(2016), Do climate models reproduce
complexity of observed sea level
changes?, Geophys. Res. Lett., 43,
5176–5184, doi:10.1002/2016GL068971.

Received 11 FEB 2016
Accepted 29 APR 2016
Accepted article online 4 MAY 2016
Published online 18 MAY 2016

©2016. American Geophysical Union.
All Rights Reserved.

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2016GL068971
http://dx.doi.org/10.1002/2016GL068971
http://dx.doi.org/10.1002/2016GL068971
http://dx.doi.org/10.1002/2016GL068971
http://dx.doi.org/10.1002/2016GL068971
http://dx.doi.org/10.1002/2016GL068971
http://dx.doi.org/10.1002/2016GL068971
http://dx.doi.org/10.1002/2016GL068971
http://dx.doi.org/10.1002/2016GL068971
http://dx.doi.org/10.1002/2016GL068971
http://dx.doi.org/10.1002/2016GL068971
mailto:melanie.becker@ird.fr


[Feder, 1988; Beran, 1994; Rybski and Bunde, 2009]. The interplay of long-term correlated fluctuations results in
a power law increase of sea level spectral energy toward low frequencies. This power law behavior is funda-
mental for realistic simulation of natural sea level variability, accurate modeling of energy distribution in the
sea level spectrum, and for detecting an anthropogenic impact as well as for estimating uncertainties in the
predicted sea level trends [Hughes and Williams, 2010]. In the LTC records, large events well above the aver-
age are more likely to be followed by large events and small events well below the average by small events
[Hurst et al., 1965;Mandelbrot and Wallis, 1968, 1969]. In other words, a period of a lowstand of the sea level is
more likely to be followed by a low sea level, whereas a high sea level is more probably followed by a high
one. These LTC hold, in theory, on over all time scales and may look like positive or negative trends in the
sea level data. To illustrate this point we show in Figure 1 an uncorrelated (Figure 1a) and two long-term cor-
related 1200month times series. For the uncorrelated data (Figure 1a), the moving average (full bold line) is
close to zero, while for the LTC data (Figures 1b and 1c), the moving average can have large deviations from
the mean, forming some kind of mountain-valley structure. The LTC lead to periods of apparent drift in sea
level variations, which is random in nature, but may be incorrectly interpreted as a trend driven by external
forcing. To illustrate this point, we have computed a cumulative distribution function of 10,000 surrogate
data sets of centennial LTC time series trends with prescribed Hurst exponent H (Figure 1d) and with a stan-
dard deviation of 100mm that is characteristic for monthly TG records. Figure 1d shows, for example, that
there is a 90% chance of finding an apparent sea level trend of ±1.5mm/yr in the record with H= 0.9 and
±0.5mm/yr in that with H= 0.7. In the uncorrelated data, (H= 0.5) this stochastic trend is much smaller and
varies between ±0.1mm/yr (90% confidence).

Thus, adequate modeling of the observed sea level power law behavior is crucial for distinguishing externally
driven trends from natural climate variability [Lennartz and Bunde, 2009, 2012; Bunde and Lennartz, 2012].
Inspection of the longest TG records worldwide demonstrated that the power law scaling exponent is a

Figure 1. Schematic illustration of the long-term correlation (LTC) impact on sea level variability. (left) Centennial LTC time
series (black line) of length 1200months with a standard deviation of 100mm and prescribed Hurst exponent H,
obtained from fractional Gaussian noise (fGn) (a) H = 0.5 (uncorrelated), (b) H = 0.7 (LTC), and (c) H = 0.9 (LTC). The full
line shows the moving average over 60months. (right) Cumulative distribution function of 10000 surrogate data sets of
centennial LTC time series trends with prescribed H.
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useful metric to characterize the sea level regional variability [Beretta et al., 2005; Barbosa et al., 2006, 2008;
Bos et al., 2013; Becker et al., 2014; Dangendorf et al., 2014a, 2015]. Moreover, several studies have previously
demonstrated through other parameters (temperature, precipitation, water discharge…) the ability of this
metric to characterize the stochastic variability of climate and to provide an important test of the validity
of AOGCMs [Bunde et al., 2001; Govindan et al., 2001, 2002; Vjushin et al., 2002; Blender and Fraedrich, 2003;
Blender et al., 2006; Koutsoyiannis et al., 2008; Rybski et al., 2008; Kumar et al., 2013; Bordbar et al., 2015]. By
consequence, the main question that motivated this study was the following: Is the power law behavior
observed in the tidal records also identifiable in the AOGCMs?

