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ABSTRACT

The Sichuan basin is one of the most densely populated regions of China, making the area particularly

vulnerable to the adverse impacts associated with future climate change. As such, climate models are im-

portant for understanding regional and local impacts of climate change and variability, like heat stress and

drought. In this study, climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5)

are validated over the Sichuan basin by evaluating howwell eachmodel can capture the phase, amplitude, and

variability of the regionally observed mean, maximum, and minimum temperature between 1979 and 2005.

The results reveal that themajority of themodels do not capture the basic spatial pattern and observedmeans,

trends, and probability distribution functions. In particular, mean and minimum temperatures are under-

estimated, especially during the winter, resulting in biases exceeding238C.Models that reasonably represent

the complex basin topography are found to generally have lower biases overall. The five most skillful climate

models with respect to the regional climate of the Sichuan basin are selected to explore twenty-first-century

temperature projections for the region. Under the CMIP5 high-emission future climate change scenario,

representative concentration pathway 8.5 (RCP8.5), the temperatures are projected to increase by approx-

imately 48C (with an average warming rate of10.728C decade21), with the greatest warming located over the

central plains of the Sichuan basin, by 2100. Moreover, the frequency of extreme months (where mean

temperature exceeds 288C) is shown to increase in the twenty-first century at a faster rate compared to the

twentieth century.

1. Introduction

China has seen a significant increase in regional tem-

perature since the late nineteenth century (Ren et al.

2005; Q. Li et al. 2010; Wei and Chen 2011). Ding et al.

(2007) calculate that the annual mean surface air

temperature has increased by 0.88C during the twentieth

century, with an accelerated warming of 1.18C during

the second half of the century, which is slightly higher

than the global temperature trend for the same period.

Regionally, northern China has become drier while

central China has become wetter during summer, and

southern and east-central China has become wetter

during winter (see, e.g., Hu et al. 2003; Chen et al. 2006;
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Zhou et al. 2006; Gu et al. 2009; Y. Li et al. 2009, 2010;

Yin et al. 2012). Since China is a densely populated

country where the climate has high spatial and temporal

variation, the physical environment and economic pro-

ductivity across the country is particularly vulnerable to

the adverse impacts associated with future climate

change. In particular, water resources, energy security,

human security, well-being and health, and environ-

mental and social conditions are highly vulnerable to

climate changes (Barnett et al. 2005; Patz et al. 2005;

Wang 2005; Gu et al. 2012).

Recently, global climate models (GCMs) have ex-

amined past, present, and future climate trends and

variability of Southeast Asia and China (see, e.g., Gao

et al. 2002; Jiang et al. 2004; Ding et al. 2007; Xu et al.

2009; Sun et al. 2010; Chen et al. 2012; Jiang et al. 2012;

Ma et al. 2012; Wang et al. 2012; Xu et al. 2013; Zhou

et al. 2014; Wu and Huang 2016; Zhou et al. 2016). To

summarize previous research using the most recent im-

plemented GCMs within the framework of phase 5 of

the Coupled Model Intercomparison Project (CMIP5;

Taylor et al. 2012), future warming appears in all regions

of China (Wang and Chen 2014), and there will gener-

ally be fewer cold extremes and more warm extremes

(Zhou et al. 2014). Gu et al. (2014) found that the tem-

perature in most parts of China will increase by more

than 38C by 2100 with the greatest warming experienced

during the months March through August, and that

near-surface warming will accelerate in the latter part of

the twenty-first century (also see Chen and Frauenfeld

2014). Xu and Xu (2012) and Wang and Chen (2014)

have also shown that in winter, the northern continental

regions show greater warming than the southern re-

gions. In spite of these results, Jiang et al. (2015) found

that most of the CMIP5 models have a topography-

related cold bias, primarily attributable to the (relatively

coarse) resolution of the regional topography over

southern China and the Tibetan Plateau, resulting in an

overestimation of the spatial variability and horizontal

gradient in temperature across China. Other studies

have shown that these modeled cold biases are also re-

lated to the poor capacity of climate models at re-

producing the East Asian winter monsoon and its

relationship with tropical teleconnections (see, e.g.,

Gong et al. 2014, 2015; Song and Zhou 2014; Wu and

Zhou 2016).

It is also important to note that, traditionally, studies

that have evaluated the performance of GCMs in sim-

ulating surface air temperature variability and patterns

over China during the twentieth century (with respect to

observations) have used multimodel ensemble means

(i.e., the average of simulated temperature from a subset

of GCMs) (see, e.g., Xu and Xu 2012; Zhang 2012). This

is because averages across structurally different models

empirically show better large-scale agreement with ob-

servations (Cubasch et al. 2001; Zhou and Yu 2006; Xu

2007; Xu et al. 2007), and noise in future predictions is

thereby reduced. Although a multimodel ensemble

analysis may provide a more robust climate change

signal, such a method does not consider the relative

strengths and weaknesses of each model as an ensemble

invariably hides the substantial variations between the

individual models. Through the multimodel approach,

the low-frequency natural climate variability occurring

over multidecadal time scales and its mechanisms may

not necessarily have the right phase. If the models col-

lectively misrepresent some component of the forcing or

partially cancel each other out, then the future natural

variability in an ensemble will be inherently suppressed.

Additionally, because internal climate variability in-

creases toward smaller horizontal scales, multimodel

means have much smoother geographical patterns and

trends, and thus smaller local extremes, than that of

observed patterns and trends. Therefore, aspects of cli-

mate variability are not represented well in multimodel

means, and this is not acceptable for regional and local

economic planning purposes that, for example, require

local future predictions of temperature extremes. Con-

sequently, the intercomparison between individual

models is important and necessary, especially for esti-

mating the credibility of future climate projections, and

it is imperative to explore individual models for their

individual merits to better understand future changes.

As such, studies using CMIP5 simulations have pre-

viously highlighted that most of the models in the

CMIP5 data repository exhibit varying degrees of skill,

depending on the region of China and the season (Chen

et al. 2011; Chen and Frauenfeld 2014; Gu et al. 2015). It

is, therefore, important to evaluate the performance of

each climate model in CMIP5 for different regions

(Chen and Frauenfeld 2014;Wu andHuang 2016) and to

determine the best overall GCM depending on the

specific application for which the model will be used.

The Sichuan basin region (Fig. 1) of China is partic-

ularly vulnerable to climate extremes [e.g., droughts,

floods, cold temperatures, and heat waves (Kuo et al.

1986; Zhang et al. 2008; Li et al. 2015)] and has a con-

fluence of a large population, insufficient arable land,

and economic underdevelopments. As such, future cli-

mate change is expected to inflict significant socioeco-

nomic and personal damage because of the dense and

growing human population and economy of this region.

Improving the predictability of annual mean and ex-

treme temperatures over the Sichuan basin is thus im-

portant for prevention of climate-related stresses. In

particular, future climate change will have profound
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implications for internal heating and cooling loads in the

ever-expanding urban regions (particularly the cities of

Chengdu and Chongqing, China), resulting in human

physiological, perceptual, and behavioral responses

(e.g., changes to overall annual energy consumption per

household). Since this region has a large population

and a growing and diverse economy that is (at least

partly) dependent on climate, and because the country

plays a significant role in climate change negotiations,

being one of the largest greenhouse gas emitters, un-

derstanding future changes in temperature across the

region is of importance for China’s future environmen-

tal, economic, and social development.

