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ABSTRACT 1 

High resolution records of past climatic changes are sparse and poorly resolved in the Arctic 2 

due to low organic production that restricts the use of radiocarbon dating and challenging 3 

logistics that make data collection difficult. Here, we present a new lake record from lake 4 

Hakluytvatnet at Amsterdamøya island (79.5°N), the northwesternmost island on Svalbard. 5 

Multi-proxy analyses of lake sediments in combination with geomorphological mapping 6 

reveal large environmental shifts that have taken place at Amsterdamøya since the Late 7 

Glacial. A robust chronology has been established for the lake sediment core through 28 AMS 8 

radiocarbon ages, and this gives an exceptionally well-constrained age control for a lake at 9 

this latitude. The sedimentary archive recorded the last ~13,000 years of environmental 10 

change, and is the first lake record going back to the Late Glacial in this region. The Holocene 11 

was a period with large changes in the Hakluytvatnet catchment, and the onset of the 12 

Neoglacial (ca. 5 ka) marks the start of modern-day conditions in the catchment. The 13 

Neoglacial is characterized by fluctuations in the minerogenic input to the lake as well as 14 

internal productivity, and we suggest that these fluctuations are driven by atmospherically 15 

forced precipitation changes as well as sea ice extent modulating the amount of moisture that 16 

can reach Hakluytvatnet. 17 

 18 

 19 

 20 

 21 

 22 

 23 



1. INTRODUCTION 24 

Palaeoclimatic reconstructions offer the possibility to extend earth system observations 25 

beyond the instrumental time period. Such reconstructions are especially important in the 26 

Arctic because the rate of on-going change is unprecedented within Common Era 27 

observations.  However, our knowledge of the natural climate variability in the Arctic is 28 

limited due to the scarcity of data and the relatively short period of observation. Future 29 

anthropogenic climate changes will be superimposed on these natural variations, which might 30 

result in fundamental changes to internal climate feedback mechanisms, influencing the 31 

timing and amplitude of future climate. This leads to a critical emerging question in the 32 

scientific community: how will the effects of global warming be manifested in the Arctic? To 33 

make meaningful climate projections at the regional scale and to evaluate model simulations 34 

of future climate, we need a longer perspective than the short instrumental period provides. 35 

Annual precipitation in the Arctic is projected to increase by 20% by the end of the twenty-36 

first century (ACIA, 2004), among the highest globally, and this is a consistent feature among 37 

state-of-the-art global climate models (Kattsov et al., 2007). The anticipated climate changes, 38 

and especially those related to hydrology, will have a large impact on sources and sinks of 39 

greenhouse gases related to the Arctic tundra (Jørgensen et al., 2015), on local societies in the 40 

Arctic, and will likely impact lower latitudes through climatic teleconnections (Førland et al., 41 

2009). However, to better anticipate future changes in the Arctic, a significant improvement 42 

in our documentation and understanding of the longer-term natural climate variability in this 43 

region is required. Due primarily to logistical constraints, the region north of 70°N is heavily 44 

under-sampled with respect to Holocene paleoclimate reconstructions.  45 

Svalbard, a high-Arctic Norwegian archipelago (74-81°N, 10-35°E), is situated in a 46 

climatically sensitive site in the northern North Atlantic and is well-positioned to record past 47 

changes in atmospheric and oceanic circulation patterns of the North Atlantic Arctic. Lake 48 



sediments are excellent archives for recording regional climate change, because lakes trap 49 

detrital and organic material from the catchment, as well as organic material produced within 50 

the lake. The type of material entering the lake depends on the catchment area surrounding the 51 

lake basin (Rubensdotter and Rosqvist, 2009), and this in turn depends on a number of 52 

geological, geomorphological and climatic factors. Sedimentary fingerprinting of the various 53 

sources contributing to lake sedimentation and their past variations allows for detailed 54 

palaeoenvironmental reconstructions. 55 

Here we present new palaeoclimatic data from one of the northernmost lakes in Europe, on 56 

Amsterdamøya island, NW Svalbard. We demonstrate that the potential for producing robust 57 

chronologies exists even in these remote polar regions, and that by careful selection of sites 58 

high-resolution palaeoclimatic reconstruction can be achieved. Here we present: 1) a high 59 

precision radiocarbon dated sedimentary lake sequence; 2) reconstructed detrital 60 

sedimentation processes from the Late Glacial until the present; and 3) a multi-proxy 61 

reconstruction of Neoglacial climate fluctuations at Amsterdamøya based on the runoff and 62 

productivity signal recorded in the lake sediments. 63 

 64 

2. SETTING 65 

The island of Amsterdamøya (‘øya’=island) (N79°46’, E10°45’) is located at the 66 

northwesternmost corner of Svalbard in the North Atlantic Ocean, where the distance from 67 

