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Abstract Now that evasion of carbon dioxide (CO,) from inland waters is accounted for in global carbon
models, it is crucial to quantify how these fluxes have changed in the past and forecast how they may alter
in the future in response to local and global change. Here we developed a sediment proxy for the concentration
of summer surface dissolved CO, concentration and used it to reconstruct changes over the past 150 years
for three large lakes that have been affected by climate warming, changes in nutrient load, and detrital
terrigenous supplies. Initially CO, neutral to the atmosphere, all three lakes subsequently fluctuated between
near equilibrium and supersaturation. Although catchment inputs have supplied CO, to the lakes, internal
processes and reallocation have ultimately regulated decadal changes in lake surface CO, concentration.
Nutrient concentration has been the dominant driver of CO, variability for a century although the reproducible,
nonmonotonic relationship of CO, to nutrient concentration suggests an interplay between metabolic and
chemical processes. Yet for two of these lakes, climatic control of CO, concentrations has been important over
the last 30 years, promoting higher surface CO, concentrations, likely by decreasing hypolimnetic carbon
storage. This new approach offers the unique opportunity to scale, a posteriori, the long-term impact of human
activities on lake CO,.

1. Introduction

Most lakes today are supersaturated with CO, [Cole et al., 1994] and release amounts of CO, to the atmo-
sphere that must be accounted for in global carbon (C) models [International Panel on Climate Change,
2013]. Naturally, such observations have urged scientists to constrain better the contribution of lake CO,
emissions to the global C budgets [Alin and Johnson, 2007; Maberly et al., 2013; Sobek et al., 2005]. In addition
to estimating the scale of their current emissions, addressing how much these fluxes have changed in the
Anthropocene will improve understanding of the role of lakes in the global carbon cycle and how they are
affected by environmental change [Cole et al., 2007; Tranvik et al., 2009].

Lake CO, concentration is controlled by multiple, interconnected physical, chemical, and biological mechan-
isms related to (1) external carbon inputs [Maberly et al., 2013; Marce et al., 2015; Sobek et al., 2005], (2) CO,
redistribution by hydrodynamics [Aberg et al., 2010; Vachon and del Giorgio, 2014], and (3) internal carbon
processing, including metabolism [Del Giorgio et al., 1999] and pH-controlled changes in carbonate equilibria
[Finlay et al., 2009; Stets et al., 2009]. The relative importance of these mechanisms will vary depending on
the geomorphological and climatic contexts [Kortelainen et al., 2006]. Besides, all these mechanisms are
expected to be affected by human activities at local (e.g., land use and related human-driven nutrient inputs
[Kortelainen et al., 2006; Maberly et al., 2013]) and global scales (i.e., climate change [Finlay et al., 2015; Lepisto
et al.,, 2014; Yvon-Durocher et al., 2012]) to which they are likely to react in different directions, amplitudes, and
with potential interactions. The complexity of intertwined processes acting on lake CO5,q is revealed by the
apparent divergence in lake CO, response to environmental change. For instance, increased nutrient concen-
trations (or lake primary production) can cause either an increase [Kortelainen et al.,, 2006] or a decrease
[Balmer and Downing, 2011; Hanson et al., 2004; Schindler et al., 1997] in lake CO, concentrations, depending
on the ultimate impact of nutrients on the balance between primary production and respiration at the whole
lake scale. Similarly, climate change has been predicted to raise, lower, or have no effect on CO, concentra-
tions [Finlay et al., 2015; Flanagan and McCauley, 2008; Kosten et al., 2010; Sobek et al., 2005] depending on the
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relative consequences of climate change on water temperature, hydrodynamics, or indirect effects on dis-
solved organic carbon (DOC) export from the watershed. Actually, the final outcome of environmental
changes on lake CO,,q will depend on the magnitude of these mechanisms (inputs, internal processing,
or distribution) for a given lake typology (whether lakes are deep or shallow, for instance [Flanagan and
McCauley, 2008]) and the relative scale at which they are affected by the ambient changes. Forecasting lake
CO, response to global change requires these apparent idiosyncrasies of lake responses to environmental
forcings to be understood and taken into account over a temporal perspective.