In this paper, therefore, we will deduce the optimal

GCMs that provide the most realistic interpretations of

historical near-surface air temperature and, using those

models, identify future regional temperature changes

over the Sichuan basin, one of the most populated and

climate-sensitive regions of China. Thus, the objective for

this study is the evaluation of CMIP5 simulations com-

pared to monthly observations across the Sichuan basin

region by exploring the capacity of each of the CMIP5

models at simulating mean, maximum, and minimum air

temperature. Here, we only focus on air temperature

because it has the most direct relevance for exploring

(current and future) heating and cooling demands as well

as outdoor and indoor thermal comfort in addition to

having a historical record that can be compared to model

simulations and atmospheric reanalyses. This paper is

organized as follows: section 2 describes the datasets and

analysis methods; section 3 presents a comparison be-

tween observed temperature variability with themodeled

CMIP5 simulations along with a discussion on modeled

atmospheric circulation patterns and its intra-annual

variability over China; section 4 shows the projected de-

cadal temperature trends across the Sichuan basin for the

twenty-first century using a selection of the best available

GCMs; and section 5 provides a concluding summary, a

discussion on the uncertainties associated with the mod-

eled results, and final remarks.

2. Data and methods

a. Geographical setting

Located in southwestern China (Fig. 1a), the Sichuan

basin is framed by mountain ranges that are 1000–3000m

FIG. 1. (a) Location of the Sichuan basin within China; (b) location of themeteorological stations within the Sichuan basin (fromwest to

east): Chengdu, Yibin, Nanchong, Chonqing (north), Chongqing (south), and Jiangbei; and (c)–(i) the regional mean derived from the

mean of all six stations (black) and mean annual temperatures from the six meteorological stations (colored). The black horizontal solid

lines correspond to individual location means (see Table 1), and the black horizontal dashed lines in (d)–(i) correspond to the regional

mean (1979–2005) of 18.068C.
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above mean sea level (MSL) on all sides. The central part

of the basin mainly consists of hills, flatlands, and low

mountains ranging between 400 and 800m MSL. With

cool winters and hot, humid, and wet monsoon summers,

the basin is persistently cloudy. This makes the Sichuan

basin globally unique, with some of the highest cloud

fractions in the world (Klein and Hartmann 1993). The

persistent distribution of cloud over the basin is a com-

bined result of the higher surface temperatures relative to

the surrounding areas and high water vapor content from

the prevailing southeasterly wind (Li et al. 2005; Li and

Gu 2006), as well as the strong regional stable stratifica-

tion in the troposphere bounded by the region’s complex

topography.Owing to the flat lowlands and fertile ground,

the Sichuan basin has always been one of the country’s

major agricultural production bases. It is one of the most

populated regions in the country, with an estimated

population of 100 million people. The combination of the

basin’s topography, a dense population, and rapid

twentieth-century urbanization also means that the

Sichuan basin is one of the most polluted regions in the

country (Qiao et al. 2015). These factors, along with

the presence of high levels of anthropogenic heating,

are associated with the urban heat island effect being

observed in many of the urban centers (see, e.g., Yao

et al. 2015). This is particularly important as urban

aerosols and the heat island effect can exert a signifi-

cant influence on microscale and local dynamics and

microphysics, which may not be resolved in current

GCMs. Therefore, capturing both the dynamical and

thermodynamical effects of the surrounding plateaus

and the Sichuan basin, as well as the impact of urban-

ization on small spatial scales, is of great importance if

GCMs are to replicate the regional-scale circulation

and climate patterns in this region.

b. Observations

Figure 1b shows the location of six meteorological

stations [Chengdu, Chongqing (north), Chongqing

(south), Jiangbei, Nanchong, and Yibin] found within

the Sichuan basin, which have been used in this study.

The coordinates for each station are shown in Table 1.

Note that all six stations are located within an urban

setting, and they may therefore be exposed to the urban

heat island effect. In consideration of the availability of

temperature data, atmospheric reanalysis data, and the

historical period of the CMIP5 models, the period 1979–

2005 was employed for the analysis. Monthly observed

temperature was obtained from the National Climatic

Data Center archives (https://gis.ncdc.noaa.gov/maps/ncei/

cdo/monthly). The annual mean temperature between

1979 and 2005 for each station is shown in Figs. 1c–i. The

mean temperature across all stations ranges from 16.858C
at Chengdu to 18.838C at Chongqing (north) (Table 1).

The long-term (1979–2005) trends in temperature are

positive and statistically significant, ranging from 0.678 to
1.578C in the last 27 years (Table 1). For validating the

model data against the observations, a regional mean

temperature from 1979 to 2005 was calculated from the six

sites (see Fig. 1c), and regional mean values were similarly

calculated for each CMIP5 model.

As previously mentioned, here we only focus on air

temperature because of its direct relevance to thermal

comfort indices, in addition to having an historical re-

cord that can be compared to model simulations. A

preliminary analysis also revealed that although models

and observations do not exhibit a significant trend in the

amount of precipitation for the Sichuan basin, significant

biases and intermodel differences exist in precipitation

amount and in spatial pattern. The relationship between

topography, modeled precipitation, and the East Asian

monsoon is not discussed here, but is worthy of further

investigation.

c. Global climate model data

To assess the historical and future projected changes

in the regional climate of the Sichuan basin, monthly

output from all 47 GCMs are extracted from the CMIP5

data repository. The CMIP5 set of experiments (Taylor

et al. 2012) includes simulations of twentieth-century

climate (referred to as historical experiments) and fu-

ture projection experiments of twenty-first-century cli-

mate under the new greenhouse gas emission scenarios

[referred to as representative concentration pathways

TABLE 1. Details of the six weather stations across the Sichuan basin (ordered from west to east) used in the creation of the Sichuan

basin regional mean climatology. Mean values and trends are calculated between 1979 and 2005 (or for when data are available). Trends

that are statistically significant ( p , 0.05) are indicated in boldface type.

Station Altitude (MSL) Location Measurement period Mean annual temp (8C) 1979–2005 trend (8C)

Chengdu 508m 30.6678N, 104.0178W 1951–2003 16.85 11.57

Yibin 342m 28.8008N, 104.6008W 1951–present 18.48 10.72

Nanchong 310m 30.8008N, 106.0538W 1951–present 17.75 10.67
Chongqing (north) 416m 29.5838N, 106.4678W 1951–present 18.83 10.74

Chongqing (south) 351m 29.5178N, 106.4838W 1956–86 18.05 21.56

Jiangbei 416m 29.7198N, 106.6418W 1987–present 18.33 20.04
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(RCPs)] (Moss et al. 2010;Meinshausen et al. 2011). The

RCP simulations represent mitigation scenarios that

produce emissions pathways following various assumed

policy decisions that would influence the time evolution

of the future emissions of greenhouse gases, aerosols,

ozone, and land-use changes (Moss et al. 2010). More

details on themodels can be found at the CMIP5website

(http://cmip-pcmdi.llnl.gov/cmip5/availability.html).