2. Data and Methods

We analyze 23 long-termmonthly mean sea level TG records included in the Revised Local Reference data set
of the Permanent Service for Mean Sea Level database [Permanent Service for Mean Sea Level, 2014; Holgate
et al., 2013]. We select TG records with at least 100 years of data, with exception of the Newlyn and Brest
records (98 and 94 years, respectively), and with small gaps (≤4 consecutive years). We excluded all TGs from
the semienclosed seas, which are not properly represented in the coarse resolution global climate models.
This selection finally gives 23 TGs listed in Table S1 in the supporting information and shown in Figure 2.
The AOGCMs do not account for the direct effect of atmospheric pressure on sea level (the inverted barom-
eter effect). Therefore, we have corrected all tide-gauge time series for the inverted barometer effect using
the Hadley Center mean sea level pressure data set (4° × 4° 1850–2014, HadSLP2r [Allan and Ansell, 2006])
and selecting the closest grid point to each TG station. Finally, for all considered time series, the seasonal
variations have been removed by subtracting the mean values for each calendar month.

We analyze the sea level variations from historical experiments driven by natural and anthropogenic forcings
in 36 models contributed to the CMIP5 [Taylor et al., 2012]. A single realization was selected in the models
providing multiple realizations. The model variable used here is the SSH (CMIP5 variable zos). To obtain total
sea level, SSHmust be combined with global average thermosteric sea level change (CMIP5 variable zostoga).
However, many models (15 among 36 models) do not include the zostoga variable to the CMIP5 archive.
Therefore, in order to consider a maximum number of models, we have evaluated the relevance of adding
the slowly varying global ocean thermal expansion to local sea level changes. The scaling exponents esti-
mated from zos + zostoga data have been compared against those obtained only from zos data and no sig-
nificant difference was found (see Figure S1 in the supporting information). The presence of LTC seemed
to occur mainly in SSH, which include the regional variability of dynamic topography changes than in global
average thermosteric component. For the purpose of the present work, we consider more relevant to include
the highest number of models and we analyze below only the SSH variations stored as the zos variable. We

Figure 2. Location of the 23 historic tidal records and magnitude of the observed scaling exponent.
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analyze the modeled SSH from: (1) the historical experiments (called historical runs hereinafter) driven by
both time-dependent anthropogenic (greenhouse gas concentrations, aerosols, and ozone) and natural
(solar and volcanic) forcings and (2) the experiments for the same period (called historicalNat runs) with only
the time-dependent natural forcings corresponding to the Earth’s climate without anthropogenic influences.
Monthly SSH data from historical and historicalNat runs from climate models (listed in Table S2) were first
interpolated bi-linearly onto the same regular 1° × 1° grid. The closest grid point at each TG site was selected
for comparison. These series were deseasonalized in the same way as the TGs and then used to estimate the
scaling exponent over the TG time period.

In the following, we are interested in the dimensionless “relative” sea level trend defined as the ratio of Δ/σt,
where Δ is the total sea level rise over the considered period and σt is the standard deviation around the
regression line [Lennartz and Bunde, 2012]. For determining the scaling exponent α, we use the Detrended
Fluctuation Analysis of order 2 (DFA2). DFA2 is a widely used approach for capturing the presence of
LTC [Peng et al., 1994; Kantelhardt et al., 2001]. This method removes the influence of all linear trends.
Therefore, the glacial isostatic adjustment effect on TG records and the possible drift in zos data [Gupta
et al., 2013] are directly removed by this method. In the following, we present briefly the main steps of the
n-order DFA procedure for a record X(i), i=1… L. First, we determine the number of intervals of equal length