If multidecadal monitoring of lake CO,,4 would be the key to this issue [Cole et al., 2007], attempts have been
seriously hampered by the dearth of long-term data series until now. Among the longest data series reported
so far, those by Finlay et al. [2015] on Canadian lake cover less than 15 years and those by Maberly et al. [2013]
on UK lakes cover 26 years but sampled at a 5 year frequency. Since climatic trends are defined over a 30 year
period to filter out interannual anomalies (World Meteorological Organization, www.wmo.int), even longer
data sets are required to disentangle adequately the actual role of climate and other human pressures on
CO,4q long-term changes [Catalan et al., 2009; Leavitt et al., 2009] and how their relative contributions may
shift over time. In this work, we explore the role that paleolimnological records could play in expanding
the time frame of CO, monitoring data sets and therefore provide a unique opportunity to scale up the
long-term consequences of human global and local changes on lakes CO, dynamics. The first step of this
study was to develop a quantitative proxy for CO, concentrations in lake surface waters. Then the long-term
history of CO, concentration was reconstructed for three temperate lakes that have undergone documented
human modifications in hydrodynamics caused by climate change, internal processes caused by changes in
nutrient load, and carbon inputs caused by alterations of their hydrological inflows. Finally, the temporal
dynamics of environmental forcings and lakes CO, were confronted in order to assess the relative influence
of each human-driven factor on lakes CO, variability over time.

2. Material and Methods
2.1. Study Sites

Lakes Annecy, Bourget, and Geneva are large (28-551km?) and deep (82-309 m) temperate and monomictic
lakes located at the French edge of the Western Alps (Figure 1a). Of comparable geomorphology and geochemical
backgrounds, these neighboring lakes have clear and moderately alkaline waters (alkalinity = 1.5-2 meq L") and
long water residence time (4-15 years). Concentrations of dissolved organic carbon are low and fairly stable over
the last decades (<1-2mgC L™ [Rodriguez-Murillo and Filella, 2015]). The dissolved carbon pool is largely
dominated by inorganic carbon (15-20 times more abundant than organic carbon). pH typically exceeds
8.1 in the epilimnion in summer (Text S1 and Table S1 in the supporting information). All three lakes have
been exposed to similar climatic variability, with a 2.0°C increase in air temperatures over the twentieth
century, i.e., twice the global average (Figure 1b), but no clear trend for mean annual precipitation [Perga
et al., 2015].

Despite their similar geomorphology and geographical proximity, the three studied lakes have not been
equally thermally vulnerable to climate change over the last 30years (Figures 1c and 1d) [Perga et al.,
2015]. Lake Annecy is the smallest of the three lakes, the most sheltered from winds, and the least hydrolo-
gically active. Consistently, it is the one for which the effects of climate warming on epilimnetic water
temperatures are the strongest, with a +2.4°C increase between the early 1970s (as compared to +1.5°C for
Lake Geneva over the same time period, Figure 1¢) and the current period and a 2.5 m thermocline deepen-
ing over the last 20years (Figure 1d). In lakes Geneva and Bourget, the thermal effects are weaker, with,
however, different physical consequences. In Lake Geneva, surface waters warmed up more than in Lake
Bourget (+1.2°C and +0.6°C, respectively, since the mid-1980s), but with no deepening of the thermocline,
in contrast to Lake Bourget (+1.5 m over the last 20 years [Perga et al., 2015], Figures 1c and 1d).

All lakes have endured well-documented and analogous local human activities on their watersheds over the
twentieth century [Perga et al., 2015], the main one being synchronous changes in total phosphorus (TP)
inputs and lake concentrations (Figure 2a), as revealed by previous paleolimnological reconstructions
[Berthon et al.,, 2014]. Oligotrophic by the end of the nineteenth century, all three lakes became enriched
in phosphorus from urban wastewater release as early as the 1920s, with a clear intensification of phosphorus
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Figure 1. Lakes location, climate, and recent hydrological trends. (a) Lakes location. (b) Trends in air temperature anomalies
for all three lakes, extracted from the HISTALP database. (c) Changes in lakes thermal characteristics over the last 25 years.
Figure 1c shows annual surface (0-15 m) water temperatures. (d) Thermocline maximum depths over time, computed