Table 2 gives an overview of the climatemodels used in

this study, including associated institutions and the reso-

lution of the atmospheric model components of those

GCMs. Since there are a different number of available

ensemble members for each individual model, and since

these members are generally tightly clustered relative to

intermodel spread, we consider only one member from

each CMIP5 model in order to give equal weighting

acrossmodels. Because of the different spatial resolutions

adopted by different GCMs (see Table 2), all of the

models are bilinearly interpolated onto a common

0.758 3 0.758 (;80km 3 ;80km) grid for comparison

between simulations and observations. For comparison

with the individual CMIP5 models, an ensemble of all

the models was constructed using equal weighting, and

this was also regridded. In this study, we consider 1979–

2005 to be the reference (base) period and also con-

sider three additional decadal time intervals: 2030s,

2060s, and 2090s. It is important to note that some

models for some time periods have missing data. The

text states when individual models have been omitted

from the data analysis.

d. Meteorological reanalysis data

In addition to the observations, we have also utilized

the meteorological reanalysis ERA-Interim for the

same period (1979–2005) for the GCM validation. The

ERA-Interim is analyzed on pressure levels and is

the most recent global reanalysis product from the Eu-

ropean Centre for Medium-Range Weather Forecasts

(ECMWF) (Simmons et al. 2007; Dee et al. 2011), with a

spatial resolution of N128 (horizontal Gaussian grid,

nominally 0.78 in latitude/longitude; ;80km 3 ;70km

near Chongqing). The ERA-Interim dataset has also

been interpolated onto a 0.758 3 0.758 grid. When

compared to the regional annual mean observations of

temperature (1979–2005), ERA-Interim has a mean

bias, root-mean-square error, and correlation coeffi-

cient of 21.248C, 1.24, and 0.98, respectively. Of four

meteorological reanalysis products tested [not shown:

ECMWF twentieth-century reanalysis (ERA-20C),

NCEP–NCAR reanalysis, and NCEP–DOE AMIP-II

reanalysis], we find that ERA-Interim outperforms the

others at capturing the inter- and intra-annual variability

across this region. This is consistent with other recent

studies (Betts et al. 2009; Mao et al. 2010; Mooney et al.

2011; Hodges et al. 2011; Bao and Zhang 2013).

3. Results

a. Temperature trends since 1979

Linear trend analysis of the observations reveals that

there was a significant warming trend in annual tem-

peratures during the 1979–2005 period across the

Sichuan basin. The regional mean constructed from the

observations exhibits a warming rate of 10.878C over

the last 27 years (’10.328C decade21; Fig. 1c), which is

higher than elsewhere in China (Chen and Frauenfeld

2014. The regional mean temperature trend from ERA-

Interim is consistent with the observations, with a trend

of 10.838C (27 yr)21 (p , 0.01). Figure 2 compares the

temperature trend derived from all CMIP5 models to

the observations over the 27-yr period. All but 2 of the

47 models have an overall warming trend throughout

this period, 28 of which are statistically significant (p ,
0.05). Interannual variability in temperature is evident be-

tween the individual GCMs, resulting in warming trends

between 1979 and 2005 as high as12.018C (FGOALS-g2)

and even cooling trends as low as20.438C (MIROC-ESM-

CHEM). There are six models with a 27-yr temperature

trend within60.18C of the observed trend, and, in order of

precision, these are BNU-ESM (10.868C), IPSL-CM5A-

MR (10.918C), HadCM3 (10.838C), GFDL CM2.1

(10.798C), HadGEM2-AO (10.968C), and FIO-ESM

(10.978C). Despite the spread in temperature trends be-

ing so large among the models, the multimodel ensemble

trend is 10.858C (27yr)21, which is also statistically sig-

nificant (p , 0.05), and is comparable to the observed

trend. Seasonally, the regional observations indicate that

the warming trends in the Sichuan basin are approximately

equal in summer and in winter. The observations exhibit a

warming rate of10.608C (p5 0.06) over the last 27 years

during summer and a warming rate of 10.618C (27yr)21

(p 5 0.06) during winter. The regional observations in-

dicate, therefore, that the annual warming in the Sichuan

basin is driven by changes in spring and autumn tempera-

ture, with linear trends of11.288 (p5 0.01) and 11.008C
(27 yr)21 ( p 5 0.03), respectively. This seasonality in

temperature trends is not well captured by CMIP5 (not

shown). CMIP5models exhibit consistently larger trends in

different seasons, and the seasonal variability of tempera-

ture increase during this period is greater in the majority of

the GCMs than that in observations.

b. Intra-annual temperature variability

To uncover the annual cycle of the mean climate of

the Sichuan basin, Fig. 3 presents the range of monthly
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TABLE 2. Summary of the 47 CMIP5 GCMs. (Expansions of acronyms are available online at http://www.ametsoc.org/

PubsAcronymList.)

Model name Institution (country)

Atmospheric resolution

(lon 3 lat)

ACCESS1.0 Commonwealth Scientific and Industrial Research Organisation (CSIRO)

and Bureau of Meteorology (BoM) (Australia)

1.8758 3 1.258

ACCESS1.3 CSIRO and BoM (Australia) 1.8758 3 1.258
BCC_CSM1.1 Beijing Climate Center, China Meteorological Administration (China) ;2.88 3 2.88
BCC_CSM1.1(m) Beijing Climate Center, China Meteorological Administration (China) 1.1258 3 ;1.18
BNU-ESM College of Global Change and Earth System Science, Beijing Normal

University (China)

;2.88 3 2.88

CanCM4 Canadian Centre for Climate Modelling and Analysis (Canada) 0.758 3 ;0.758
CanESM2 Canadian Centre for Climate Modelling and Analysis (Canada) 1.8758 3 ;1.98
CCSM4 National Center for Atmospheric Research (United States) 1.258 3 ;0.98
CESM1(BGC) National Science Foundation, U.S. Department of Energy, and National

Center for Atmospheric Research (United States)

1.258 3 ;0.98

CESM1(CAM5) National Science Foundation, U.S. Department of Energy, and National

Center for Atmospheric Research (United States)

1.258 3 ;0.98

CESM1(FASTCHEM) National Science Foundation, U.S. Department of Energy, and National

Center for Atmospheric Research (United States)

1.258 3 ;0.98

CESM1(WACCM) National Science Foundation, U.S. Department of Energy, and National

Center for Atmospheric Research (United States)

2.58 3 ;1.98

CMCC-CESM Centro Euro-Mediterraneo per I Cambiamenti Climatici (Italy) 3.758 3 ;3.78
CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici (Italy) 0.758 3 ;0.758
CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici (Italy) 1.8758 3 ;1.98
CNRM-CM5 Centre National de Recherches Météorologiques–Centre Européen de

Recherche et de Formation Avancée en Calcul Scientifique (France)

;1.48 3 1.48

CNRM-CM5.2 Centre National de Recherches Météorologiques–Centre Européen de

Recherche et de Formation Avancée en Calcul Scientifique (France)

;1.48 3 1.48

CSIRO-Mk3.6.0 CSIRO in collaboration with the Queensland Climate Change Centre of

Excellence (Australia)

1.8758 3 ;1.98

EC-EARTH EC-Earth Consortium (Europe) 1.1258 3 ;1.18
FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and

Center of Earth System Science, Tsinghua University (China)

;2.88 3 ;2.88

FIO-ESM First Institute of Oceanography (China) ;2.88 3 2.88
GFDL CM2.1 Geophysical Fluid Dynamics Laboratory (United States) 2.58 3 28
GFDL CM3 Geophysical Fluid Dynamics Laboratory (United States) 2.58 3 28
GFDL-ESM2G Geophysical Fluid Dynamics Laboratory (United States) 2.58 3 28
GFDL-ESM2M Geophysical Fluid Dynamics Laboratory (United States) 2.58 3 28
GISS-E2-H NASA Goddard Institute for Space Studies (United States) 2.58 3 28
GISS-E2-H-CC NASA Goddard Institute for Space Studies (United States) 2.58 3 28
GISS-E2-R NASA Goddard Institute for Space Studies (United States) 2.58 3 28
GISS-E2-R-CC NASA Goddard Institute for Space Studies (United States) 2.58 3 28
HadCM3 Met Office Hadley Centre (United Kingdom) 3.758 3 2.58
HadGEM2-AO National Institute of Meteorological Research–Korea Meteorological

Administration (South Korea)

