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Summary1

The boundary line has been proposed as a model of the effects of some variable on a2

biological response, when this variable might limit the response in only some of a set3

of observations. It is proposed that the upper boundary (in some circumstances the4

lower boundary) represents the response function of interest. Boundary line analysis5

is a method to estimate this response function from data. The approach has been6

used to model the emission of N2O from soil in response to various soil properties.7

However, the methods that have been used to identify the boundary are based on8

somewhat ad hoc partitions of the data. A statistical model that we have presented9

previously has not been applied to this problem in soil science, and we do so here to10

represent how the water-filled pore space (WFPS) of the soil affects the rate of N2O11

emission. We derive a boundary line response that can be shown to be a better model12

for the data than an unbounded alternative by statistical criteria. Furthermore, the13

fitted boundary response model is consistent with past empirical observations and14

modelling studies with respect to both the WFPS at which the potential emission15

rate is largest and the measurement error for the emission rates themselves. We16

show how the fitted model might be used to interpret data on soil volumetric water17

content with respect to seasonal changes in potential emissions, and to compare18

potential emissions between soil series that have contrasting physical properties.19

• We obtain a boundary model of the effect of water-filled pore space on soil20

nitrous oxide emission21

• The boundary model can be fitted by maximum likelihood allowing for mea-22

surement error.23

• The boundary model indicates a maximum emission rate with water-filled pore24

space from 0.7–0.825

• The model can be used to compare potential emission rates of soil with different26

properties27
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Introduction28

Nitrous oxide (N2O) is produced in soil by nitrification and denitrification. Microbial29

denitrification occurs when soil becomes anaerobic. Facultative anaerobic bacteria30

use nitrate as the electron acceptor in their respiration, reducing it to various forms31

dominated by N2O and N2. The proportions of these two products depend on factors32

such as soil redox potential and pH (Delwiche, 1981). Nitrous oxide is also produced33

as a by-product of nitrification, the oxidation of ammonium to nitrate. The relative34

importance of these two sources of N2O depends on local conditions (Stevens et al.,35

1997).36

Nitrous oxide is an important greenhouse gas, and it has been estimated that37

a CO2 equivalent of 97 Tg C year−1 is emitted from agricultural sources across38

continental Europe (Schulze et al., 2009). This, together with methane, is more or39

less balanced by the net sink for carbon provided by Europe’s grassland and forest.40

With the intensification of agriculture and forestry a net flux of greenhouse gases to41

the atmosphere can be expected from agricultural and forest land of Europe (Schulze42

et al., 2009). We must be able to predict N2O emissions from soil under different43

conditions to formulate policy and to design interventions to mitigate this effect.44

Various factors determine the rate of N2O emission from soil (Dobbie & Smith,45

2003). Soil organic carbon as a substrate for respiration is unlikely to be limiting on46

denitrification but the consumption of oxygen by aerobic microflora, stimulated by47

a supply of organic carbon, might promote the development of anaerobic conditions48

in which denitrification can occur (Groffman et al., 1987). Bacteria require a supply49

of nitrate and ammonium to sustain denitrification and nitrification, respectively,50

and the form in which nitrogen is available in soil affects the rate of N2O emission51

(e.g. Bayer et al., 2015). Both nitrification and denitrification respond to tem-52

perature (Smith et al., 1998). Soil pH has an effect on most microbially-mediated53

processes, and it influences the proportions of N2O and N2 in denitrification prod-54

ucts (Delwiche, 1981). One of the most important factors that affects the rate of55

denitrification in soil is the development of anaerobic centres where the process can56

take place. This depends on factors that affect the rate of gaseous diffusion into soil57

such as compaction (Ball et al., 2000) and the proportion of the soil’s pore space that58

is filled with water (water-filled pore space; WFPS; Smith et al., 1998). Because59

nitrification is an aerobic process, the relative contributions of the two processes60

to N2O emission also depends on the WFPS, see, for example, Bateman & Baggs61

3



(2005).62

These factors must be considered in any quantitative model for nitrous oxide63

emissions from soil. Some progress has been made towards process-based models64

including the DNDC (Li, 2000) and DAYCENT (Del Grosso et al., 2006) models.65

Process modelling has also been used to investigate particular factors, such as the66

effect of WFPS. Rabot et al. (2015) used simulation modelling to investigate the ef-67

fects of WFPS on gas transport and implications for denitrification and the emission68

of denitrification products from the soil. Their model showed a bell-shaped response69

to WFPS with the maximum emission rate at a WFPS in the interval [0.76, 0.79].70

The WFPS that gave the maximum emission rate drifted from the bottom to the71

top of this interval with time during an experiment because of the increase in the72

N2O concentration gradient between the soil surface and the atmosphere. At smaller73

WFPS the rate of emission of N2O is limited by small denitrification rates because74

anaerobicity is reduced. At larger WFPS the rate of emission is limited by the rate75

of gaseous diffusion through the soil.76

Process models give insight into the factors that contribute to N2O emissions77

from soil. Note, for example, how the modelling by Rabot et al. (2015) helps us78

to understand the factors that contribute to the non-linear effect of WFPS. How-79

ever, process models may be challenging to use in practice because of the need for80

information on many soil properties, the propagation of error in model parameters81

and inputs and uncertainty about the model structure. Conen et al. (2000) consid-82

ered that empirical models might be more useful in some circumstances, at least as83

submodels within broader process models.84

Various empirical models have been used to predict N2O emission rates from85

agricultural soil. Conen et al. (2000) used a model based on soil mineral N content,86

WFPS and soil temperature, and the same variables were used in a similar approach87

by Smith & Massheder (2014). Although these models are empirical they are not88

simple regressions. Rather they use the boundary line concept of Webb (1972).89

Webb (1972) proposed that, for many biological processes, the boundary (typically90

the upper boundary) in a scatter plot of the biological response (on the ordinate)91

against an environmental variable of interest (on the abscissa) expresses best the92

effect of the environmental variable. Specifically, it represents a maximum response93

given the value of the environmental variable, which will be expressed only if other94

factors are not limiting. The two empirical models cited above use boundary line95
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responses to express the effects of WFPS and soil temperature on N2O emissions.96