as the depth of the 14°C water layer at the end of summer for the three study lakes. p values are those associated to
Mann-Kendall trend tests.
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Figure 2. Dominant local environmental forcings for the three lakes. (a) Changes in surface TP for lakes Geneva, Bourget,
and Annecy as reconstructed from a Daphnia-based transfer function (continuous green line; +95% confidence interval
[Berthon et al., 2014]) and compared to actual measures (blue dots). (b) Changes in terrigenous fluxes for lakes Geneva,
Bourget, and Annecy [Jenny et al., 2014a]. Note changes in the y scale for Lake Annecy.
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inputs from 1940 onward. Increased TP concentrations favored higher algal biomass [Jenny et al.,, 2013;
Lachavanne, 1980; Perga et al., 2010] and triggered deep hypoxia [Jenny et al., 2014a]. The three lakes reached
different levels of maximum eutrophication (oligomesotrophic status for Lake Annecy in 1969 and eutrophic
status by the late 1970s for the other two lakes; Figure 2a). Phosphorus reduction efforts proved successful in
all three lakes. Based on their phosphorus concentrations, Lake Annecy is currently back to oligotrophy
(TP<6ugPL™"), whereas the other two are still oligomesotrophic (TP <20pugPL™", Figure 2a). Other
significant local disturbance over the last century includes regulations of tributary discharges, with subse-
quent consequences on detrital inputs from terrigenous supplies [Jenny et al.,, 2014a; Perga et al., 2015].
Since 1880, terrigenous fluxes have decreased by 50%, 40%, and 45% for lakes Geneva, Bourget, and
Annecy, respectively, caused by the sequential construction of dams built on the inflowing rivers to control
floods and high river discharges, while the role of climate change on these declining fluxes was only marginal
[Jenny et al., 2014a]. The reconstructed terrigenous fluxes also confirm the contrasting hydrological condi-
tions among the three lakes, with highest fluxes in Lake Geneva, medium in Lake Bourget, and lowest in
Lake Annecy (Figure 2b).

2.2. Lake Coring and Core Analyses

Palaeolimnological data were collected from several short sediment cores (35 to 64 cm long) taken from the
deepest zones of the lakes in 2009 (Lakes Bourget and Annecy) and 2010 (Lake Geneva) using a quadruple
gravity corer (UWITEC, Mondsee, Austria). Accurate chronologies allowed for high-resolution sampling and
estimates for accumulation rates [see Alric et al., 2013]. Previous palaeolimnological studies conducted in
the same program provided validated paleoproxies for TP (inferred from a transfer function based on
absolute changes in the sediment flux of Daphnia remains and confronted to monitoring data when available
[Berthon et al., 2014]) and terrigenous supplies (inferred from titanium (Ti) fluxes measured by X-ray fluores-
cence and validated against flooding records from river discharge data [Jenny et al., 2014a, 2014b]).
Planktonic cladoceran remains (mainly Bosmina carapaces) were isolated from sediment samples as in
[Perga, 2011], and 5'3C measurements were measured in the SINLAB, New Brunswick, Canada, on a
Finnigan Delta Plus mass spectrometer interfaced via a Conflo Il to a NC2500 elemental analyzer. Internal
laboratory standard precision and accuracy were <0.1%eo.

2.3. Calibration of the Paleoproxy for CO,,q

CO, concentration is the dominant driver of plankton §'3C in oceans and lakes [Degens et al,, 1968; Smyntek
et al.,, 2012], and we first tested whether this allows lake surface CO, concentrations to be determined quan-
titatively from changes in the 5'>C values of cladoceran remains retrieved from sediment cores. Our working
hypothesis was that the 5'3C values of pelagic cladocerans (a zooplanktonic group herein dominated by algal
consumers) would mirror changes in surface CO,,q in both contemporaneous and archived samples.

The monthly data for cladoceran 8'>C values were available for Lake Geneva in 2002-2004 [Perga and
Gerdeaux, 2005], and for these dates, CO, concentrations in the top 5 m of the water column was computed
from temperature, pH, alkalinity and ionic strength as in Cole et al. [1994] (Data copyright SOERE OLA-IS, INRA
Thonon-les-Bains, CISALB, CIPEL, SILA, developed by Eco-Informatics ORE INRA Team). A log linear regression
model linking surface lake CO, concentrations and cladoceran §'>C values was computed from the Lake
Geneva monthly monitoring data set (2002-2004) and compared with a model previously developed for
Windermere [Smyntek et al., 2012].

The ability of the model to predict past CO, concentrations was thereafter tested against the monitoring
data; long-term trends in CO, concentrations (top 5m) over the last 130years were reconstructed from
subfossil cladoceran 8'>C values using the model established in the previous step and compared with the
CO, concentrations computed from the chemical data for years and lakes for which they were available
(Data copyright SOERE OLA-IS, INRA Thonon-les-Bains, CISALB, CIPEL, SILA, developed by Eco-Informatics
ORE INRA Team; 1978-2008 for Lake Geneva and 1967-1976 for Lake Annecy; there are no long-term data
for Lake Bourget). Because cladoceran subfossil 5'3C records the isotope values of their parent populations
in the summer [Perga, 2011], CO, concentrations, as reconstructed from subfossil remains, were expected
to correspond to summer values. They were therefore compared to the CO, concentrations computed
during June, July, and August of the corresponding year and the entire summer average (June-August)
CO, concentrations.