Amsterdamøya to the shelf break is only 8 km, and border the Arctic Ocean and the Fram 68 

Strait. The West Spitsbergen Current (WSC) (Aagaard et al., 1987) is the northernmost limb 69 

of the Norwegian Atlantic Current (NwAC), bringing warmer Atlantic waters as an extension 70 

of the North Atlantic Current (NAC) to the NW coast of Svalbard (Fig. 1A). Due to this 71 

northward transport of warm water and its impact on air masses, the western side of the 72 



Svalbard archipelago is dominated by warmer temperatures, more precipitation and less sea 73 

ice than the east coast. On the coast of western Svalbard (Ny-Ålesund and Isfjord Radio) (Fig. 74 

1A) average temperature (1961-1990) in summer (June, July, August) is 4°C and range from -75 

12 to -15 °C during the winter months (January, February, March; JFM). Winter (JFM) 76 

precipitation on Svalbard ranges from 190-440 mm/year (Førland et al., 2010). The 77 

alternating westerlies and the polar-front jet stream modulate the present climate on Svalbard 78 

and are influenced by the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO). 79 

During positive AO winters, cyclones reach the Barents Sea region thereby bringing more 80 

snow to Svalbard; conversely, a negative AO is associated with NE-E winds, cold 81 

temperatures, and lower winter precipitation (e.g Luks et al., 2011). 82 

A metamorphosed basement comprised of migmatites, banded gneisses rich in biotite and 83 

late-tectonic granites of Caledonian age form the bedrock in the area. Small outcrops of 84 

amphibolite are present on the north side of the catchment, as well as small appearances of 85 

marble layers on the north and south side of the catchment area (Hjelle and Ohta, 1974; Ohta 86 

et al., 2007). Amsterdamøya island is characterized by gently sloping plateaus >300 m a.s.l. 87 

covered by autochthonous block fields. Steep cliffs towards the sea frame the plateaus (Hjelle 88 

and Ohta, 1974).  89 

Surface exposure ages on glacial erratics from Amsterdamøya and the neighbouring 90 

Danskøya islands (Fig. 1B) indicate that the summits in the area have remained ice-free since 91 

>80 ka BP, although the lower ground remained glaciated until 18-15,000 years ago (Landvik 92 

et al., 2003). These more recent ages are further supported by surface exposure ages from 93 

Hormes et al. (2013), indicating that the NW sector of Svalbard became deglaciated between 94 

13,600 and 11,700 years ago after a local ice dome covering the NW Svalbard disintegrated. 95 

The marine limit (ML) at Amsterdamøya is not constrained, but is probably close to present 96 

day sea level (Boulton and Rhodes, 1974; Salvigsen, 1979; Landvik et al., 1998). There has 97 



been little postglacial emergence in the NW part of Svalbard, and neither Amsterdamøya nor 98 

Danskøya display any clear geomorphological evidence of uplift in relation to sea level since 99 

the ice cover disappeared (Boulton and Rhodes, 1974; Salvigsen, 1977; Landvik et al., 1998).  100 

 101 

2.1 Lake, catchment, and geomorphological setting  102 

Our study site, lake Hakluytvatnet (79°46'24"N, 10°44'21"E) (12 m a.s.l.) is a small lake with 103 

a surface area of ~0.1 km2 (Fig. 1). The catchment area (~2.2 km2) displays steep cliffs 104 

incised by two cirque valleys surrounding the flat valley floor. The northwest-facing beach 105 

sequence framing the lake forms a terrace towards the sea (Fig. 1C), and consists of well-106 

rounded gravel-and-boulder type beach sediments. Maximum water depth of Hakluytvatnet 107 

(‘vatnet’=lake) is ~5 m, and the lake is surrounded by ‘northern arctic-tundra zone’-type 108 

vegetation (Birks et al., 2004). The lake has a pH of 5.9, conductivity values are low and 109 

filamentous algae are frequent in the lake and in the lake outflow with extensive submerged 110 

moss growth even at 5 m water depth (Birks et al., 2004). Hydrolab field measurements in 111 

September 2014 revealed that the lake water had a temperature of 4°C, and that the water was 112 

well-mixed by wind and showed no stratification. The geometry of the lake basin is shallow, 113 

and it dips gently towards the deepest part where maximum sediment thickness is ~2.5 m 114 