1.8758 3 1.258

HadGEM2-CC Met Office Hadley Centre (United Kingdom) 1.8758 3 1.258
INM-CM4.0 Institute of Numerical Mathematics (Russia) 28 3 1.58
IPSL-CM5A-LR L’Institut Pierre-Simon Laplace (France) 3.758 3 ;1.98
IPSL-CM5A-MR L’Institut Pierre-Simon Laplace (France) 2.58 3 ;1.38
IPSL-CM5B-LR L’Institut Pierre-Simon Laplace (France) 3.758 3 ;1.98
MIROC4h Atmosphere andOceanResearch Institute (TheUniversity of Tokyo), National

Institute for Environmental Studies, and Japan Agency for Marine-Earth

Science and Technology (Japan)

;0.568 3 0.568

MIROC5 Atmosphere andOceanResearch Institute (TheUniversity of Tokyo), National

Institute for Environmental Studies, and Japan Agency for Marine-Earth

Science and Technology (Japan)

;1.48 3 1.48

MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and

Ocean Research Institute (The University of Tokyo), and National In-

stitute for Environmental Studies (Japan)

;2.88 3 2.88
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mean, maximum, and minimum temperatures from the

different sources of climate data: the CMIP5models, the

regionally averaged observations, ERA-Interim, and

the multimodel ensemble mean. Figure 3 shows that

the CMIP5 models have an annual cycle consistent

with the observations, but the majority of the models

underestimate mean, maximum, and minimum tem-

perature throughout the year. This is more apparent

during the winter months than in the summer months;

for instance, the multimodel mean temperature bias

increases from23.958C in summer to26.028C in winter.

Figure 3 also shows that the intermodel spread is

greatest for maximum temperature, with some models

overestimating and underestimating maximum temper-

ature by up to 168 and 298C (respectively) throughout

the year. The observations indicate that the annual

mean (1979–2005) range [mean summer (JJA) minus

mean winter (DJF)] in temperature is 18.088C. All of the

CMIP5 models underestimate this annual variability by

more than 4.58C; CNRM-CM5 has the closest variability

of 13.218C, while the GFDLCM2.1 model has a range of

just 7.188C for this period. It is clear that the intra-annual

FIG. 2. Mean annual temperature trends for the Sichuan basin, 1979–2005. Trends that are statistically significant

( p , 0.05) are indicated by hatching. The regional mean annual temperature trend from the observations and

ERA-Interim are colored in red. The multimodel ensemble mean trend is also colored in red. CMIP5 models that

are within 60.18C of the observed regional mean trend are colored in green.

TABLE 2. (Continued)

Model name Institution (country)

Atmospheric resolution

(lon 3 lat)

MIROC-ESM-CHEM Japan Agency for Marine-Earth Science and Technology, Atmosphere and

Ocean Research Institute (The University of Tokyo), and National In-

stitute for Environmental Studies (Japan)

;2.88 3 2.88

MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M) (Germany) 1.8758 3 ;1.98
MPI-ESM-MR MPI-M (Germany) 1.8758 3 ;1.98
MPI-ESM-P MPI-M (Germany) 1.8758 3 ;1.98
MRI-CGCM3 Meteorological Research Institute (Japan) 1.1258 3 ;1.18
MRI-ESM1 Meteorological Research Institute (Japan) 1.1258 3 ;1.18
NorESM1-M Norwegian Climate Centre (Norway) 2.58 3 ;1.98
NorESM1-ME Norwegian Climate Centre (Norway) 2.58 3 ;1.98
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FIG. 3. Observed and simulated (top) mean, (middle) maximum, and (bottom) min-

imum temperature in the Sichuan basin. The lines show the observations (black solid

line), ERA-Interim (black dashed line), the multimodel ensemble mean (black dotted

line), and the range in simulated values (gray shaded region). Those models with the

lowest mean annual bias are individually plotted (see legend).
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variability and temperature range is consistently muted

across CMIP5 models, and therefore, the multimodel en-

semble estimate for the intra-annual temperature vari-

ability of 10.388C is inconsistent with the observations.

Mean annual biases between the simulated and ob-

served monthly mean temperature for each CMIP5model

were also calculated, and these are presented in Fig. 4.

With a few exceptions, the mean bias is widespread, with

many models having a bias greater than228C. The lowest
and highest biases are 20.138 (MIROC4h) and 29.138C
(BCC_CSM1.1), respectively. The multimodel ensemble

mean bias is 25.088C, which is considerably higher than

the bias calculated for ERA-Interim (21.248C). There are
38 CMIP5 models with a mean annual bias greater

than 238C; only two models (MIROC4h and IPSL-

CM5A-MR) have a mean bias less than 228C. This in-

dicates that most models do not accurately simulate the

observed climatology for temperature at a regional scale.

For the seasonal temperature biases, Fig. 4 also shows that

the CMIP5 models generally perform better in summer

than they do in winter. The top five models that have the

lowest mean bias compared to the observed mean, maxi-

mum, and minimum temperature are individually plotted

in Fig. 3. By ranking each of the CMIP5models and giving

them an aggregated score for mean, maximum, and mini-

mum temperature biases, we find overall that the five

models with the highest skill in reproducing the climato-

logical mean temperature over the Sichuan basin are (in

descending order): MIROC4h, CESM1(FASTCHEM),

MIROC5, GISS-E2-R-CC, and GISS-E2-R.

c. Mean climatology of the Sichuan basin

To obtain a better sense of model variability across

the Sichuan basin, we also investigate the spatial vari-

ability of climatological annual mean temperature over

the twentieth century. Figure 5 compares CMIP5 aver-

age annualmean air temperatures with observations and

ERA-Interim data for the 1979–2005 period. Immedi-

ately apparent in Fig. 5 is the difference in the spatial

pattern of temperature within the basin between the

GCMs. Some models (e.g., BNU-ESM and FIO-ESM)

have a northwest to southeast gradient in temperature,

whereas other models [e.g., MIROC4h and CESM1

(FASTCHEM)] clearly have an imprint of the Sichuan

basin in the temperature field. Figure 5 shows that those

models with a gradient do not have a local maximum in

temperature, resulting in an underestimation of tem-

perature compared to the observations. Using ERA-

Interim as a proxy for regional observations, we should

expect the pattern in temperature to coincide with the

basic morphological shape of the Sichuan basin. The

ERA-Interim dataset indicates that the mean annual

temperature is greater than 168C for much of the basin

(;44% of the domain shown in Fig. 5), with the mean

annual maximum of 18.008C located in the central part

of the basin. Therefore, it is clear that the models dis-

agree in the location and the spatial extent of the tem-

perature maximumwithin the Sichuan basin. This is also

particularly obvious in the multimodel ensemble spatial

pattern (Fig. 5), which, as a result of averaging across

FIG. 4. Regional mean annual (gray), winter (blue), and summer (red) temperature biases as

compared to the regional mean observations. A negative bias indicates the model un-

derestimates the observations. The 47 CMIP5models are ordered from lowest to highest (from

left to right) mean annual temperature bias. The bias for ERA-Interim and the multimodel

ensemble are also shown.
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different datasets, has resulted in a smooth geographical

temperature pattern with no local maximum compared

to ERA-Interim or those models with the lowest mean

annual biases [e.g., MIROC4h, IPSL-CM5A-MR, and

CESM1(FASTCHEM)].