PERGA ET AL.

150 YEARS OF HUMAN IMPACTS ON LAKES CO, 96



@AG U Global Biogeochemical Cycles

10.1002/2015GB005286

a
<> 174 Smyntek et al (2012)’s model for Windermere
X - (£95% confidence interval)
o 224 Current model for Lake Geneva
o === (*95% confidence interval)

c

o 274

Q

5]
'8 324
g -
O

-37 T T T T T T T T T J
0 100 200 300 400 500 600 700 800 900 1000
Surface CO,,, (MgC m-3)
o Reconstructed July surface CO,,, ™ Measured July —CO,at atmospheric
———- (*¥95% confidence interval) surface COpyq equilibrium
&~ 400 LAKE GENEVA
E 350
% 300
E 2507
o
0‘:3 200
O 150
§ 1001
£t 504
5 g
(2] 0 T T T T T |
1860 1885 1910 1935 1960 1985 2010

7001 LAKE BOURGET

0 T T T T T 1
1860 1885 1910 1935 1960 1985 2010

8001 LAKE ANNECY

Surface CO,,, (MgC m3) Q.  Surface CO,,, (MgC m3) O

600 /
400 -
200
0 ; : ; ; ; .
1860 1885 1910 1935 1960 1985 2010
Date

Figure 3. Quantitative reconstruction of historic lake CO, concentra-
tions from §'3C of cladoceran subfossils. (a) Model linking the 8'3C of
contemporary pelagic cladocerans to average CO, concentrations
between 0 and 5 m depths in Lake Geneva, 2002-2003, and comparison
to the model previously built for Windermere (in red) [Smyntek et al.,
2012]. (b—d) Temporal changes in surface CO, concentrations as
reconstructed from 3'>C of subfossil cladocerans recovered from dated
cores (continuous line, +95% confidence interval) and comparison to
measured July CO, concentrations over the 0-5 m depths (closed
squares, averaged over 3-5 years) for lakes Geneva (Figure 3b) and
Annecy (Figure 3c). Similar observational data were not available for Lake
Bourget (Figure 3d). Blue lines represent changes in CO, concentration
in equilibrium with the atmosphere.

2.4. Identifying Environmental
Drivers of CO,,4 Over Time

Once the proxy validated, CO,,q and sub-
sequent lake CO, enrichment (expressed
as COyeycess relative to the atmosphere,
in order to account for rising atmospheric
CO, over time, www.esrl.noaa.gov/gmd/
ccgg/trends/) were then reconstructed
over the last 150years for all three
lakes. The isotopic consequence of the
Suess effect (approximately 2%o decline
in atmospheric CO, §'3C over the last
150years) has been neglected since it
only marginally affects the 5'3C of lake
dissolved inorganic carbon (reported
maximal effects are <1%o in the oceans
[Black et al, 2011]) which, in turn,
seldom influences that of planktonic
organic matter [Finlay, 2004]. Generalized
additive models (GAMs) [Hastie and
Tibshirani, 1990] were used to investigate
the relationships between COjeyxcess and
external forcings as well as to separate,
quantify, and identify time periods
of their influences [Simpson and
Anderson, 2009]. Long-term air tem-
perature anomalies (www.zamg.ac.at/
histalp), reconstructed TP, and terrige-
neous supply were introduced as the
predictor variables in the model. Both
paleoproxies for TP and CO,eycess are
provided by independent measures
and are not mathematically derived
from each other. GAM were run on all
possible combination of factors and
model selection procedures were based
on percent of explained deviance, resi-
dual distribution and best fit between
observed and modeled data.

The relationships between COjexcess
and external factors were then mod-
eled using linear or polynomial regres-
sions (order based on the estimated
degrees of freedom of the terms of
the GAM fitted models) and analysis of
covariances (following linear or cubic
models) [Huitema, 2011]. The most par-
simonious models were chosen based
on the Akaike information criterion
and Bayesian information criterion
(AIC-BIC). All tests were performed
on R2.11.0 statistical software using
dedicated packages.
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Table 1. Parameters of the Selected Generalized Additive Models Performed on CO5eycess for All Three Lakes®

Lake Parameters of the Best Model Edf p value Deviance Explained by the Best Model
Geneva TP 3.7 5103 68% (60% for TP alone)
Terrigenous flux 2.1 0.059
Bourget TP 34 0.05 69% (70% for TP alone)
July temperature 1 0.03
Annecy TP 29 <2107 90% (on univariate model)

July temperature 1 0.02 32% (on univariate model)

“Details on selection procedures in Text S3. Edf: estimated degrees of freedom.