The boundary line method was used by Schmidt et al. (2000) to examine the effects97

of temperature, soil nitrate content and WFPS. In earlier research the boundary line98

method was used to model the effects of soil properties specifically on denitrification99

rates (Elliot & de Jong, 1993; Bergstrom & Beauchamp, 1993).100

Farquharson & Baldock (2008) suggest that boundary line models might be101

particularly appropriate for modelling N2O emissions from soil because of the many102

factors which affect this process and cannot be controlled in an observational study,103

and the plausibility of the limiting factor interpretation of the boundary line. Nev-104

ertheless, they noted some limitations with the methods that had been used for105

the boundary line analysis (BLA). For example, Schmidt et al. (2000) obtained a106

boundary line model for the response of N2O emission rate to some factor by divid-107

ing the range of values of the factor into eight equal intervals, and then extracting108

the observation from within each interval that corresponded to the 99th percentile109

of N2O emission rates in that interval. A continuous function was then fitted to the110

resulting eight data points by ordinary least squares. This is a reasonable heuris-111

tic approach, and is similar to other methods published at the time of their study112

(Schnug et al., 1996) and since (Shatar & McBratney, 2004). However, as Farquhar-113

son & Baldock (2008) pointed out, these methods provide no statistical evidence114

that the boundary line is a plausible model of the particular data. Furthermore,115

they either disregard measurement error in the response variable or deal with it in116

an arbitrary way. Farquharson & Baldock (2008) referred to previous research that117

we had undertaken with colleagues to develop exploratory methods to examine the118

plausibility of the boundary line interpretation of data (Milne et al., 2006a) and a119

statistical model for the boundary line which can be fitted by maximum likelihood120

(Milne et al., 2006b). The suggested that these methods be applied in studies on121

N2O production from soil stating that ‘The adoption of BLA to define relationships122

could be of considerable benefit to model development as it provided a more appro-123

priate way to define bivariate relationships where other factors cannot be controlled.’124

The papers by Milne et al. (2006a,b) demonstrated our BLA methods in examples125

from plant physiology, agronomy and studies on soil carbon. We are not aware of126

any studies that have applied our method to the study of N2O emission from soil.127

Therefore we decided to use it to investigate the effect of WFPS on N2O emission128

rate with data from a previous study on arable soil (Lark et al., 2004).129
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The proposed methodology for BLA has two stages. In an initial exploratory130

analysis the evidence for an upper boundary line model, provided by a concentration131

of observations near the upper limit of the scatter plot, is examined by counting the132

number of upper vertices in the first few convex hull ‘peels’ (Eddy, 1982) of the133

scatter plot of the response variable against the environmental variable of interest.134

The convex hull of a set of data in a plane is the subset of points that are the135

vertices of the convex polygon which includes exactly all the data. The convex hull136

of a bivariate data set is its first peel. The convex hull of the remaining data after the137

first peel is removed is the second peel, and so on. In the exploratory analysis of data,138

these are compared with the expected number of vertices in the null case represented139

by a bivariate normal joint distribution of the two variables. We expect to see more140

vertices than are expected in the null case if the upper boundary of the scatter plot141

represents the limiting response to the variable on the abscissa of the plot. Milne142

et al. (2006a) describe the method. Second, the boundary line is then modelled143

as a function that censors a joint bivariate normal distribution of the underlying144

response variable, y, and the measured environmental factor, x, on the abscissa of145

the plot (Milne et al., 2006b). In summary, if the boundary line is described by146

b(x), then a variate from the joint distribution {y, x} where y > ȳ = b(x) is replaced147

by {ȳ, x}. However, the response variable might be measured with error, and so148

observed variates {y̆, x} might occur above the boundary line. The model is fitted by149

finding maximum likelihood estimates of the bivariate normal distribution of {y, x},150

parameters of the boundary function b(x) and the variance of the measurement151

error, assumed to be a normal random variable with a mean of zero. By comparing152

the maximized likelihood for this distribution with the maximized likelihood of a153

bivariate normal joint distribution one may assess the weight of evidence for the154

boundary line model.155

In this paper we use the methods of Milne et al. (2006a,b) to analyse a data set156

on rates of emission of N2O from cores of arable soil, and their WFPS. We used this157

variable so that we could compare the WFPS at the maximum rate of emission rate158

in the fitted boundary model with the results of the process modelling reported by159

Rabot et al. (2015). We use a somewhat different formulation of the censored model160

for the boundary line to that presented by Milne et al. (2006b). We used conditional161

densities, which allows a more straightforward treatment of measurement error for162

the response variable. This is presented in the next section, followed by an account163
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of the data and specific analyses.164

Theory165

The boundary line model166

The boundary line model is a bivariate distribution of an observed response variable,167

y̆ and an independent covariate x. This model is based on a latent normal random168

variate z = {y, x}T with joint density function169

f(y, x) = φ2 (z|µ,C) , (1)

where φ2() denotes the bivariate normal density function for a random variate with170

mean vector µ and covariance matrix C. The variate, z, is censored by a boundary171

function b(x|β) with parameters in β, to give a censored variate z̄ = {ȳ, x}T. In the172

case of an upper boundary:173

z̄ = {min (y, b(x|β)) , x}T . (2)

We assume that the independent variable is known without error, as in the174

general linear model, and that the observed response variable, y̆, arises from the175

observation of ȳ with a normal error of mean zero and standard deviation σe, such176

that the distribution of the observed value conditional on ȳ is:177

y̆|ȳ ∼ N (ȳ, σe) . (3)

The boundary line model has three sets of parameters. These are the param-178

eters of the censoring function, in β, the parameters (means and covariances) of the179

latent bivariate normal random variate, and the observation error σe. Our objective180

is to estimate these parameters by maximum likelihood, given the observed values181

{y̆1, y̆2, ..y̆n} and {x1, x2, ..xn}. To obtain the appropriate likelihood function we182

require the joint density for y̆ and x conditional on the parameters:183

f (y̆, x|β,µ,C, σe) . (4)