To explore the link between horizontal resolutions in

shaping the regional climate of the Sichuan basin, a

linear least squares fit of the regional mean temperature

bias and the grid cell area (approximated at the latitude

and longitude of Chongqing) was calculated. A signifi-

cant regression was found, with an r2 value of 0.23, which

is statistically significant at the 99% confidence level

(p , 0.01). An equally strong positive and significant

correlation is also found between grid cell area and

minimum temperature bias (r 2 5 0.21; p, 0.01) but not

for maximum temperature (r 2 5 0.06; p . 0.05). This

indicates that, although the lack of small-scale topog-

raphy in some of the models can account for tempera-

ture biases (i.e., those models with higher horizontal

resolution, and thus better resolved topographical fea-

tures, tend to have smaller temperature biases), it is not

the only factor in controlling model performance. The

FIG. 5. Climatological annual mean temperature over the Sichuan basin (1979–2005) for the CMIP5 models. The bottom-right two

panels show themultimodel ensemble and ERA-Interimmean temperatures. Annual mean temperatures from all six weather stations are

also plotted using the same color scale. For reference, major river tributaries through the Sichuan basin are shown in black in ERA-

Interim at bottom right.
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larger cold biases in the winter seasons imply that the

GCMs may represent surface–cloud feedbacks in-

correctly (Jiang et al. 2015), and therefore, further

analysis of the near-surface energy balance and associ-

ated processes is required. Similarly, the results in-

dicate that the models are not capturing the seasonal

minima and maxima in mean temperature. This could

be an artifact of the relatively coarse resolution of the

GCMs and the lack of direct (and indirect, e.g.,

clouds) effects of detailed topography and surface

conditions, as well as the representation of high pol-

lution and aerosol concentrations in the troposphere,

in this region.

d. Temperature probability distribution functions

To further assess uncertainty in the regional simula-

tions of the Sichuan basin’s climate, probability distri-

bution functions (PDFs) were calculated (Fig. 6). PDFs

demonstrate the capability of the models at simulating

present climatic distributions of mean, maximum, and

minimum temperature that are otherwise not ascer-

tained in the above analysis. Using all station data from

the six sites, area-estimated distributions of mean,

maximum, and minimum temperature (rather than in-

dividual point estimates; i.e., all data from each of the six

sites were binned together; there was no averaging

across the six locations) were calculated. Similarly, all

data from the six locations for each of the models were

used to derive the modeled PDFs. Bin sizes of 0.58C
were used. To compare the similarity between the ob-

served and simulated PDFs, the skill score Sscore, which

was first developed by Perkins et al. (2007), was adopted.

This metric calculates the cumulative minimum values

of two distributions of each binned value, thereby

measuring the common area between two PDFs. Ex-

pressed formally,

S
score

5 �
n

k51

min(Z
m
,Z

o
),

where n is the number of bins used to calculate the PDF,

Zm is the frequency of values in a given bin from the

model, and Zo is the frequency of values in a given bin

from the observed data. If a model simulates the ob-

served distribution perfectly, the Sscore will equal one,

which is the total sum of the probability of each bin

center in a given PDF. If a model simulates the observed

PDF poorly (e.g., there is negligible overlap between the

observed and modeled PDFs), it will have a skill score

close to zero. Therefore, the confidence in the skill of a

model declines as the overlap between the present ob-

served and present simulated PDFs also decreases. This

is a very simple measure that provides a robust and

comparable measure of the relative similarity between

model and observed PDFs (Perkins et al. 2007; Sun et al.

2015). If a climate model can be shown to poorly simu-

late the current PDF distribution, then one can presume

that the model will not have skill in simulating future

distributions.

Figure 6 presents the spread in Sscore for mean, max-

imum, andminimum temperature, while themodels that

have the highest Sscore (i.e., the highest skill) at simu-

lating the present climatic distributions are individually

plotted (see Fig. 6 legend). The Sscore for ERA-Interim

(for mean temperature only) is also plotted. For mean

temperature, 30 of the 47 models in the analysis have an

Sscore greater than 0.70, with a total of 15 models scoring

greater than 0.80. By far the best model is MIROC4h,

with a skill score of 0.90 (Fig. 6). IPSL-CM5A-MR is close

in skill score (0.87), followed by CESM1(FASTCHEM)

(0.83), MPI-ESM-MR (0.82), and MIROC5 (0.82). For

comparison, the five models with the weakest Sscore are

GFDL CM2.1 (0.58), FGOALS-g2 (0.57), GFDL-

ESM2M (0.55), GFDL-ESM2G (0.55), and BCC_

CSM1.1 (0.55). Although all CMIP5 models capture

more than 50% of the observed distribution in mean

temperature for this period, such varying Sscore illustrates

the considerable modeled variability, thus strongly sup-

porting the necessity for omitting weak models from an

ensemble as these weak models strongly bias the skill of

FIG. 6. Simulated PDF Sscore for monthly mean, maximum, and

minimum temperature as modeled by 47 CMIP5 models. The top

five highest Sscore for each variable are plotted individually (see

legend). The solid red line is the multimodel median value. The

bottom and top of the box indicates first and third quartiles, and

bars extend to 1.5 interquartile ranges outside of the quartiles.
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the ensemble. The Sscore for the multimodel ensemble is

0.72, which is substantially lower than the Sscore for the

five high-confidence models, ERA-Interim (0.93), and

the median CMIP5 Sscore of 0.74.

Unlike the PDF distributions of monthly mean tem-

peratures, only 5 of the 47 models for minimum tem-

perature have an Sscore greater than 0.80 (Fig. 6). This

indicates that minimum temperatures are less well rep-

resented overall, and this is similarly indicated by a low

multimodel ensemble Sscore of 0.65.MIROC4h performs

the best (0.88), followed by GISS-E2-R-CC (0.82) and

GISS-E2-H-CC (0.82). The three weakest performing

models are INM-CM4.0 (0.44), IPSL-CM5A-LR (0.43)

and IPSL-CM5B-LR (0.36). EC-EARTH, NorESM1-

ME, CanCM4, and GFDL CM2.1 are not included in

this analysis because ofmissing data. The low skill scores

across the models at simulating the distribution of ob-

served minimum temperatures is caused by the signifi-

cant large negative (cold) biases in the winter (DJF)

months. Only five models have an Sscore greater than

0.50 when only considering the winter seasons. This is

consistent with Figs. 3 and 4 and other studies (see, e.g.,

Annan et al. 2005; Gao et al. 2011; Ji and Kang 2013;

Su et al. 2013; Jiang et al. 2015) that have shown the

significant cold bias across China in the majority of

the CMIP5 models is further exaggerated in winter.

In contrast, the overall performance of the models

in representing maximum temperature is much better

(Fig. 6), with a high multimodel ensemble Sscore of 0.76;

13 of the 47 models generate a skill score in ex-

cess of 0.80. CESM1(BGC) (0.94), CCSM4 (0.93), and

CESM1(FASTCHEM) (0.93) have the strongest skills,

while IPSL-CM5A-MR (0.56), GFDL-ESM2G (0.54),

and GFDL-ESM2M (0.54) are the weakest. NorESM1-

ME, CanCM4, and GFDL CM2.1 are not included in

this analysis because of missing data.

e. Atmospheric circulation pattern

We also examine the atmospheric circulation pattern

(500-hPa geopotential height and wind vectors) over

Asia for the 1979–2005 period. This is important because

the climate of this region is strongly affected by intra-

and interannual atmospheric circulation variability [e.g.,

the East Asian monsoon and El Niño–Southern Oscil-

lation (ENSO); Huang et al. 2012; Gong et al. 2015;

Zhang 2015]. Therefore, a correct representation of the

regional circulation pattern can also indicate model

robustness.