3. Results
3.1. Validation of Cladoceran Subfossil 5'>C as a Proxy for CO, Concentration

The strength of the relationship between cladoceran §'3C and CO, concentrations was first validated with
contemporary data (Figure 3a; log linear relationship, y= — 2.32 Inx — 22.44; R*=0.64, p=6.10"") yielding a
strikingly similar result to that found before for Windermere (y=— 2.42Inx — 22.30 [Smyntek et al., 2012]).
Second, historical trends of reconstructed CO, concentrations were compared to available monitoring data.
Of the measured CO,,q values computed over the 0-5 m depths for Lakes Geneva and Annecy and averaged
over the time resolution of the CO, paleoreconstructions (3-5 years) (Figures 2b and 2c), 60% fell within the
95% confidence interval of the fit. More importantly, the temporal trends derived from monitored and recon-
structed data in Lake Geneva were significantly correlated in July (Spearman’s rank correlation, p=0.55,
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Figure 4. Relationships between CO5excess and lake concentrations of total phosphorus (TP) over the last century for Lakes
Geneva, Annecy, and Bourget. (a) Contributions (s(TP); average + approximately 95% confidence interval) of changes in
lake TP to the observed changes in COzexcess OVer time. Positive contributions indicate that TP was linked to higher
COsexcess at a given time. (b) Single and ANCOVA models linking CO5excess to TP.
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for both lakes. (Table 1 and Figures 4a-4c; details for

GAM selection procedures provided in
Text S3). Estimated degrees of freedom of the TP term in the selected GAM were, in all cases, close to 3, indicating
that the best fit between TP and COeycess Was cubic rather than linear. Cubic models were, for each lake, the most
parsimonious as compared to quadratic and linear models, resulting in the lowest values of AIC and BIC (Table S3).
The relationship relating CO5eycess to TP over time indeed fitted a third-order polynomial regression in all three
lakes, with yet significant between-lake differences within the model parameters (Figure 4d). The polynomial
relationship between COqycess and TP accounted for 46% of total CO, variability when lake identity was included
as a grouping factor. The earlier eutrophication phase (TP increases below 15-25 ugP L™") caused the CO, con-
centrations in all three lakes to be twofold higher than atmospheric equilibrium (Figures 3b-3d). Above this
15-25 ug PL™" threshold (then only for Lakes Geneva and Bourget), COexcess decreased (Figures 3 and 4) so that
during their maximum eutrophication, in the summers of the 1970s and early 1980s, these two lakes returned to
CO; equilibrium with the atmosphere. The decreasing TP concentrations because of TP abatement measures
triggered the expected reversible response for COpeycess, i-€., returning the lakes to CO, supersaturation, until
the lower TP threshold was reached again (Figures 3 and 4).

Air temperature also contributed substantially to changes in CO, concentrations of Lakes Annecy and
Bourget where its contribution to driving CO, changes over the last 30 years was of a similar magnitude to
that of TP (Table 1 and Figures 5a and 5b). Climate warming did not contribute significantly to the changes
in CO, concentrations for Lake Geneva over the same period (p = 0.3). The linear model linking CO5eycess tO air
temperature anomalies was common between Lakes Annecy and Bourget (Figure 4c). The common slope
coefficient of 0.31°C™" (standard error = 0.07) reveals that the variability in air temperature over the twentieth
century (+2.0°C in this region) could, alone, result in a 60% increase of CO, concentrations in July for these
two lakes.
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Terrigenous supply from rivers was not included as a driver of CO,eycess in the retained models, except for
Lake Geneva for which it was marginally significant (Table 1). For this lake, detrital inputs explained about
10% of the temporal deviance of COjexcess and time periods of high terrigenous supplies, prior to dams
and regulation of high river discharges, coincided with higher CO5eycess (S3).