For brevity we drop the parameters from the density functions. Following familiar184

properties of conditional densities we may write185

f (y̆, x) = f (y̆|x) f (x) , (5)
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where f (x) is the probability density function for x. From the assumptions made186

about the measurement error we may write the conditional density in Equation (5)187

as188

f (y̆|x) = f (ȳ|x) ∗ fN(v|0, σe), (6)

where f ∗ g denotes a convolution of two functions and fN(v|µ, σ) denotes a normal189

density with specified parameters.190

The conditional density f (ȳ|x) in Equation (6) above is the censoring of con-191

ditional density f (y|x) which may be written as:192

f (y|x) = fN(y|µy|x, σy|x), (7)

where µy|x and σy|x are the conditional mean and standard deviation respectively of193

y:194

µy|x = µy +

(

x− µx

)

Cov {x, y}
σ2
x

, (8)

and195

σy|x = σy
√

1− ρ2, (9)

where the means µy and µx are elements of the mean vector µ in Equation (1) and196

the correlation and (co)variances are from the covariance matrix C in Equation (1).197

The censored conditional density, right-censored which implies an upper boundary,198

can be written, therefore, as199

f (ȳ|x) = fN(y|µy|x, σy|x), y < b(x) (10)

=

∫ ∞

b(x)
fN(y|µy|x, σy|x) dy, y = b(x)

= 0 y > b(x).

Following Turban (2010), we may now obtain the density of the observed200

variable, the convolution of the right-censored density in Equation (10) for an upper-201

boundary line with the observation error density as:202

f(y̆|x) = ζU γU ηU exp







−
(

y̆ − µy|x

)2

2
(

σ2
e + σ2

y|x

)







+ (1− ζU) fN (y̆|b(x), σe) , (11)

where203

γU =
β
√
2π

2πσy|xσe

{

1− Φ
(

µy|x−b(x)

σy|x

)} , (12)
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Φ() denotes the standard normal distribution function,204

ηU = 1− Φ

(

y̆ − b(x)− α

β

)

, (13)

205

ζU = Φ

(

b(x)

σy|x

)

, (14)

206

α =
σ2
e

(

ȳ − µy|x

)

σ2
y|x + σ2

e

, (15)

and207

β2 =
σ2
y|xσ

2
e

σ2
y|x + σ2

e

. (16)

In the case of a left-censored conditional density for a lower boundary line,208

the same expression may be used but with γL, ηL and ζL substituted for γU, ηU and209

ζU respectively, where210

γL =
β
√
2π

2πσy|xσeΦ
(

µy|x−b(x)

σy|x

) , (17)

211

ηL = Φ

(

y̆ − b(x)− α

β

)

, (18)

and212

ζL = 1− Φ

(

b(x)

σy|x

)

. (19)

For some proposed set of parameters β,µ,C and σe, and a pair of observed213

values y̆ and x one may compute the density from Equation (11). Treating each of a214

set of n observations as independent, one may compute the negative log-likelihood215

for a set of parameter values, given the observations, as216

ℓ = −
n
∑

i=1

log f(y̆i|xi). (20)

Materials and methods217

Data collection218

Our data are drawn from a study on the spatial variation of N2O emissions from219

soil cores from a regular transect (Lark et al. 2004). The measurements were made220

on incubated intact cores so that temperature was fixed, but other factors (such221
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as water content) varied between soil cores to reflect variation in the field. Ideally,222

measurements would be made in situ in the field. However, spatial analysis and223

BLA require large data sets, and it is difficult to collect these in the field without224

confounding spatial with temporal variation. We chose, therefore, to make mea-225

surements on incubated intact cores, given previous experience of making useful226

measurements of denitrification and mineralization this way (Ryden et al., 1987;227

Webster & Goulding, 1989; Hatch et al., 1990).228

A full account of the data collection is given by Lark et al. (2004), but we229

provide an outline here. Soil samples were taken within a period of seven hours in230

the autumn of 2000 on a straight transect, with a spacing of 4m and to give 256231

sample points across the farm of the former Silsoe Research Institute in Bedfordshire232

in Eastern England. All fields traversed by the transect had been under a cereal233

crop in the summer of 2000, and had been either recently drilled with an autumn-234

sown crop or were under stubble. At each site a gouge auger of length 150 mm and235

diameter 44 mm was pushed fully into the soil, twisted and removed. Four cores236

were taken in this way at each site. The cores were transported with a minimum237

of delay to a cold room at 4◦C, and were kept at this temperature until they were238

analysed.239

In subsequent laboratory analysis one core was selected from each site, and240

its fresh weight and length were recorded. Cores were placed in a 1-litre Kilner jar241

and pre-incubated at 15◦C for 17–24 hours with the jar lids in position to prevent242

desiccation of the core, but unsealed to allow some gas transfer from the jar. After243

pre-incubation the jars were flushed with laboratory air and re-sealed with a rubber244

gasket and clamped in position so that they were gas-tight. An initial sample (20245

ml) of the gas headspace was collected and injected into an evacuated vaco tube.246

The jars were incubated at 15◦C for 24 hours, and then two further 20-ml samples247

from the headspace were collected. Within a few days the gas samples were in-248

jected into an Ai93 gas chromatograph which analysed them for N2O by an electron249

capture detector (ECD). The rate of emission was determined from the change in250

concentrations of N2O in the headspace of the incubation jar.251

After incubation the core was cut in half and the moisture content of one half252

of the core was determined by oven-drying to constant weight at 105◦C allowing the253

determination of volumetric water content. The dry bulk density was determined.254

The rate of N2O emission could then then expressed on an area basis as in previously-255
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cited modelling studies (here g N ha−1 day−1). Other analyses were undertaken256

on the soil, including soil organic carbon content (SOC) by a combustion method257

following Tabatabai & Bremner (1991).258

Ideally the saturated water content of the soil would be determined directly259

by saturating the core and then determining its volumetric water content. This260

value for the saturated water content would then be used to compute WFPS of the261

field-moist soil. However, this was not required in the original study and further262

destructive analyses were done on the cores so that material was not available to do263

this measurement subsequently. For this reason we chose to compute the total pore264

space of the soil (cm3 cm−3) from the measured bulk density on the assumption265

of a particle density of 2.65 g cm−3 (Hall et al., 1977), as proposed by Minasny266

et al. (1999) when no soil physical data other than bulk density are available. We267

recognize that this introduces an approximation into our data on WFPS because268

soil particle density may vary, and, furthermore, the total porosity might differ from269

saturated water content. Our soil samples were from arable sites only (excluding270

waste ground and field boundaries), therefore the variation in SOC was small (see271