The 500-hPa geopotential height forwinter (December–

February) and summer (June–August) months com-

pared to ERA-Interim are shown in Figs. 7 and 8,

respectively. Overall, the biases in geopotential height

are mainly negative (as shown by the multimodel

ensembles), and it is clear that there are large intermodel

differences in the magnitude of the geopotential height

biases for both summer and winter. During the winter

(Fig. 7), the majority of the CMIP5 models have a nega-

tive geopotential height anomaly (exceeding 230gpm)

over Asia, generally resulting in a stronger subtrop-

ical jet stream over South Asia and south of the Sichuan

basin (see, e.g., MRI-CGCM3). The biases in geo-

potential height coincide with the areas strongly af-

fected by intra- and interannual atmospheric circulation

variability. This is demonstrated in Fig. 9, which shows

the mean intra-annual 500-hPa geopotential height

standard deviation compared to ERA-Interim. Overall,

all of themodels compare well with the spatial pattern in

variability; however, the magnitude of intra-annual

variability in the 500-hPa geopotential height is gener-

ally overestimated by the majority of the models. Con-

sistent with Fig. 9, therefore, the highest negative biases

shown in Fig. 7 generally coincide with the East Asian

trough region. As a consequence, the majority of the

models have a statistically significant (p, 0.01) negative

west–east (27 models in total) and a negative south–

north (31 models in total) gradient in geopotential

height bias. During the summer (Fig. 8), the subtropical

jet stream moves north of the Sichuan basin, which is

well captured by all of the models; however, there are

large intermodel differences in geopotential height.

Figure 8 indicates that those models with negative

anomalies over the East Asian–northwestern Pacific

region in the summer generally have stronger north-

easterly flow over eastern China (see, e.g., IPSL-CM5B-

LR), while those models with positive anomalies

generally have a stronger zonal subtropical jet [see, e.g.,

CESM1(WACCM)] compared to ERA-Interim. Al-

though the biases are less negative during the summer

(typically ;27 gpm) than they are in winter, the ma-

jority of the models also have a statistically significant

negative west–east gradient (34 models in total) in geo-

potential height bias. In summary, although some of the

CMIP5 models are able to reproduce the mean mid-

tropospheric zonal flow (e.g., geopotential heights are

consistent with reanalysis), the vast majority of the

models have an obvious negative bias in geopotential

heights, with the highest negative biases over the East

Asian trough region. Annually, this results in stronger

zonal winds and positive anomalies along the climato-

logical East Asian jet stream. These biases are already

well documented in the literature (see, e.g., Song and

Zhou 2014; Gong et al. 2014, 2015).

It is important to note, therefore, that while the ma-

jority of the CMIP5 models have a correct representa-

tion of the spatial pattern and variability of the 500-hPa

geopotential height, clear biases exist in the magnitude
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of these patterns. It appears that the negative bias in the

geopotential heights is consistent with the regional cold

biases in the lower troposphere (especially in winter),

which is likely further exacerbated in the Sichuan basin

by the lack of locally resolved topographical features.

However, there is a very weak correlation in winter (0.14

and p 5 0.33) and summer (0.30 and p 5 0.04) between

the geopotential height biases and lower tropospheric

biases over the Sichuan basin. This may be because of

several complex microscale and local dynamical fea-

tures (e.g., the distribution of cloud cover, the urban

heat island effect, and unresolved topography) all con-

tributing to the modeled negative temperature biases.

Since there are negligible correlations between tem-

perature and geopotential height biases for both sea-

sons, we use the geopotential height biases alone as an

independent check for model performance.

By ranking each of the models and giving them an

aggregated score for winter and summer geopotential

height biases and winter and summer latitudinal and

longitudinal gradient biases, we find that the five models

with the highest score are, in descending order, CESM1

(CAM5), MPI-ESM-P, CanESM2, MPI-ESM-LR, and

ACCESS1.3. Although this ranking provides an in-

dicator for those models that better represent the cir-

culation over Asia, only the CESM1(CAM5) model has

an imprint of the Sichuan basin in the temperature field

(Fig. 5).

f. CMIP5model selection for future climate modeling

Based on the above model evaluation, it is clear that

the vast majority of the GCMs in the CMIP5 repository

can be removed from further analysis. Only a few of the

models are capable of reproducing either the general

circulation or temperature, and therefore, we have low

confidence in future temperature projections for the

Sichuan basin for those models that perform poorly in

the past (when compared to the station data and ERA-

Interim). Similarly, the ensemble of all CMIP5 models

does not show spatial and intra-annual variability and

FIG. 7. Difference between themean winter (December–February) 500-hPa geopotential height (gpm) simulated by the CMIP5models

and ERA-Interim over 1979–2005. The mean winter 500-hPa wind patterns are shown by the green vectors. (bottom right) ERA-Interim

mean winter 500-hPa geopotential height (blue solid lines) and wind (green vectors).
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distributions of temperature in the Sichuan basin con-

sistent with the observations and ERA-Interim. Tem-

perature in the Sichuan basin is poorly represented by

the ensemble because the spatial variations in this re-

gion are smoothed out when the CMIP5 models are

averaged together (also see Jiang et al. 2015). This is an

inherent limitation of the CMIP5 ensemble itself; the

complex topographical features of the Sichuan basin are

smoothed, resulting in biases (Fig. 4) and a spatially

muted temperature field (Fig. 5) greater than many

of the individual models that do resolve the basin.

Enhancing environmental safety and protection in the

Sichuan basin and enabling more efficient and economic

planning by decision-makers requires accurate climate

predictions that cannot be adequately resolved by the

ensemble. Therefore, we do not use the multimodel

ensemble for the projected temperature analysis.

We subsequently use an aggregated skill score to help

select a subset of the CMIP5 models for future tempera-

ture projections. The regional mean annual temperature

trends (Fig. 2); the mean annual temperature biases

(Fig. 4); the mean, maximum, and minimum temperature

Sscore (Fig. 6); and a combined score for summer andwinter

geopotential height biases and latitudinal and longitudinal

gradient biases were summed together to get an aggre-

gated skill score. Therefore, five CMIP5models have been

identified as the most suitable at representing the spatial

variability, the interannual trends, and intra-annual vari-

ability for mean, maximum, and minimum temperature in

the Sichuan basin. These are MIROC4h, IPSL-CM5A-

MR, CESM1(FASTCHEM), MIROC5, and CMCC-CM

and have subsequently been ordered according to their

mean annual temperature bias. All five of these models

have an imprint of the Sichuan basin in the temperature

field (Fig. 5).

In selecting these five models, in the future, we aim to

fully force a regional climate model with these global

model outputs in order to better understand regional

atmospheric circulation and near-surface temperature

and precipitation. Therefore, model assessment results

FIG. 8. Difference between the mean summer (June–August) 500-hPa geopotential height (gpm) simulated by the CMIP5 models and

ERA-Interim over 1979–2005. The mean summer 500-hPa wind patterns are shown by the green vectors. (bottom right) ERA-Interim

mean summer 500-hPa geopotential height (blue solid lines) and wind (green vectors).

6714 JOURNAL OF CL IMATE VOLUME 30



obtained in this study can provide some guidance on

model selection for future climate projections and

downscaling in further research, particularly if the focus

of such research is on urban planning and design based

on thermal comfort conditions in the Sichuan basin.

4. Projected decadal temperatures

Having identified five models as having high skill at

replicating the observed historical variability of the cli-

mate of the Sichuan basin, projected changes in tem-

perature during the twenty-first century will now be

presented. These data are projected for three twenty-

first-century decades: 2030s, 2060s, and 2090s. All

models have been bias adjusted throughout the twenty-

first century according to their mean, maximum, and

minimum annual temperature bias (as shown in Fig. 4).

Future temperature projections for the five models

show that there will be continued warming within the

Sichuan basin, with a range in the rate of warming be-

tween 0.308 and 0.878Cdecade21. Table 3 shows that

under the future RCP4.5 and RCP8.5 scenarios, the

Sichuan basinwill be about 18Cwarmer than the observed

2000s decadal mean temperature of 18.358C by 2030.