4, Discussion
4.1. CO, Paleoproxy

Modern cladoceran §'3C values were correlated with CO,.q and the isotopic record over decades (50 years
for Lake Geneva and 20 years for Lake Annecy) consistently reflected changes in summer CO,,4. The proxy
is based on the dominant control that CO,,q exerts on phytoplankton 8'3C through isotope fractionation
during carbon fixation (whether CO, or bicarbonate with different equilibrium isotopic values [Degens
et al.,, 1968; Smyntek et al., 2012]), which is then further transmitted to phytoplankton consumers. Possible
mechanisms supporting the log linear relationship are provided in Smyntek et al. [2012] and have been
shown in culture for some marine algae [Burkhardt et al., 1999]. They are therefore not repeated here.
Although dissolved inorganic carbon (DIC) 5'C values can vary considerably within and among lakes, it is
not explicitly accounted for in the original [Smyntek et al., 2012] model. Actually, the control by C-substrate
limitation on isotope fractionation during photosynthesis is so strong that the final planktonic 5'3C is weakly
influenced by DIC §'3C and CO,4q is by far the dominant factor explaining planktonic 8'3C variability over
space and time [Gu et al.,, 2011]. Besides, both the Rayleigh effect (increased DIC 8'3C at low COy4q due to
selective removal of '*C-depleted CO,, by photosynthesis) and isotope effect during mineralization of organic
matter (CO, regenerated by mineralization has low DIC §'3C) combine to create a strong, negative covaria-
tion of CO,,q and DIC 8'3C in lakes over space and time [Finlay, 2004; Gu et al., 2011], which even reinforces
the relationships between CO,,q and plankton 8'3C. Therefore, omitting DIC §'3C within the model shall
affect its reliability at most marginally.

Over 500mg Cm > (42 mmol Cm ), cladoceran §'3C values are less sensitive to CO5,4 than at lower concen-
tration. However, this threshold exceeds the maximum summer averaged CO,,q in the 40 year monitoring of
Lake Geneva (Figure 54) but could introduce uncertainty in CO,,4 estimates for Lake Annecy. More generally,
it might restrict the use of the proxy to lakes with low to moderate CO,q.

A prerequisite for the use of subfossil cladoceran §'3C as a proxy for CO,,q is that the phytoplankton is the
dominant carbon source for the cladocerans for the entire study period. All three lakes studied here are deep,
and their bathymetry is concave, and cladoceran subfossil communities were strongly dominated (75-100%)
by planktonic species at all times [Alric et al., 2013]. The only exception was for the period during 1880-1912
for Lake Geneva when Sida cristallina (a littoral species) was quite abundant (*40%), but this period did not
correspond to any clear break in the isotope records for Lake Geneva. Furthermore, restricting the data set to
the time of overwhelming planktonic dominance (post-1920) did not modify the overall conclusions. The
assimilation of terrestrial carbon by zooplankton could further blur the isotope records [Jones et al., 1998],
but previous studies on these lakes did not provided evidence of allochthony for the cladocerans in these
lakes, even at seasons of very low primary production [Perga and Gerdeaux, 2006; Perga et al., 2009]. In
shallow, small, and humic lakes in which methane oxidizing bacteria can constitute a significant food source
for pelagic cladocerans, the 5'3C of Daphnia was shown to be more sensitive to CH, rather than CO, concen-
trations [Schilder et al., 2015] but this is unlikely to be important in our study lakes. Overall, the high similarity
of the relationships linking CO, and modern cladoceran §'3C between Lake Geneva and Windermere sup-
ports the general applicability of the proxy in relatively deep lakes with low to moderate CO, concentrations.
However, although promising, further application of the proxy to other lakes will require further validation.

4.2. Causes of CO, Supersaturation

On an annual base, the studied lakes are presently supersaturated with CO, (Figures 2 and S2) and hence
sources to the atmosphere. Nevertheless, the planktonic communities of all three lakes are net autotrophic,
providing further evidence that elevated concentrations of CO, do not necessarily indicate heterotrophy
[Maberly et al., 2013]. In these lakes, inputs of terrestrial organic matter represent less than 8% of the total pri-
mary production and are totally counterbalanced by outflows (Table 2). Organic carbon concentrations in
inflowing rivers are low (close to 1-2mgL™") and have been fairly stable over the last decades at least for
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Table 2. Annual Estimates of Main Carbon Fluxes and Pools for the Three Study Lakes®

C Pool and Flux Lake Geneva (Large Basin) Lake Bourget Lake Annecy
Average net primary production (Gg Cyr_1) 100-175 (range over 1998—2010)b 50 (2005)-23 (201 1)b 6.1 (1998)-4.6 (201 1)b
Allochthonous organic carbon inputs (Gg Cyr ") 14 (1996)-11.3 (2010)° 0.5 (2006-2011)° 0.2°
Exported organic carbon (Gg Cyr_1) 10 (201 O)b O.Sb 0.2b

Organic carbon accumulation (Gg C yr_1) 8 (2000-2010) 1.2 (2000-2009) 0.2 (2000-2006)
Inorganic carbon accumulation (Gg C yr71) 16 (2000-2010) 4.3 (2000-2009) 1.5 (2000-2006)
Pelagic metabolism Likely autotrophic® Autotrophicd Autotrophic®

@Primary production has been assessed through incorporation of inorganic 4 as part of the long-term monitoring of the three lakes. Organic carbon inputs
and outputs were estimated as the product of inflows and outflows discharges and concentrations. Organic and inorganic carbon accumulations were estimated
as the product of sediment accumulation rate (in dry weight) by percent sediment content in organic or inorganic matter as measured by Rock-Eval pyrolysis.