Table 1) and so this approximation seems reasonable. The approach has been used272

to determine WFPS for modelling microbial processes in soil in a range of studies273

(e.g. Wu et al., 2015; Franzluebbers, 1989; Linn & Doran, 1984). The WFPS was274

computed from this total porosity and the measured volumetric water content of the275

field-moist soil.276

It is useful to note two findings from a later study in which soil cores were277

taken from a longer transect over more heterogeneous land uses (Haskard et al.,278

2010). All protocols were identical, the exception was that the head space samples279

from the incubation jars were placed in vials on a Perkin Elmer Turbo Matrix 110280

Headspace autosampler (Perkin Elmer, Waltham, MA). The autosampler was linked281

to a Perkin Elmer Clarus 500 gas chromatogram (GC) (Perkin Elmer) by a fused282

silica transfer line to allow the automatic analysis of samples. The samples in this283

latter study were allocated at random to batches for measurement of rates of N2O284

emission. Analysis of these data showed that the effect of batch (and so the length285

of storage time of the sample) was negligible and statistically insignificant (Haskard286

et al., 2010). Duplicate measurements were made on 78 cores from this latter study,287

which have been analysed subsequently to estimate the measurement error standard288

deviation. The estimated standard deviation of measurement error was 0.46 log g289
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N ha−1 day−1.290

The objective of the present study is to examine the effect of WFPS on rates291

of N2O emission from arable soil. The original sampling transect was regular, so292

included 10 cores from tracks, ditches and waste ground under rough vegetation.293

Data from these cores were not used in the analysis reported here. We also excluded294

the first two cores from the headland of the northernmost field on the transect. This295

field was on the lightest soil formed over the Lower Greensand, and both cores were296

markedly compacted by the auger.297

Data analysis298

Exploratory analysis. In the boundary line statistical model observations are as-299

sumed to be drawn from a bivariate normal variable with an upper censor on the300

values of the response variable that depends on the value of the environmental vari-301

able. To make these assumptions plausible transformation of the variables may be302

necessary. The data on rates of N2O emission were transformed to natural loga-303

rithms for analysis given their markedly skewed distribution. The data on WFPS304

were not markedly skewed, but, as proportions, they cannot be regarded as normally305

distributed and so were transformed to logits (natural logarithms) before analysis.306

The response variable in our boundary line analysis, variable y̆ in Equation (11),307

was log N2O emission rate, and the independent variable, x, in Equation (11), was308

the logit of WFPS.309

In circumstances where a boundary line model is appropriate, and the sam-310

pling is sufficiently wide-ranging to cover a range of conditions with different limiting311

factors, one would expect to find a concentration of observations in a scatter plot of312

y̆ against x near the boundary. This might be evident when the plot is examined,313

but we do not want to rely on visual assessment. It would be difficult to compare314

consistently the density of observations near a putative boundary and the concen-315

tration that would be expected under an unbounded model. Therefore, we prefer to316

use an objective statistical test of the density of observations near the boundary of317

interest. This was first described by Milne et al. (2006a). In this test the number of318

upper vertices in the first few convex hull peels of the scatter plot of the transformed319

flux and WFPS data are counted and compared with expected numbers under the320

null hypothesis of a bivariate normal distribution. The first convex hull peel of a321

scatter plot corresponds to the observations that are on the convex polygon that322
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exactly encloses all the data points. The points on the convex hull are vertices of323

this polygon. If one removes the points on the convex hull of the first data set324

(these are called the first peel of the data) a convex hull can be determined for the325

remaining points. The observations that are on the vertices of this second convex326

hull constitute the second peel of the data.327

Consider a peel of the scatter plot of our response variable (y) on the ordinate328

against the potentially limiting variable (x) on the abscissa. We number the vertices329

from 1 to N clockwise on the convex hull where the first vertex is v1 = {x1, y1} such330

that if331

x1 = min {xi}i∈{1,...,N} and if (x1 = xj , j ∈ {2, . . . , N}) then y1 ≤ yj. (21)

The upper convex hull is defined as the ordered set of vertices v1,v2, . . . vk where332

xk = max {xi}i∈{1,...,N} . (22)

If an upper boundary is a plausible model of the relation between y̆ and x333

then we would expect to find more vertices in the first few peels of the scatter plot334

than are expected under the bivariate normal null model. We followed Milne et al.335

(2006a) by counting the number of vertices of the upper convex hull in the first 5 to336

10 peels of the data. Hueter (1994) showed that the asymptotic distribution of the337

number of vertices in the first peel of a bivariate normal random variate is normal.338

Milne et al., (2006a) conjectured that the numbers of vertices in successive peels can339

be approximated as a normal random variable; Monte Carlo simulations supported340

this. They used the output from these simulations to find emulators for the number341

of vertices in successive peels of bivariate normal variates, and their variances. In the342

procedure that we used here the number of vertices in the first 5 peels was compared343

to the number expected under a null hypothesis of bivariate normality, and this was344

repeated for the first 6, 7 . . . 10 peels. This was done because a concentration of345

vertices is expected where the peel is close to any boundary function, but this might346

not be true of early peels of the data in the presence of measurement error. Because347

these six hypotheses constituted a multiple hypothesis test, and the hypotheses are348

not independent (the number of vertices in the first n + 1 peels is the number in349

the first n plus the number in the n + 1th), we applied the false discovery rate350

control procedure for hypothesis testing with non-independent hypotheses proposed351

by Benjamini & Yekeutieli (2001). Details of this procedure are given by Milne et352

al. (2006a).353
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Boundary line model. Schmidt et al. (2000) used a bell-shaped function for the354

boundary response of N2O emission to WFPS:355

FN2O(ϑ) = ϕmax exp

{

−2 (ϑ− 0.72)2

0.074

}

, (23)

where the WFPS (a dimensionless proportion) is denoted by ϑ and FN2O(ϑ) denotes356

the boundary N2O flux at this value of WFPS with a maximum value of ϕmax when357

ϑ = 0.72. Note that this equation is rescaled from Schmidt et al. (2000) who specified358

WFPS as a percentage, and that they define this function for 0.3 < ϑ < 0.93.359

Rabot et al. (2015) used the same function. In this study, we selected an equivalent360

expression for the boundary function on the log scale and with WFPS on the logit361

scale:362

log {FN2O(ϑ)} = β0 − β2 (logit(ϑ)− β1)
2
. (24)