Ls= bL/sc and integrate the record: y kð Þ ¼
XL

k¼1
Xk � Xh i, where hXi is the data mean. Next, we divide the

integrated time series into Ls nonoverlapping intervals. In each interval, we fit the integrated time series by
using a n-order polynomial function, pv(k) in the vth window of size s (v= 1,…, Ls), which is regarded as the
local trend. In each interval, we subtract it to get the detrended fluctuations: yv(k) = y(k)� pv(k). The variance

of this integrated and detrended time series is calculated as: F2v sð Þ ¼ 1
s

Xs

k vð Þ¼1
yv kð Þ2 . This computation is

repeated over all time scales to provide the fluctuation function: F sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ls

XLs

v¼1
F2v sð Þ

q
. The scaling expo-

nent α is calculated as the slope of a straight line relating ln(F(s)) to ln(s). A suitable 95% confidence interval
for the scaling exponent α is given by two-tailed Student’s t test. The exponent α corresponds to the Hurst
exponent H when 0< α< 1 [Hurst et al., 1965; Feder, 1988]. Some TG records manifest, however, a scaling
with α> 1 [Becker et al., 2014], indicating nonstationary long-term memory processes [Beran, 1994].

In our analysis, we chose sea level records longer than L> 1200months because the error in estimation of α
by DFA2 gets larger in the shorter series [Kantelhardt et al., 2001]. Here we fitted α between scales s= 60 and
s= 180months. We skipped fitting at shorter scales to avoid the influence of short-range memory and the
larger scales because of statistical fluctuations of the detrended fluctuation function on these scales.

3. Results

In order to compare scaling in the modeled and observed sea level variations, we used a simple binary score:
If, at a 99% confidence level, the scaling exponent of the modeled sea level series is not statistically different
from that of the tidal record, then the score is set to 1 (a successful model); otherwise, it is set to zero. We
employed Welch’s t test, two-sample t test for unequal variance [Welch, 1938], to identify the significant dif-
ferences between the scaling exponents α (see section 2). Figure 3 presents the AOGCM scores for the 99%
confidence interval: The colored squares correspond to successful matches; i.e., the scaling exponents in the
modeled and observed sea level fluctuations are statistically undistinguishable, and the white squares indi-
cate the cases when the scaling exponents in model simulations are statistically different from the observa-
tions. The colors of Figure 3 columns vary to highlight different oceanic regions. A row with no white squares
in Figure 3 would represent a model with good performance, while an “easy-to-predict” TG record, i.e., one
whose scaling is reproduced successfully by all models, would be recognizable as a fully colored column.
The histogram on the right in Figure 3 displays, for each model, the number of TGs where the observed
and modeled scaling exponents α are equal at a 99% significance level. The histogram at bottom of
Figure 3 quantifies how many models correctly estimate the scaling exponent α at each TG. An overall view
of Figure 3 shows no perfect model, neither an “easy-to-predict” TG record: Although some models perform
certainly better than others, their skill varies from one region to another. The first result, after examining the
distribution of the scores, is that there is no systematic difference between the results obtained with the
historicalNat forcing and those from the historical runs. We cannot conclude, however, that the impact of
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anthropogenic forcing on the scaling exponent is negligible: perhaps, it is hidden by other sources of
model uncertainties.

Figure 3 provides insights into models accuracy but cannot tell whether the spread in the modeled scaling
exponent α is symmetric or there are some biases due to systematic errors/inadequate parameterizations
in the climate models. To evaluate the possible biases, Figure 4 assembles, for every tidal station, scaling
exponents obtained from all the models versus the observed one (indicated by a red line). Strikingly, the