The projections indicate that this warming will continue

past 2060, and by the end of the century, the mean annual

temperature will have likely exceeded 208C, resulting in

the Sichuan basin being approximately 48Cwarmer than it

was at the beginning of the century. Under the RCP8.5

scenario, the IPSL-CM5A-MR model suggests that by

2090, the mean annual temperature will have exceeded

258C, while both MIROC5 and CMCC-CM estimate a

mean annual temperature of around 238C. Similarly, by

the end of the century, all models (which have data) for

bothRCP scenarios indicate that the annualmaximumand

minimum temperatures will have exceeded 258 and 178C,
respectively. The increase in maximum temperature is

projected to become more pronounced than that in mini-

mum temperature for the twoRCP scenarios, indicating an

increased likelihood of heat waves in the future. These

changes may have a serious impact on the energy demand

in this region, which has similarly been found in other

FIG. 9. Difference between the mean intra-annual standard deviation of the 500-hPa geopotential height (gpm) simulated by the CMIP5

models and ERA-Interim over 1979–2005. (bottom right) The standard deviation of ERA-Interim annual 500-hPa geopotential height.
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regions of China (see, e.g., Xu and Xu 2012; Wu and

Huang 2016; Zhou et al. 2016). Table 3 indicates that the

increasing temperatures will be more pronounced under

the high RCP8.5 emission scenario than under the mod-

erate RCP4.5 emission scenario. This also suggests a

higher likelihood of drought under RCP8.5. Assuming

RCP8.5 is the most likely future greenhouse gas emission

scenario (Sanford et al. 2014), Fig. 10 shows that the

greatest warming occurs over the central flat plains of

the Sichuan basin, with the highest temperatures between

the Tuojiang and Jiang Rivers north of the Yangtze River

(e.g., the Dazu, Neijiang, and Ziyang districts). Although

the spatial extent and magnitude of the decadal annual

mean temperatures greatly differs among the five CMIP5

models, this can be attributed to underlying topography

and the shape and elevation range of the Sichuan basin.

The CMIP5 projections (Table 3 and Fig. 10) for temper-

ature are consistent in that there will be sustainedwarming

across this region, but with greatest warming experienced

in the center of the basin, throughout the twenty-first

century. We also calculated the mean decadal tempera-

tures for China as a whole and find that the change in

temperature for the basin between 2030 and 2090 (the

range in temperature change is 1.278–5.448C) is consistent
with the estimated countrywide warming (the range in

temperature change is 1.708–4.828C). The implications of

increasing temperatures and drought conditions in the fu-

turewill, therefore, be just as relevant for China’s economy

and social development in the Sichuan basin as it is

elsewhere.

To further uncover changes in temperature extremes,

Fig. 11 shows the frequency of months with a mean

temperature$288C, with each panel split in 29-yr periods
from 1890 to 2099. These results emphasize basinwide

significant changes in temperature extremes consistent

with the future maximum, mean, and minimum warming

(Table 3). From Fig. 11, we can determine that the fre-

quency of extreme months is expected to increase in the

twenty-first century (post 2010) at a faster rate compared

to the twentieth century. For example, the largest

increase in the frequency of months with a mean

temperature $288C from one period to the next in the

past, equivalent to 16months [or an increase in frequency

by 4.4%; CESM1(FASTCHEM)], occurred between

1950–1979 and 1980–2009. In contrast, Fig. 11 shows that

we can expect jumps in frequency of 8.9% (MIROC5)

and 12.5% (CMCC-CM) between 2010–39 and 2040–69.

Therefore, throughout the twenty-first century, the fre-

quency of extreme periods is set to increase, with the

greatest chance of heat waves in the central plains of

the Sichuan basin. Figure 11 also indicates that periods of

extreme temperature will increase in frequency more in

the southeast region of the Sichuan rather than in the

northeast, which is a consequence of the higher topo-

graphic Tibetan Plateau boundary compared to the rel-

atively flatter and less steep features in the south and east.

The region can also expect a decrease in cold periods (not

shown) because of the positive upward trend inminimum

temperatures. In comparison to the frequency of hot

periods in the past to the future for all six sites in-

vestigated, Chengdu will experience the smallest increase

in the number of extreme periods, since the city is located

at a higher elevation and closer to the Tibetan Plateau. In

contrast, the IPSL-CM5A-MR, MIROC5, and CMCC-

CM models indicate that by 2100 all three summer

months (June, July, andAugust) in the city of Chongqing

will have a mean monthly temperature exceeding 288C,
compared to today whereby just one summer month ex-

ceeds such a threshold. Such significant future climate

changes in the Sichuan basin will have serious implica-

tions, including localized environmental degradation,

substantial hydrological impacts, and potentially severe

human deprivations. Therefore, understanding future

climate change in this region is of concern for both the

scientific community and the policy makers.

5. Conclusions and discussion

The objective of this study was to evaluate the per-

formance of 47 CMIP5 GCMs in simulating surface air

TABLE 3. Twenty-first-century decadal (2030, 2060, and 2090) mean temperatures for the Sichuan basin under all RCP4.5 and RCP8.5

scenarios, as projected byMIROC4h, IPSL-CM5A-MR, CESM1(FASTCHEM),MIROC5, and CMCC-CM.Note, the observed regional

2000 decadal annual mean for the Sichuan basin is 18.358C.

Mean temperature (8C)

2030 2060 2090

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

MIROC4h 19.84 — — — — —

IPSL-CM5A-MR 19.71 19.74 20.68 22.32 21.67 25.18

CESM1(FASTCHEM) — — — — — —

MIROC5 19.20 19.32 20.53 21.28 21.09 23.07

CMCC-CM 19.33 19.38 19.92 21.55 20.60 23.53
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temperature during the period 1979–2005, relative to the

observational dataset (composed of data from six loca-

tions across the Sichuan basin). To address previous issues

with multimodel ensemble-based evaluations of climate

models, the skill of each individual CMIP5 model at rep-

licating the multidecadal low-frequency variability of the

Sichuan basin’s regional climate was assessed, along with a

comparison against a multimodel ensemble and ERA-

Interim. The main conclusions are as follows:

1) Consistent with the observed temperature trend of

0.878C (27 yr)21 in the Sichuan basin, the majority of

the models show a statistically significant warming

trend during the 1979–2005 period.

2) For seasonal and annual mean temperatures, the

GCMs show substantial cold biases over the region

(generally exceeding23.08C), especially duringwinter.
The spatial pattern of temperatures over this region is

shown to be partly dependent on the horizontal

resolution of the individual models, and those models

with a better representation of the Sichuan basin tend

to have smaller temperature biases overall.

3) The future temperature projections for the Sichuan

basin, using the five most skillful models with

respect to the regional climate, indicate that the

RCP8.5 scenario exhibits a consistent increase in

annual temperature during the twenty-first century

at an average rate (across the five models)

FIG. 10. (left)–(right) Decadal (2000, 2030, 2060, and 2090) annual mean temperatures across the Sichuan basin,

as projected by (top)–(bottom) MIROC4h, IPSL-CM5A-MR, CESM1(FASTCHEM), MIROC5, and CMCC-CM

for RCP8.5 scenario. The black dots indicate the locations of the six weather station sites.
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of 10.728C decade21. By the end of the twenty-first

century, temperature is projected to have increased

by approximately 48C, with the largest warming

located over the central plains of the Sichuan basin.

Thewarming experiencedwithin the basin during the

twenty-first century is consistent with the projected

warming for China as a whole.

4) The absolute frequency of extreme months (where

mean temperature exceeds 288C), and the rate of

change in the frequency of extreme months, will be

greater in the latter part of the twenty-first century

than it ever was over the twentieth century.