(Fig. 1D). At present, there are no glaciers in the catchment; however, two perennial snow 115 

patches are present on the plateau in the southern part of the catchment serving as the main 116 

source area for the river feeding Hakluytvatnet (Fig. 1C). 117 



 118 

Figure 1: A) Svalbard and surrounding surface currents; B) NW corner of Svalbard 119 

(topographic) with place names: A=Amsterdamøya, D=Danskøya; C) Geomorphological map 120 

of the study site and catchment area. Orange line denotes inferred former local glacier extent 121 

(cf. section 4.6); D) Bathymetrical map (top) and soft-sediment thickness (below) with coring 122 

sites and GPR profiles. Base maps: Norwegian Polar Institute. Ocean currents data: Institute 123 

of Marine Research, Norway.  124 

 125 

3. METHODS  126 

The environmental reconstruction in this study is based upon a combination of 127 

geomorphological mapping (orthophoto: Norwegian Polar Institute, series S2011_25160), 128 

field ground-truthing, lake coring, and multi-proxy laboratory analyses. A firm chronology 129 

has been established for the lake sediments from AMS radiocarbon dating.  130 



3.1 Lake coring and laboratory analyses 131 

Prior to lake coring in late summer 2012, Hakluytvatnet was surveyed using a Ground 132 

Penetrating Radar (GPR) in order to map the bathymetry and the sediment distribution before 133 

determining suitable coring sites. GPR profiles were collected using a RAMAC GPR from 134 

Malå with a 50 MHz RTA antenna (Fig. 1D). In total, five cores were extracted; two piston 135 

cores (AMP-112; 170 cm; and AMP-212; 247.5 cm) and three gravity cores (AMD-0112; 142 136 

cm; AMD-0212; 42 cm; and AMD-0312; 56 cm) (see Fig. 1D for coring locations). During a 137 

second field excursion (late summer 2014), measurements of the lake water properties (using 138 

a Hydrolab multiparameter water quality instrument) were made, and more detailed mapping 139 

of the catchment area was conducted, including extensive GPR surveying of the ridge 140 

damming the lake.  141 

The sediment cores AMP-112 and AMP-212 were split lengthwise in the lab and one half of 142 

each core were stored for reference. During splitting, both core sections of AMP-212 were 143 

disturbed, and this core was therefore not subject to further analyses. Core AMP-112 was 144 

carefully cleaned and photographed before lithofacies and sedimentological structures were 145 

described based on visual inspection.  146 

For core AMP-112 we measured weight loss-on-ignition (LOI), dry bulk density (DBD) and 147 

water content (WC) (Dean, 1974; Heiri et al., 2001) every 0.5 cm (n =339) using a syringe for 148 

fixed volume extraction (1 cm3). This method was applied for the more minerogenic part of 149 

the core (below 105 cm depth), whereas for the uppermost 105 cm, where abundant aquatic 150 

mosses made it more difficult to apply the syringe (see section 4.2), samples were extracted 151 

using a scalpel. The DBD (volume-dependent) measurements for the upper part were 152 

therefore considered less accurate. Down-core variations in surface magnetic susceptibility 153 



(MS) were measured on the split cores at 0.2 cm resolution using a Bartington MS2E point 154 

sensor.  155 

Geochemical data and radiographic images of AMP-112 were obtained using an ITRAX X-156 

ray fluorescence (XRF) scanner (Croudace et al., 2006) at EARTHLAB, University of 157 

Bergen. A molybdenum (Mo) X-ray tube was used for radiographic measurements, whereas 158 

XRF analyses were performed applying a chromium (Cr) tube, with a down-core resolution of 159 

500 μm. XRF power settings of 30kV and 40 mA were used with a 10 s counting time. Due to 160 

the differences in sediment composition and organic content in the different core sections, we 161 

applied normalization using the conservative redox-insensitive element aluminium (Al) 162 

(Thomson et al., 2006; Löwemark et al., 2011) as a supplement to the single elemental count 163 

rates.  164 

AMP-112 was sampled every cm down-core (from 3-170 cm depth; n =167) for grain size 165 

distribution (GSD) analysis (averaged over 5 runs of each sample), using the Mastersizer 166 

3000 from Malvern Instruments Ltd. connected to the Hydroseries wet dispersion unit 167 

allowing for laser diffraction measurement of particle sizes (Ryżak and Bieganowski, 2011). 168 