Figure 3. Comparison of observed andmodel scaling exponents. The colored squaresmark statistically undistinguishable (at 99%) scaling exponents in the modeled
and observed sea level fluctuations, and the white squares to the scaling exponents statistically different between observations and models. A hyphen (-) means
that comparison is not possible.
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scaling exponents of the Newlyn, Brest, and Cascais tidal records (~0.9), all from the Eastern North Atlantic
coast, are significantly overestimated by the AOGCMs. The bias is less evident in the North Sea, at
Aberdeen, Esbjerg, and North Shields as well as at Delfzijl and Den Helder, and it even changes the sign at
Vlissingen where the models underestimate the scaling exponent α. However, some caution is required in
interpreting the TG record at Vlissingen as its trend is not in agreement with that in the neighboring TG
records [Wahl et al., 2013]. It is instructive to look at the long-term correlations predicted by the AOGCMs
at the Western coast of the North Atlantic, where at all TGs, except Portland, the scaling exponent is signifi-
cantly overestimated as well (see New York, Philadelphia, and Baltimore). The magnitude of the scaling expo-
nent in the Portland tidal record is about 0.9, larger than that at New York, Philadelphia, and Baltimore, where
it is about 0.7. The bias between the predicted and observed scaling exponent is less evident in the Gulf of
Mexico although a slight overprediction can be evoked at Key West and Galveston. Inspecting the North
Pacific, tidal records do not show a regular overestimation of the scaling exponents as in the North
Atlantic, although at San Diego the scaling exponent is clearly overestimated by the AOGCMs. A striking mis-
fit is detected at Balboa where 25 AOGCMs among 36 (70%) predict white-noise or even antipersistent
(0< α< 0.5) sea level fluctuations. The Balboa TG is situated on the west coast of Panama, and its monthly
data were shown to agree with those from the neighboring stations (http://store.pangaea.de/Projects/
WOCE/SeaLevel_rqds/Balboa.txt). However, some differences with the open-ocean sea level were recently
pointed through comparison of the Balboa TG to the satellite altimetry measurements [Etcheverry et al.,
2015]. We suppose that underestimation of scaling exponent at Balboa is due mostly to the coarse resolution
of the AOGCMs that cannot resolve the particularities of the coastal sea level changes. By consequence, the
modeled sea level at Balboa is dominated by the oceanic signal that is, in turn, affected by the El
Nino/Southern Oscillation events. As the El Nino/Southern Oscillation event was reported to manifest an anti-
persistent behavior (α< 0.5) [Ausloos and Ivanova, 2001], the modeled scaling exponent at Balboa is lower
than the observed one. It is worthy of noting that if the models cannot resolve the sea level variability

Figure 4. Estimate of the scaling exponent by themodels. The grey bars are the scaling exponents predicted by the AOGCMs, and the red line is the scaling exponent
observed in TG record.
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induced by the shelf waves the sea level variations can be significantly mispredicted over long distances on
the continental shelf [Clarke, 1977; Calafat et al., 2012; Andres et al., 2013; Dangendorf et al., 2014b].

It is interesting that there is no noticeable bias between the observed and predicted scaling exponents at
Honolulu although the intermodel spread is still large. The AOGCMs show rather different performances in
predicting two Australian records. The majority of models match quite closely the observed scaling exponent
(0.9) at Sydney, but there are just several models that succeed to approach the observed scaling exponent
(0.8) at Fremantle. And, finally, the scaling in the single historical sea level record in the Indian Ocean, at
Mumbai (0.7), seems, again, to be overestimated by the AOGCMs ensemble. In addition, it is important to
note that many AOGCMs predict scaling exponents superior to 1 that implies nonstationary behavior of
the SSH fluctuations. This is especially remarkable in the Eastern North Atlantic, where 70% of the predicted
scaling exponents are larger than 1. Similarly, on average, 35% of predicted scaling exponents are larger than
1 along the Atlantic coast of North America (Baltimore is not included) and as well as 35% of scaling expo-
nents in the Eastern North Pacific (Balboa and Honolulu are not included). Looking overall, the long-term cor-
relations seem to be overestimated by the AOGCMs across all oceans and particularly, in the North Atlantic.
There are multiple reasons for systematic differences across the CMIP5 models in their representation of
North Atlantic decadal variability [Menary et al., 2015]. An enhanced spatial resolution seems to be crucial
for the next generations of the AOGCMs as it is necessary both for resolving the shelf processes and the deep
ocean internal variability [Penduff et al., 2011; Sérazin et al., 2015].