Data copyright SOERE OLA-IS.

“Hanson et al. [2004].

Groleau et al. [2000].
€Janjua and Gerdeaux [2009].

the main tributaries of Lake Geneva as for similar rivers across nearby Switzerland [Rodriguez-Murillo et al.,
2015]. Although rates of organic matter burial suggest that more than 90% of the lake organic matter gets
oxidized within the lake water column, mineralization alone cannot explain the current C supersaturation
and CO, efflux.

Instead, CO, supersaturation of these lakes arises from catchment inputs of inorganic carbon, and consider-
ing their alkalinity (>1meqL™") and the geology of the surrounding catchment, likely through carbonate
weathering [Marce et al., 2015]. The CO, concentrations in the two dominant tributaries of Lake Geneva
are consistently higher than in the lake (Figure S4), and their role as the main source of DIC to the lake has
been confirmed from isotope-based mass budgets [Vennemann et al., 2006]. Monitored long-term changes
in the rivers and lake CO,,q are, however, unrelated (Figure S4) because the lakes have long water residence
time (3.8-15years), and an internal control of decadal changes in surface CO, (i.e., through processes
occurring within the lakes) is more plausible [Bade et al, 2004], as also supported by DIC §'3C data
[Vennemann et al., 2006]. Consistently, decadal variability in terrigenous supplies was not a significant driver
of COzexcess OVer time. Yet its marginal significance in Lake Geneva, which is the most hydrologically active of
these lakes, suggests that high detrital inputs from rivers might affect the lake carbon budget during time
periods marked by high flooding regime or extreme flooding events. Recent studies have indeed pinpointed
the role of intense precipitation events in lake CO, dynamics [Vachon and del Giorgio, 2014] although the
current monitoring data do not allow the underlying mechanisms (e.g., inputs of DOC, CO,, or reallocation
of hypolimnetic CO, to the surface [Vachon and del Giorgio, 2014]) whereby episodes of high river discharge
may increase lake surface CO,,q. Nevertheless, the fact that the paleorecords, in spite of their low temporal
resolution, could capture their contribution to the lake CO,,q variability reinforces the confidence in the
sensitivity of the developed method.

4.3. Impacts of Nutrient Load on Lake CO,,q

The concentration of TP was found to be the major factor controlling summer concentrations of CO5,q in
these lakes, over the last century. While valid in these P-limited lakes [Finger et al., 2013] with long water
residence time, it might not be true for lakes with shorter flushing rates, for which TP loads were shown to
covary with DIC [Maberly et al., 2013] or DOC [Kortelainen et al., 2006] inputs from their watersheds.
Consistently, the TP concentration in the Rhone river in 1975-2011, the main tributary of Lake Geneva, was
not related to its concentration of CO, (R>=0.01; p=0.25 on linear and R?=0.06; p=0.30 on cubic fit) nor
DOC (R? < 0.01; p=0.27).

The nonmonotonic relationship of CO, to TP implies that underlying mechanisms might be more complex
than usually envisaged. First, TP acts on CO, concentrations through its positive influence on primary pro-
duction, causing direct CO, removal by photosynthetic carbon fixation [Schindler et al., 1997]. Therefore,
productive lakes are usually expected to be CO, undersaturated in summer [Balmer and Downing, 2011].
Second, respiration also increases with higher lake trophic status, so that the final relationship linking
metabolism to TP might be hump shaped, inverting at TP concentrations typical for mesotrophic status
(20-30 ug PL™" [Del Giorgio and Peters, 1994; Prairie et al., 2002]), as we observed here. Third, calcite
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precipitation induced by a photosynthetic-driven pH increase is a significant source of CO, to the
epilimnion in even moderately alkaline lakes [Stets et al., 2009]. Calcite precipitation has been estimated
to provide 40—6Ong_2 as CO, in summer for all three lakes as compared to the 150-250, 120-240,
and 40-60 g C m~2 of CO, fixed by primary production in Lakes Geneva, Bourget, and Annecy, respectively
(Table 2). Fourth, coprecipation of phosphate with calcite (as apatite) may produce a negative feedback
reducing primary productivity and CO, removal [Murphy et al., 1983]. Fifth, calcite precipitation is inhibited
by TP with threshold values (>20 ugP L™" [House, 1990]) that coincide with our observations since phos-
phate coprecipitation with calcite contributes to limit internal inputs of CO, by calcite precipitation at
TP concentrations >20 ugP L~". The model suggested a further increase in CO, for TP >50 ngP L.
However, observational data are scarce above this TP threshold and further investigations would be
required to evaluate whether the model predictions are realistic for more eutrophic situations.
Regardless of the precise mechanism, an increase in nutrient concentration (<20 ugP LN appears to first
promote and then diminish (TP > 20 ugP L") lake CO, concentrations, through a complex combination of
biogeochemical processes, the outcome of which can be reproduced by a polynomial relationship.
Threshold values need further investigation and may vary among lakes, depending on the relative impor-
tance of the processes involved.