In this formulation β0 is the logarithm of ϕmax; the maximum flux occurs when363

logit(ϑ) = β1 and β2 is a scaling parameter, which is zero if the boundary is a364

constant (not dependent on WFPS). Other functions have been used to model this365

effect, including a quadratic (Wu et al., 2015), and could be used to model the366

boundary function.367

We fitted this model as a boundary line to our data by finding values of the pa-368

rameters β0, β1, and β2 that maximized the likelihood computed with Equation (20)369

where the function in Equation (24) is substituted for the general boundary function370

b(x) in Equation (11). This was done on the R-platform for statistical computing (R371

Core Team, 2014) with the optim procedure and the quasi-Newton BFGS algorithm372

for optimization (Broyden, 1970). When the set of parameters that maximized the373

likelihood in Equation (20) was found, we evaluated the Hessian matrix of the likeli-374

hood with respect to the parameters and obtained from it a covariance matrix for the375

estimation error of the parameters (see Dobson, 1990). We recognize that the like-376

lihood computed with Equation (20) treats the observations as independent, which377

requires independent random sampling. Our data were not collected this way, but378

we make the assumption as a first approximation, and use the independent estimate379

of the standard deviation of the measurement error (referred to above) to check for380

evidence of bias in the variance parameters of the model that could arise from the381

lack of independence.382

One way to evaluate the boundary line model is to compare its fit with a383

simpler alternative in which the two variables considered are modelled as a bivari-384
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ate normal random variate (Milne et al., 2006b). A multivariate normal model was385

fitted to the observations by minimizing the negative log-likelihood. The minimized386

negative log likelihood, ℓ, for the boundary model can be compared with that for387

the multivariate normal model. However, the latter model has five parameters (the388

means for the two variables, their variances and their correlation). The boundary389

model has the same parameters (for the underlying bivariate normal process) in ad-390

dition to three parameters of the censoring boundary line and the standard deviation391

of observation error. These extra parameters mean that the boundary line model392

must fit at least as well as the multivariate normal, as judged by the value of ℓ, and393

might be expected to fit better, even in a case where the multivariate normal model394

holds. It is necessary, therefore to account for the additional parameters in the395

boundary line model when making the comparison. This comparison can be made396

with Akaike’s information criterion (AIC) (Akaike, 1973). The AIC is computed by397

AIC = 2ℓ+ 2P, (25)

where P is the number of parameters in the model. The second term in Equation (25)398

is a penalty for model complexity. In any comparison the model with the smallest399

AIC is selected. Although the AIC is not a formal significance test, selection of the400

model with the smallest AIC minimizes the expected information loss through the401

selection decision (Verbeke & Molenberghs, 2000).402

Results403

Exploratory statistics are given in Table 1. Note that the number of vertices in the404

upper convex hulls of the first 5 to 10 peels all exceed the numbers expected under405

a null hypothesis of multivariate normality. All six of these null hypotheses can be406

rejected with the false discovery rate controlled at 0.05, i.e. the expected proportion407

of rejected null hypotheses that are actually true is no larger than 0.05. Summary408

plots are shown in Figure 1.409

Table 2 gives the results from the fitting of the boundary line. The negative410

log-likelihood is markedly smaller for the boundary line model than for the alterna-411

tive multivariate normal model. There are four more parameters in the boundary412

line model, but the AIC is still substantially smaller for the boundary line model413

indicating that it is to be preferred to the multivariate normal alternative. This is414

consistent with the results for the vertices in the convex hull peels of the data. The415
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fitted boundary model is shown in Figure 2 together with a 95% confidence interval416

for the boundary line obtained from the covariance matrix of the boundary function417

parameters assuming the estimation errors are normal.418

The parameter β2 of the boundary model is positive for physically plausible419

cases (i.e. with the boundary convex upward) and zero if the boundary line is420

flat. The estimate of this parameter for the data analysed in this paper, given in421

Table 2, is 0.54 with a 95% confidence interval [0.11, 0.97], which is consistent with422

a physically plausible non-constant boundary line function.423

The parameter β1 of the fitted model, 1.19, (Table 2) is the logit of the WFPS424

at which the maximum boundary emission rate occurs. On back-transformation425

this is equivalent to a WFPS of 0.77. The 95% confidence interval for the back-426

transformed parameter, assuming a normal estimation error, is [0.69, 0.83]. This427

is consistent with the process model results reported by Rabot et al. (2015) who428

found maximum fluxes at WFPS values between 0.757 and 0.798; the variation was429

attributed to temporal effects during the period when the soil is wetted and variation430

in soil bulk density. It is also comparable with the boundary line model reported by431

Schmidt et al. (2000) for which the maximum flux was at WFPS = 0.72.432

Figure 2 shows the fitted boundary line model on the scatter plot of the trans-433

formed rate of N2O emission against WFPS. This shows the maximum value where434

logit WFPS is 1.19. Also shown, as two dotted lines, is the 95% confidence interval435

for the boundary line obtained by sampling from the estimated distribution of the436

three parameters β0, β1 and β2.437

The estimated standard deviation of the measurement error, given in Table 2,438

is 0.53 log g N ha−1 day−1 with a 95% confidence interval [0.35, 0.71]. This is439

consistent with the standard deviation of duplicate measurements from the second440

study (Haskard et al., 2010) reported above (0.46 log g N ha−1 day−1). Figure 3441

shows the profile likelihood for this parameter (the maximized value of the likelihood442

with this particular parameter fixed at different values). The profile likelihood is443

smooth with a minimum near to the estimate.444

Case Study445

In this section we give two examples to demonstrate the insight and information446

that the BLA model can provide, using the model with parameter estimates given447

in Table 2. In the first example we use data from sensors that measure volumetric448

16



water content (VWC) of the soil (5TE sensors, Decagon Devices, Pullman, WA).449

A cluster of 12 sensors was installed at a depth of 10 cm as part of a larger sensor450

network on a grassland site at Hollin Hill in Yorkshire, Northern England. Although451

this was a grassland site and our BLA model was estimated for arable soil, the data452

are used here for illustration. Two measurements of soil bulk density were made453

from soil removed when the cluster of sensors was installed, and these were used to454

estimate total porosity assuming a mineral particle density of 2.65 g cm−3 (Hall et455

al., 1977). We computed the mean VWC for all sensors in the cluster for each day456

from 1st January 2013 to the end of July of the same year. We then scaled the mean457