What the consequences can overestimating of scaling exponents have for climate predictions? In order to illus-
trate this point let us consider, for example, sea level fluctuations at the New York City. The New York TG record is
characterized by αTG=0.7, while the modeled sea level has αModel> 0.9. Little et al. [2015] discussed the sea level
change projections from CMIP5 AOGCMs at New York City in 2090. These projections give a sea level rise
between 33 cm and 56 cm in 2090 (see Figure 10 from Little et al. [2015] for more details). We can apply
Lennartz-Bunde statistics (see Figure 8b from Lennartz and Bunde [2012]) to estimate the consequences of over-
predicting the scaling exponent in New York. Over the century-long period, the sea level fluctuations observed
from the TG record at New York have αTG=0.7 and a standard deviation of σTG=57mm. If these parameters stay
unchanged till 2090, it means that with 95% confidence, the sea level can drift away from its externally driven rise
by up to 5 cm (15% or 9% of 33 or 56 cm, respectively, due to the total sea level change at the end of 2090). This
drift is solely due to the natural sea level variability not to the presence of externally driven sea level trend. In con-
trast, the naturally driven sea level change for example can reach 19 cm (95% confidence) in 2090 in CESM1-
WACCM (Community Earth System Model version 1-Whole Atmosphere Community Climate Model) because
its modeled sea level fluctuations in New York have αModel = 1.3 and a standard deviation of σModel = 25mm.
The natural variability in this model is about 58% or 34% of 33 or 56 cm, respectively, corresponding to the total
sea level change at the end of 2090. As a consequence, a sea level change between 5 cm and 19cm is unlikely of
natural origin in the first case (α=0.7), while in the second case (α=1.3) a natural origin cannot be excluded. Thus,
overestimating the scaling exponents can mask the part of the externally driven relative sea level trend, in parti-
cular the anthropogenic footprint, in the sea level projections for the 21st century.

Figures 3 and 4 show also that the best performance was obtained in the National Center for Atmospheric
Research CESM1-CAM5 historical (Community Earth System Model-Community Atmosphere Model version
5 ) that simulated successfully the scaling exponent in 18 TG records among the 23. A second group including
the CNRM-CM5 historical (National Centre for Meteorological Research-Climate Model) and CNRM-CM5-2 his-
torical [Voldoire et al., 2012] successfully provided the scaling exponent in 14 and 13 TG records out of 23,
respectively. Both models performed very well in The North Sea, the Eastern North Pacific, and the Gulf of
Mexico. Nevertheless, the models performance is not as good in the North Atlantic. By overestimating the
long-term persistence, the AOGCMs introduce more substantial long-term variations that can mask relative
the external trends and, by consequence, underestimate sea level change due to external forcing in the 21st
century projections. It is interesting to note that the three best-performingmodels have the highest spatial reso-
lution: <1.5° in the atmospheric model (AGCM) and ≤1° in the oceanic model (OGCM) (see Table S2).

4. Conclusions

We employed a scaling exponent as a metric for assessing the performance of AOGMC in modeling the com-
plexity of sea level fluctuations. Comparison of the scaling behavior measured in the century-long TG records
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with that in modeled SSH variations showed a large spread in performance among the 36 CMIP5 AOGCM
models. The best fit ting simulation of the SSH scaling was provided by CESM1-CAM5 driven by historical for-
cing: It reproduced the observed scaling at 18 tidal stations among 23. No systematic difference in predicting
skills was found between the AOGCM runs driven by historical or natural-only forcing. There is apparently a
tendency in the ensemble of the CMIP5models to overestimate the scaling of sea level fluctuations especially
in the North Atlantic, both in the East (Newlyn, Brest, and Cascais) and in the West (New York, Baltimore, and
Philadelphia). By consequence, much care should be taken in applying the regional projections issued by an
AOGCM that fails to reproduce the observed sea level scaling in the past.
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