The conclusions presented here are consistent with

those from previous studies (see, e.g., Annan et al. 2005;

Chen et al. 2011; Gao et al. 2011; Ji and Kang 2013; Su

et al. 2013; Chen and Frauenfeld 2014; Gu et al. 2014,

2015; Jiang et al. 2015) across China. However, com-

pared to previous studies that have used a multimodel

ensemble mean, this study is more comprehensive by

providing a detailed analysis of historical and future

projected temperature changes across the entire CMIP5

repository. The results presented here indicate that the

use of an ensemble does introduce uncertainties, at least

with regards to the magnitude of regional intra-annual

temperature and spatial variability, in comparison to the

five individual skillful climate models. This is un-

surprising as the forcing and the feedbacks produced

by a multimodel ensemble might misrepresent some

component of external and internal forcing, resulting in

misleading results when compared to observed tem-

perature changes. Therefore, the results of the multi-

model ensemble are tentative. It is also clear that the

ensemble mean is determined by the large intermodel

spread and climate (temperature) sensitivity across this

region. The ensemble average is not especially close to

any of the individual CMIP5 models, and the results

presented here may be different for a different-sized

ensemble. As an alternative, and although similar un-

certainties may also exist for individual models, it is

possible to deduce high-confidence models by removing

thosemodels that do not give a realistic interpretation of

the historical climate of the Sichuan basin and thus as-

sume they will not give an accurate representation of the

future climate. This study highlights that most of the

models in the CMIP5 data repository exhibit varying

degrees of skill and determining the best overall model

is difficult given that the ‘‘best’’ depends on the

FIG. 11. (left)–(right) The frequency of months per 29-yr period exceeding 288C as simulated (1890–2009) and projected (2010–99;

RCP8.5) by (top)–(bottom) MIROC4h, IPSL-CM5A-MR, CESM1(FASTCHEM), MIROC5, and CMCC-CM.
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application required and region of interest. Based on

this analysis and various statistical measures, there are

two CMIP5 models that noticeably better simulate his-

torical surface air temperature variability over this

region. These two models are MIROC4h and IPSL-

CM5A-MR. Since we have demonstrated that these two

models have a reasonable coverage of the range of

changes and in spatial characteristics of mean temper-

ature across the Sichuan basin, they could be used for

future downscaling experiments in this region using a

finescale regional climate model with a better repre-

sentation of local topography and for multiple future

emission scenarios. Such conclusions only apply to this

basin and may not be valid for other locations in China.

Although we can have confidence that some of the

models simulate the correct magnitude and sign of low-

frequency change of warming over the Sichuan basin,

the vast majority of the CMIP5 models do not accu-

rately capture the intra-annual and spatial variability,

or distributions, of mean, maximum, and minimum

temperature. These cold biases have also been re-

ported in previous studies across China (Annan et al.

2005; Gao et al. 2011; Ji and Kang 2013; Su et al. 2013)

and are a likely result of several types of uncertainties.

First, uncertainties in the historical simulations may

arise from the limited representation of high tropo-

spheric pollution and aerosol concentrations in the

Sichuan basin, their physical (e.g., transport, sources,

and sinks) and chemical processes, and their connec-

tion to other various direct and indirect (e.g., clouds)

natural and anthropogenic forcings. Therefore, the

different magnitudes of the cold biases betweenmodels

indicates a common deficiency among the CMIP5

models stills exists for reproducing climatic and micro-

scale features (e.g., clouds, the urban heat island effect,

pollution, and urbanization) in such a highly spatially

heterogeneous and complex terrain. Further in-depth

analysis of these features and their impact on, for

example, the surface energy balance is required in

the future to explain such differences between dif-

ferent models. Second, since topography strongly

controls the climate of this region, local extremes may

be smoothed in the GCMs when calculating annual and

monthly extremes, and this implies that models may

fail to represent surface–cloud feedbacks over this re-

gion. It is beyond the scope of this study to examine

this, but temperature anomalies caused by deficiencies

in climate models simulating cloud properties in China

have been similarly observed by Zhou and Li (2002),

Yu et al. (2004), and Chen and Frauenfeld (2014).

Since a systematic cold bias exists in all of the models,

which is further exaggerated in winter and in the

coarse-resolution models, this indicates that both the

localized dynamical and thermodynamical effects of this

complex region are not fully captured. In particular, it is

already known that the Sichuan basin has one of the

highest fractions of stratiform clouds of anywhere, par-

ticularly in winter (Klein andHartmann 1993; Li andGu

2006). The combination of (generally) flatter topogra-

phywith the use of poor physical cloud parameterization

schemesmeans that it is unlikely that the CMIP5models

accurately simulate the distribution of clouds across the

Sichuan basin. Simulated stratiform clouds that are op-

tically too thin (or missing altogether) can account for

the significant cold biases via a strong negative longwave

radiation bias throughout the year (which is further ac-

centuated in winter). Although a weak and nonstatisti-

cally significant relationship was found, the near-surface

cold biases are also likely related to the biases seen in the

500-hPa geopotential height as it has previously been

shown how the East Asian winter monsoon and its re-

lationship with tropical teleconnections can impact the

climate of China (Gong et al. 2014, 2015; Song and Zhou

2014; Wu and Zhou 2016). Therefore further work is

required to fully determine the role of midtropospheric

flow on temperature variability in the Sichuan basin.

Finally, uncertainties also exist with the station dataset;

the observations are not evenly distributed across the

basin and are biased toward the city of Chongqing and

the urban environment. Understanding the magnitude

and the reasons for these uncertainties and large inter-

model differences in future temperature projections is

important because of the potential impact of increased

drought conditions on human welfare and the environ-

ment through decreasing river discharge and water

availability and increasing risk of heat wave. If the dy-

namical and thermodynamical effects in this region were

represented reasonably in the models, the simulated

patterns could be improved greatly.

Further research, particularly regarding ensemble

projections using high-resolution regional climate

models and an analysis of the uncertainties related to the

model spread, is needed for a better understanding of

the future changes over the Sichuan basin. Effective use

of downscaling techniques should provide more confi-

dence in the future. In addition to this, a good repre-

sentation of recent and present climate is a necessary

condition for confidently predicting future climate. Here

we focused onmean temperature, variability, and trends

within the Sichuan basin of China. To identify reasons

for model biases and spread and to further reduce un-

certainties of future predictions, this analysis should be

extended to variables other than temperature. Besides

temperature, precipitation is also an important quantity

with economic impact in this region, especially as the

climate of the basin is dominated by the East Asian
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summer monsoon (Zhang 2015), with summer pre-

cipitation (May through September) accounting for

approximately 74% of the annual rainfall across the

Sichuan basin. This seasonal concentration of rainfall

results in higher risk of floods and droughts, and im-

proving the predictability of summer precipitation is

thus important for prevention of climate-related risks. In

addition to this, clouds and aerosols impact the radiation

budget and simulated temperature, and therefore, the

intermodel representation of chemical and cloud pro-

cesses is a key area for future research.

The evaluation of climate models against observed

data is an important step in building confidence in their

use for future impact assessments. It is useful to identify

the Sichuan basin as responsive and possibly vulnerable

to future changes in temperature and the frequency of

extreme months (where mean temperature exceeds

288C) because of the potential impacts on human soci-

eties. The results presented here can help facilitate the

development of adaptation strategies to reduce climate-

related stresses and risks. The intensity of the climate

extremes within the Sichuan basin are likely to be re-

duced as greenhouse gas and pollution concentrations

and emissions decrease in the future (Xu andXu 2012; Ji

and Kang 2015).
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