Particle absorption index was set to 0.01; particle refractive index to 1.8, and the pump speed 169 

was 2400 rpm. 60% ultra-sonication was applied for 60 s before analysis for all samples, and 170 

each measurement was set to 25s counting time (Sperazza et al., 2004; Ryżak and 171 

Bieganowski, 2011). 172 

Six samples were chosen for diatom analysis from 97, 108, 130, 150, 158, and 160.5 cm depth 173 

in the core to investigate the possible presence of a marine transgressive unit. Diatoms were 174 

isolated from the sediments using standard oxidative techniques modified from Renberg 175 

(1990) and mounted on glass coverslips using Naphrax mounting medium. At least 300 176 

diatom samples were identified from each slide at 1000x under oil immersion and identified 177 



using predominantly arctic diatom floras (e.g. Antoniades et al., 2008). Constrained cluster 178 

analysis (CONISS, broken stick model) performed in the open-source statistical software ‘R’ 179 

(R Development Core Team, 2012) delineated the significant stratigraphic zones. 180 

 181 

3.2 Radiocarbon dating, palaeomagnetic secular variations and age-depth relationship 182 

The surface top 10 cm including the sediment-water interface in core AMD-0212 were 183 

extracted in the field for 210Pb dating. Although the resulting analyses were unsuccessful in 184 

establishing a lead profile for accurate chronological constraint, they revealed lead activity in 185 

the top demonstrating that the sediments on top of AMD-0212 are modern. For radiocarbon 186 

dating, a total of 31 plant macrofossil fragment samples were extracted from cores AMD-187 

0212/AMP-112 (three of the samples did not contain enough carbon to be dated; see Table 1). 188 

An age-depth relationship was established using the Bayesian framework calibration software 189 

code ‘Bacon’ (v. 2.2; Blaauw and Christen, 2011), applied into ‘R’ (v. 3.2.2). Radiocarbon 190 

ages are reported in calibrated radiocarbon years before present (‘cal yr BP’; BP=1950) 191 

according to IntCal13 (Reimer et al., 2013). After the initial run revealed a long period of 192 

extremely low or no sediment accumulation between ~7500 – 5000 cal yr BP (i.e., between 193 

units D and E; cf. sections 4.2 and 4.5), another attempt was performed applying the ‘hiatus’ 194 

function in ‘Bacon’ for this transition between units D and E. 195 

We then attempted to further constrain this radiocarbon age-depth relationship by applying a 196 

palaeomagnetic method known as palaeomagnetic secular variations (PSV) (e.g. Merrill et al., 197 

1996). As sediment archives can contain continuous information on the fine-scale variations 198 

of the geomagnetic field, reconstruction of PSV may serve as an independent stratigraphic 199 

tool in various sediment environments (e.g. Stoner and St-Onge, 2007). A PSV-reconstruction 200 

was therefore carried out on core AMP-112 among other sediment archives from Svalbard 201 



(Ólafsdóttir et al., this issue). This allowed for PSV-based synchronization between AMP-112 202 

and another 14C-dated lacustrine sediment core ‘HAP0212’ from Lake Hajeren, a glacier-fed 203 

lake ca. 60 km south of Amsterdamøya (van der Bilt et al., 2015). Based on the PSV-204 

correlation, a total of 43 radiocarbon dates from both cores were combined to a single 205 

composite age-model where each radiocarbon date was PSV-correlated within the 2σ 206 

radiocarbon calibration uncertainty range (with some exceptions, c.f. section 5.1/Ólafsdóttir et 207 

al., this issue), resulting in a mutual depth scale and age-depth relationship for further proxy 208 

comparison. Additional details on the PSV-synchronization and construction of the composite 209 

age model are discussed in Ólafsdóttir et al. (this issue).  210 

 211 

Table 1: Radiocarbon ages from AMD-0212 and AMP-112. Samples in italics: could not be 212 

dated. δ13C values: graphitisation process introduces significant isotopic fractionation.  *: 213 

Estimate of carbon content (50%) from the sample mass. Calibrated applying IntCal13 curve. 214 

 215 



3.3 Multivariate analysis 216 

Principal Component Analysis (PCA) was applied in order to explore the multi-proxy dataset 217 

from Hakluytvatnet, including LOI, variations in the 90th percentile of the grain size 218 

distribution (GSD90) and 10 geochemical elements (Al, K, Ca, Rb, Ti, Fe, Si, Mg, Mn, Sr) 219 

obtained from the ITRAX XRF scan. Regression analyses revealed a logarithmic relationship 220 

between many of the variables, which warranted a log transformation of all data before 221 

running the PCA, as the analysis assumes linearity between the included variables (e.g. Bakke 222 

et al., 2013). All of the data were then standardized before running the PCA in Canoco for 223 