VWC to mean WFPS given the estimate of total porosity. Figure 4(a) shows these458

values. The horizontal line on the graph is at WFPS = 0.77, the value at which459

the boundary line model for N2O emissions is largest. We call the term460

W = exp
{

−β2 (logit(ϑ)− β1)
2
}

, (26)

the WFPS factor, a dimensionless quantity which is 1 when the WFPS, denoted by461

ϑ, allows maximum N2O flux and less than 1 otherwise. This is plotted for each462

day in Figure 4(b). Solid symbols indicate that the soil is wetter than the optimum463

for N2O flux, and open symbols where it is drier. Note the initial increase in the464

factor, which is caused by drying of the soil. Within the first 50 days there were465

some heavy rain events, which increased WPFS above 0.77. This caused marked466

transient reductions in the WPFS factor, but much of the time it was close to 1.467

From about day 80 there was an overall decline in the WFPS factor because of drying468

of the soil with a few episodic increases in the factor that resulted from heavy rain.469

This analysis illustrates how potential N2O emissions from soil vary temporally.470

During the winter months illustrated here, the WFPS factor was mostly close to 1,471

with episodic reductions because of inadequate air-filled pore space to allow gaseous472

diffusion out of the soil. Applied fertilizer N during this period is more likely to473

be lost to denitrification than during the spring when the WFPS factor shows a474

downward trend as the soil becomes too dry for the development of anaerobic centres475

(open symbols in Figure 4(b)). This provides a basis for the interpretation of sensor476

data for improved nitrogen management, or to develop generalized regional guidance477

on timing of applications or refinement of emission factors to account for regional478

weather patterns and soil conditions.479

In our second example we used the BLA model, presented in Table 2, to480

examine the variation between potential rates of N2O emission in contrasting soil481
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series. We assumed in all cases that the soil was at field capacity (assumed to be a482

tension of 5kPa) and we used values of porosity and VWC at field capacity reported483

in soil survey memoirs. For the Cuckney series, a coarse loamy sand (Jarvis et al.,484

1984) the WFPS is 0.38 at field capacity. The corresponding value of the WFPS485

factor, computed with Equation (26), is 0.2. We can infer, therefore, that the soil486

is too-well aerated at field capacity because of its coarse texture for the widespread487

development of anaerobic centres where denitrification can take place. In contrast488

the Formby series, a loamy medium sand (Fordham, 1986) has a WPFS of 0.75 at489

field capacity. The corresponding value of the WFPS factor is 0.99; the soil is close490

to the optimum for N2O emission with respect to water content, wet enough for the491

development of anaerobic centres, but not so wet that it would inhibit diffusion of492

N2O out of the soil. The Ragdale series, a stagnogley in chalky clay drift (Burton,493

1986) has a WFPS of 0.86 at field capacity, the WFPS factor is 0.80. Because the494

WFPS is larger than 0.77, we can infer that the emission of N2O is somewhat limited495

by the slow rate of gaseous diffusion from the soil. These calculations give insight into496

how physical differences between soil types affect their potential for N2O emission497

when they are all at a standard water potential. Although the WFPS factor itself498

is not an emission factor for the various soil series (other potential limiting factors499

may apply), it could be used to rescale standard IPCC emission factors for soil to500

reflect variation between soils with different hydraulic properties that result from501

differences in texture inherited from contrasting parent materials.502

Discussion503

Our analysis shows that the boundary line is a plausible model for our data. The504

convex hull test provided evidence to reject the null hypothesis that the data were505

from a bivariate normal distribution, and the AIC for the boundary line model was506

smaller than that for the bivariate normal model. As noted in the previous section,507

the parameters for the fitted model were consistent with those reported elsewhere508

for the WFPS at which the maximum rate of emission occurs, and with an estimate509

of measurement error for our laboratory protocol. This consistency with previous510

empirical results and results from process modelling is encouraging and indicates511

that the BLA concept and our methods are plausible ways to model this particular512

response of the soil system.513

Our analysis provides empirical support for the process model developed by514
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Rabot et al. (2015). It could also be used for the development of empirical models515

such as those of Conen et al. (2000) and Smith & Massheder (2014) which use516

the BLA concept. The calculation of N2O emissions in the current methodology517

of the Intergovernmental Panel on Climate Change (IPCC) does not take account518

of variation in climate or soil, which limits its usefulness because, for example,519

interventions to reduce the application of fertilizer nitrogen to soil with aWFPS close520

to the optimum for N2O emission would not affect inventory calculations. The use of521

process models to improve this is limited by their requirement for soil information.522

The BLA methodology presented here to estimate parameters of models in the style523

of Conen et al. (2000) could provide a basis for modelling in the IPCC framework524

because it takes better account of soil variation and our understanding of its effects.525

The case studies presented in the previous section illustrate how the BLA models526

could be used to explore how soil with contrasting physical properties might differ527

with respect to the likely rate of N2O emission, and how to interpret temporal528

data on soil moisture content with respect to the likely effect on the rate of N2O529

emission. This could provide a basis for refined advice on fertilizer use and timing,530

and improved emission rates for IPCC inventory.531

Our boundary line model describes the limiting effect of a single explanatory532

variable, but more than one variable might be potentially limiting on a soil response.533

For example, temperature and pH might limit the rate of N2O emission from soil. In534

a situation where we consider more than one limiting factor, the response of the soil535

system might be described by von Liebig’s law of the minimum (von Liebig, 1863)536

y = min {f1(x1), f2(x2), ..., fn(xn)} , (27)

where y is the response variable and xi are the independent variables that limit y537

according to the functions fi where i = 1, ..., n. Under the law of the minimum one538

of these factors is limiting in any one case, and the jth factor is limiting in some539

case if540

y = min {f1(x1), f2(x2), ..., fn(xn)} = fj(xj). (28)