4.4. Impacts of Atmospheric Warming on Lake CO,,q

Air temperature also contributed substantially to changes in CO, concentrations of Lakes Annecy and
Bourget where its effect on CO, concentration over the last 30 years was of a similar magnitude to that of
TP (Figure 4). There is evidence that lakes Geneva and Annecy have become warmer over the last decades,
and this could increase surface CO, concentrations through temperature dependency of internal processes
(metabolism [Yvon-Durocher et al., 2012] and calcite precipitation [Homa and Chapra, 2011]) even though
increasing temperature reduces CO, solubility. However, effects of increasing water temperature on CO, pro-
duction might not be the only or major process explaining the link between COeycess @and air temperature,
especially since the warmer surface waters of Lake Geneva did not show any climate-driven increase in their
CO,, over the last decade (Figure 1). The further consequences of climate warming on thermal stratification
and the depth of the mixed layer may also affect CO, vertical transport and ultimately summer surface
CO, [Macintyre et al., 2013]. Climate warming has been shown to reinforce the stability of the summer strati-
fication in Lake Geneva [Perroud and Goyette, 2010]. Higher epilimnetic stability could counteract the warm-
ing effect on surface CO, production by reducing summer entrainment of water from depth with elevated
concentrations of CO, [Aberg et al., 2010].

In the other two lakes, the thickness of the epilimnetic layer has increased over the last 25 years, while in Lake
Geneva, the epilimnetic thickness did not exhibit any clear temporal trend (Figure 1). Downward epilimnion
expansion can increase CO, concentrations of the surface water as a result of liberation of hypolimnetic
stores [Aberg et al., 2010]. Indeed, surface CO, concentrations in Lakes Annecy and Bourget are currently
360 and 240 mg Cm > higher than expected based on the relationship between CO, concentrations and
TP, suggesting an additional CO, input of 4.3 and 3.6 g C m ™2, respectively, to the surface waters (considering
initial epilimnetic depths of 12 and 14 m). Considering the hypolimnetic concentrations of CO, concentra-
tions (measured at 1.0 and 1.2 g C m~ for Lake Annecy in 2008-2011 and Lake Bourget in 2011, respectively),
a 2.5 and 2 m deepening of the metalimnion would liberate an additional 2.5 and 2.4 g Cm™2 of CO, to the
surface waters of Lakes Annecy and Bourget, respectively. A liberation of part of the hypolimnetic stores, and
therefore decreased C storage capacities, would account for about 57 to 71% of the excess CO, concentra-
tions attributed to climate change.

5. Conclusion

Despite uncertainties inherent in any sediment archive, the carbon-isotope-based CO, paleoproxy we devel-
oped herein provides the first quantitative assessment of the actual effect of human local and global activities
on lake long-term CO, dynamics. The results show that the concentration of CO, is strongly affected by human
activities. Overall, lake surface CO, concentrations have been modified by a factor of 2-3 over the last 150 years,
under the primary control of nutrient-driven changes on internal processes, which were supplanted by the
thermal and hydrodynamics consequences of climate change for two of the three lakes over recent decades.
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Besides, for the first time, the effects of climate change could be distinguished from local human impacts
using observation data. This was previously a challenge because climate effects on CO, concentrations are
confounded by local, catchment background signals in meta-analyses using latitude as a proxy for a climatic
gradient [Alin and Johnson, 2007; Kosten et al., 2010]. Such long-term reconstructions, although less accurate,
offer therefore a new and complementary approach to scale better and understand lake CO, dynamics in
response to climate change. Although our approach is basically correlative and cannot completely address
which are the underlying processes ultimately regulating lake CO,, it clearly helps targeting the drivers to
be tested further in future experimental or modeling approaches.
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