Windows (v. 4.5; Lepš and Šmilauer, 2003).  224 

 225 

RESULTS 226 

4.1 Geomorphic mapping 227 

An exposed seaward section of the beach sequence damming Hakluytvatnet has previously 228 

been studied by Landvik et al. (2003) and was interpreted as a succession of marine and 229 

glacial proximal sediments underlying glaciolacustrine sediments, capped by subglacial till 230 

containing large angular boulders. The section was dated by Landvik et al. (2003), with 231 

optically stimulated luminescence (OSL) ages clustering around 50 ka BP in the sub-till 232 

section, and correlated with the Kapp Ekholm interstadial (Mangerud et al., 1998). Here we 233 

interpret the topmost part of the ridge (16 m a.s.l.) as a terminal moraine (Fig. 1C). There are 234 

two outlets from Hakluytvatnet cutting down and through the ridge; in the east and in the 235 

west. GPR measurements across the ridge showed that the ridge is composed only of 236 

unconsolidated sediments, meaning that there is no bedrock threshold within the landform 237 

damming Hakluytvatnet.  238 



Ridge-shaped lobate landforms consisting of large angular blocks with only sparse vegetation 239 

cover are present in large parts of the catchment area. These follow the mountain sides as a 240 

continuation of talus (Fig. 1C) and terminate in the sea on the north side of the catchment.  241 

These landforms are interpreted as rock glaciers (e.g. Swett et al., 1980), a feature frequently 242 

observed in polar regions like Svalbard. The rock glaciers are ice-cored and appear to be 243 

talus-derived (Shakesby et al., 1987). Two sets of smaller ridges in the southern cirque valley 244 

are interpreted as two generations of recessional moraines (Fig. 1C). The remainder of the 245 

valley floor is draped by a thin or discontinuous cover of till. 246 

 247 

4.2 Lake core lithostratigraphy 248 

The AMP-112 core was divided into five main stratigraphic units: A, B, C, D and E, based on 249 

visual logging (Fig. 2). A grain-size distribution (GSD) surface plot (Fig. 3) shows the main 250 

grain-size mode changing accordingly between the lithostratigraphic units. A cumulative plot 251 

of the GSD (Fig. 3) highlights the silt-sized grains constituting the background sediment in 252 

the AMP-112 record; where on average ~80% of the sediment is 63 µm or smaller.  253 

Unit A (170-159 cm) consists of a grey to olive brown matrix-supported diamicton. 254 

The unit is massive, compact, and poorly sorted. The organic content (LOI) is low (~5% for 255 

most of the unit), water content is close to zero (~4 %) whereas the density (DBD) values are 256 

relatively high (~1.1 g/cm3). The X-ray image (Fig. 2) shows the dense character of the unit, 257 

indicated by the dark colouring. Geochemical elements reflecting minerogenic content (e.g. 258 

Ti, Al, Ca, K) have their highest values throughout the core in unit A. Unit A is the only unit 259 

where MS shows high amplitude fluctuations from 6 up to 22 (Si 10-5) (MS results not shown 260 

in Fig. 2 due to near-zero values throughout the rest of the core). Grain sizes range from clay 261 

to gravel, with clasts >2.5 cm and a matrix dominated by sand (~50%) and silt (~48%) (Fig. 262 



3). Sub-rounded to sub-angular clasts >2.5 mm are scattered throughout the unit, and these 263 

large clasts were removed before GSD analysis. Small amounts of terrestrial macrofossils 264 

were present. From 159.3-159 cm depth, a pale yellow to grey horizon consisting mainly of 265 

clay, silt and very fine sand is visually prominent (Fig. 2). This horizon is considered to 266 

represent an ‘event’ layer, i.e. a layer of instantaneous deposition. The transition between 267 

units A to B is sharp.  268 

Unit B (159-155 cm) consists of olive/dark brown laminated silty sediments, with 269 

mosses intertwined. Laminations range from <1 mm up to 2 mm. The transitions below and 270 

above are sharp. The layering of this 4-cm thick section is chaotic, and it contains a mix of 271 

grain sizes from clay and silt (~72%) to sand (~24%). LOI increases from the low values in 272 

Unit A to an average of ~12%, whereas DBD decreases to average ~0.7 g/cm3. Because the 273 

geochemistry indicated that that Unit B potentially represented a marine-brackish transition 274 