This hypothesis could be tested for a suite of candidate limiting factors to541

determine which is limiting for each observation of the response variable. This542

would require an appropriate inferential method to compare the limiting factors for543

any observation in terms of the distance of the observation from each respective544

boundary line. This is a topic for further work.545
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One way to develop the law of the minimum is to model interactions between546

different variables we observe that determine possible limiting effects on the soil547

response. For example, the WFPS and soil organic carbon content might interact548

to determine the ‘anaerobiosis’ limiting factor, whereas the nitrate and soil organic549

carbon might interact to determine a ‘substrate’ limiting factor. In this case the law550

of the minimum might be written as551

y = min {fanaerobiosis(x1, x2), fsubstrate(x3, x4), ...} . (29)

In this latter case, the boundary-line model must be extended to three or more552

dimensions with a boundary plane described by each function within the braces on553

the right-hand side of Equation (29).554

In the log-likelihood function for the BLA model given in Equation (20) the555

observations are treated as independent. This assumption requires independent556

random sampling to be fully justified, which was not the case in our example, and will557

not be true for many studies where data are obtained on regular grids or transects.558

The extension of the boundary line model to the situation with spatial dependence559

could be based on a linear model of coregionalization (Journel & Huijbregts, 1978)560

for the latent normal variate {y, x}, which underlies the boundary model. However,561

the derivation of the likelihood function for the model parameters under this joint562

distribution remains a challenge for further research.563

Conclusions564

The BLA approach with the censored normal model is an attractive method to565

estimate the limiting effects of soil factors on rates of N2O emission, and the BLA566

model that we have fitted and presented is consistent with previous modelling, and567

experimental results. Our BLA method has a theoretical basis that enables us to568

test the evidence for a boundary response, and to quantify the uncertainty of model569

parameters with confidence intervals. These give us an insight into the precision570

of the parameter estimates and so can be used to assess the uncertainty in any571

predictions of rates of N2O emission.572

We have shown how the WFPS factor, derived from the BLA model and with573

parameters estimated from data, can be used to interpret real-time data on soil574

water content, and to indicate whether and how this variable can be expected to575

limit rates of N2O emission at particular times. We have also shown the possibility of576
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using the model to scale the emission factors for N2O from contrasting types of soil,577

which offers a way to improve the greenhouse gas inventory in the IPCC framework.578

Further work is needed on the BLA methodology to account for spatial dependence579

and to fit more general models for potential limiting effects of several factors.580

Acknowledgements581

This paper is published with the permission of the Director of the British Geological582

Survey (NERC). We are grateful to Dr Barry Rawlins for the sensor data from Hollin583

Hill. We have no conflicts of interest to declare.584

21



References

Akaike, H. 1973. Information theory and an extension of the maximum likelihood

principle. In: Second International Symposium on Information Theory (ed.

B.N. Petov & F. Csaki), pp. 267–281. Akademia Kiado, Budapest.

Ball, B.C., Horgan, G.W. & Parker, J.P. 2000. Short-range spatial variation of

nitrous oxide fluxes in relation to compaction and straw residues. European

Journal of Soil Science, 51, 607–616.

Bateman, E.J. & Baggs, E.M. 2005. Contributions of nitrification and denitrifica-

tion to N2O emissions from soils at different water-filled pore space. Biology

and Fertility of Soils, 41, 379–388.

Bayer, C., Gomes, J., Zanatta, J.A., Costa, F., Viera, B., de Cassia Piccolo, M.,

Dieckow, J. & Six, J. 2015. Soil nitrous oxide emissions as affected by long-

term tillage, cropping systems and nitrogen fertilization in Southern Brazil.

Soil and Tillage Research, 146, 213–222.

Benjamini, Y. & Yekutieli, D. 2001. The control of the false discovery rate in

multiple testing under dependency. Annals of Statistics, 29, 1165–1188.

Bergstrom, D.W. & Beauchamp, E.G. 1993. Relationship between denitrification

rate and determinant soil properties under barley. Canadian Journal of Soil

Science, 73, 567–578.

Broyden, C. G. 1970. The convergence of a class of double-rank minimization

algorithms. Journal of the Institute of Mathematics and its Applications, 6,

76–90.

Burton, R.G.O. 1986. Soils in Cambridgeshire III, Sheet TL54 (Linton), Soil Sur-

vey Record No. 94, Soil Survey of England and Wales, Harpenden.

Conen, F., Dobbie, K.E. & Smith, K.A. 2000. Predicting N2O emissions from

agricultural land through related soil parameters. Global Change Biology, 6,

417–426.

Delwiche, C.C. 1981. The nitrogen cycle and nitrous oxide. In: Denitrification,

Nitrification and Atmospheric Nitrous Oxide (ed. C.C. Delwiche), pp 1–15,

John Wiley & Sons, New York.

22



Del Grosso, S.J., Parton, W.J., Mosier, A.R., Walsh, M.K., Ojima, D.S., & Thor-

ton, P.E. 2006. DAYCENT National-Scale Simulations of Nitrous Oxide Emis-

sions from Cropped Soils in the United States. Journal of Environmental

Quality, 35, 1451–1460.

Dobbie, K. E. & Smith, K. A. (2003), Nitrous oxide emission factors for agricultural

soils in Great Britain: the impact of soil water-filled pore space and other

controlling variables. Global Change Biology, 9, 204–218.

Dobson, A.J. 1990. An Introduction to Generalized Linear Models, Second Edition

Chapman and Hall, London.

Eddy, W.F. 1982. Convex hull peeling. In: Compstat 1982, Part 1 Proceedings in

Computational Statistics (eds H. Caussinus, P. Ettinger, R. Tomassone), pp.

42–47. Physica Verlag, Heidelberg.

Elliot, J.A. & de Jong, E. 1993. Prediction of field denitrification rates: A boundary-

line approach. Soil Science Society of America Journal, 57, 82–87.

Farquharson, R. & Baldock, J. 2008. Concepts in modelling N2O from land use.

Plant and Soil, 309, 147–167.

Fordham, S.J. 1986. Soils in Surrey I, Sheet TQ05 (Woking), Soil Survey Record

No. 90, Soil Survey of England and Wales, Harpenden.

Franzluebbers, A.J. 1999. Microbial activity in response to water-filled pore space

of variably eroded southern Piedmont soils. Applied Soil Ecology, 11, 91–101.

Groffman, P.M., Tiedje, J.M., Robertson, G.P. & Christensen, S. 1988. Deni-

trification at different temporal and geographical scales: proximal and distal

controls. In: Advances in Nitrogen Cycling in Agricultural Ecosystems (ed.

J.R. Wilson), pp. 174–192. Commonwealth Agricultural Bureaux, Perth,

Australia.

Hall, D.G.M., Reeve, M.J., Thomasson, A.J. &Wright, V.F. 1977. Water retention,

porosity and density of field soils. Soil Survey Technical Monograph No. 9.

Soil Survey of England and Wales, Harpenden.

Haskard, K.A., Welham, S.J. & Lark, R.M. 2010. A linear mixed model with

spectral tempering of the variance parameters for nitrous oxide emission rates

from soil across an agricultural landscape. Geoderma, 159, 358–370.

23



Hatch, D.J., Jarvis, S.C. & Philipps, L. 1990. Field measurement of nitrogen min-

eralization using soil core incubation and acetylene inhibition of nitrification.

Plant and Soil, 124, 97–107.

Hueter, I. 1994 The convex hull of a normal sample. Advances in Applied Proba-

bility, 26, 855–875.

Jarvis M.G., Allen, R.H., Fordham, S.J., Hazelden, J., Moffat, A.J. & Sturdy, R.G.

1984. Soils and their Use in South East England. Soil Survey of England and

Wales Bulletin No 15. Lawes Agricultural Trust (Soil Survey of England and

Wales), Harpenden.

Journel, A.G. & Huijbregts, Ch.J. 1978. Mining Geostatistics. Academic Press,

San Diego CA.

Lark, R.M., Milne, A.E., Addiscott, T.M., Goulding, K.W.T, Webster, C.P. &

O’Flaherty, S. 2004. Scale- and location-dependent correlation of nitrous oxide

emissions with soil properties: an analysis using wavelets. European Journal

of Soil Science, 55, 611–627.

Li, C. 2000. Modeling trace gas emissions from agricultural ecosystems. Nutrient

Cycling in Agroecosystems, 58, 259–276.

Linn, D.M., & Doran, J.W. 1984. Effect of water-filled pore space on carbon dioxide

and nitrous oxide production in tilled and nontilled soils. Soil Science Society

of America Journal, 48, 1267–1272.

von Liebig J. 1863. The Natural Laws of Husbandry. Walton and Maberly, London.

Milne, A.E., Wheeler, H.C. & Lark, R.M. 2006a. On testing biological data for the

presence of a boundary. Annals of Applied Biology 149, 213–222.

Milne, A.E., Ferguson, R.B. & Lark, R.M. 2006b. Estimating a boundary line

model for a biological response by maximum likelihood. Annals of Applied

Biology 149, 223–234.

Minasny, B., McBratney, A.B. & Bristow, K.L. 1999. Comparison of different

approaches to the development of pedotransfer functions for water-retention

curves. Geoderma, 93, 225–253.

24



R Core Team 2014. R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.

org/

Rabot, E., Cousin, I. & Hénault, C. 2015. A modeling approach of the relation-

ship between nitrous oxide fluxes from soils and the water-filled pore space.

Biogeochemistry, 122, 395–408.

Ryden, J.C., Skinner, J.H. & Nixon, D.J. 1987. Soil core incubation system for the

field measurement of denitrification using acetylene inhibition. Soil Biology &

Biochemistry, 19, 753–757.
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Table 1. Exploratory statistics.

N2O emission log N2O Water-filled Soil organic
rate/ emission rate/ pore space/ carbon/

g N ha−1 day−1 log g N ha−1 day−1 logit (cm3 cm−3) % by mass

Mean 65.8 3.56 0.74 2.40
Median 43.0 3.76 0.69 2.46
Quartile 1 15.0 2.71 0.42 2.09
Quartile 3 89.5 4.49 1.04 2.75
Minimum 0.5 −0.69 −0.33 1.21
Maximum 333.0 5.81 2.46 4.68
SD 67.8 1.29 0.47 0.50
skewness 1.6 −0.66 0.61 −0.05

Number of upper vertices in successive convex hull peels

Hulls Expected number Observed number P -value∗

of upper vertices

1–5 37 44 3.0E–3
1–6 45 56 8.0E–5
1–7 53 63 1.0E–3
1–8 62 71 2.5E–3
1–9 70 80 2.0E–3
1–10 78 87 6.7E–3

∗ Null hypothesis: vertices arise from a bivariate normal process. With false discov-

ery rate control at 0.05 all null hypotheses are rejected.
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Table 2. Boundary line fitting results. The parameters β0, β1 and β2 are parameters

of the boundary line model given in Equation (24), and σe is the standard deviation

of the measurement error, given in Equation (3). The negative log residual-likelihood

and number of parameters in each model are ℓ and P respectively. The AIC is defined

in Equation (25).

Boundary model

Parameter Estimate Standard error 95% confidence
interval

β0 4.99 0.24 [4.52, 5.46]
β1 1.19 0.21 [0.79, 1.61]
β2 0.54 0.22 [0.11, 0.97]

σe 0.53 0.09 [0.35, 0.71]

Comparison with multivariate normal model

Boundary model Multivariate normal

ℓ 560.3 580.2
P 9 5
AIC 1138.7 1170.5
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Figure Captions

1. Summary plots of (transformed) rates of emission and water-filled pore space.

Scatter plots of log rate of N2O emission against (a) WFPS on the original

scale and (b) WFPS on the logit scale. Histograms of (c) log rate of N2O

emission and (d) logit of WFPS

2. Fitted boundary model for (transformed) rates of emission and water-filled

pore space. The dotted line shows the 95% confidence interval for the boundary

line

3. Profile likelihood for standard deviation of measurement error. Values σ̂e

and σ̂d are, respectively, the maximum likelihood estimate and the estimated

between-duplicate standard deviation of data collected in the study of Haskard

et al. (2010). The vertical dotted line shows the 95% confidence interval of σ̂d

4. (a) Daily mean water-filled pore space for a cluster of 12 sensors at Hollin

Hill, N. Yorkshire, from 1st January 2013 to late July in the same year. The

horizontal line is at 0.77 at which the WFPS factor, see Equation (26), is

largest. (b) WFPS factor, see Equation (26), plotted with open symbols where

the water- filled pore space is less than 0.77 and closed symbols where it is

larger or equal to 0.77.
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