(sulphur peak in Fig. 2), we performed diatom analyses in order to investigate the potential for 275 

marine impact on lake sedimentation. Diatom results (cf. Section 4.3 below) revealed that 276 

Hakluytvatnet was terrestrial and aquatic throughout the whole record.  277 

Unit C (155-109 cm) consists of olive brown to very dark greyish brown laminated 278 

silty gyttja. Laminations are finest in the lowermost part (155-142.5 cm), which is also 279 

detected in X-ray imagery (Fig. 2). LOI ranges from ~13 to ~35%, with a mean of ~26% and 280 

a trend of increasing organic content upwards where the highest values are found between 142 281 

and 119.5 cm. DBD values range from 0.15 to 0.60 g/cm3, with a mean value of ~0.22 g/cm3. 282 

Grain sizes vary in range from clay to coarse sand (Fig. 3), with most of the sediment being 283 

silt-sized, on average ~77%. A thin, minerogenic light yellowish brown horizon from 142.5-284 

142 cm with sharp transitions above and below is characterised by a drop in organic content 285 

and a peak in DBD, which is also reflected in the X-radiographic image. Clay and very fine 286 

silt also peaks at this depth, as well as increased Ti count rates indicating more detrital input. 287 



We consider that this thin layer might represent an instantaneous depositional event; however, 288 

it is not omitted from age-depth modelling. At 120.5-119.5 cm depth a light-coloured 289 

minerogenic horizon can be seen, which is characterized by greater clay and silt content 290 

(~84%) than the sediments below and above. Density increases are reflected in both DBD and 291 

X-ray imagery, and organic content drops to <15%. As with the above-mentioned light-292 

coloured horizon at 142.5-142 cm, we acknowledge that this layer might represent an event, 293 

however; the gradual transitions to this layer indicates that it might represent normal 294 

sedimentation, and it is therefore not omitted from the age-depth modelling. 295 

Unit D (109-105 cm) consists of massive, olive brown gyttja silt with an irregular 296 

contact to Unit C below. LOI averages ~16% and DBD averages 0.34 g/cm3. The higher 297 

density in this unit compared to unit C below can also be seen in the X-radiographic image. 298 

The geochemical detrital parameters increase (Ti, Ti/Al) as well as Si/Ti indicating a potential 299 

increase in lake productivity (Fig. 2). Small amounts of macrofossils are present. GSD (Fig. 300 

3) shows that this section contains less clay (averaged ~2.9%) than the sections above and 301 

below, and that it consists mainly of silt (~71%) and sand (~26%), with most of it belonging 302 

in the range of medium silt to very fine sand.  303 

Unit E (105-0 cm) consists of organic olive brown and very dark brown gyttja, where 304 

aquatic mosses are abundant throughout the unit. Weak laminations displaying different 305 

colouring and minerogenic content than the dominant dark brown organic-rich facies are 306 

visible, and are also reflected in the varying density seen in the X-ray image (Fig. 2). Water 307 

content is high (>96% at certain depths) throughout the unit, and some of the geochemical 308 

minerogenic indicators reflect this by yielding lower count rates (Ti count rates in Fig. 2) 309 

(Tjallingii et al., 2007). LOI is on average ~29%, ranging from ~16 to ~43%. Sediments are 310 

predominantly silt-sized, with the highest averaged silt values in the core ~80%, ranging from 311 

~65-86%. Sand content is on average ~17%; ranging from ~11-33% with most of it ranging 312 



from very fine to fine sand. From 66-62 cm depth and from 7-3 cm depth a relative increase in 313 

grain size is observed (Fig. 3). 314 

 315 

Figure 2: Compiled selected sedimentological parameters from AMP-112. Optical line-scan 316 

image and radiographic image show the sediment colour and density (darker colours represent 317 

denser sediment), respectively. Lithological log shows unit division (also indicated in 318 

horizontal light grey bars). All XRF data are smoothed to 0.5 cm resolution. Ti count rates are 319 

plotted for both the whole core length, and also zoomed in for the upper 105 cm due to lower 320 

count rates (note change in scale). Ti count rates co-vary with Ti/Al ratio. Si/Ti is often used 321 

as an indicator of biological silica (productivity) (e.g. Balascio et al., 2011; Melles et al., 322 

2012), and also co-varies with Ti/Al. Mn/Fe indicates increasingly oxic conditions (e.g 323 

Naeher et al., 2013) towards the top of the core. Horizons of inferred instantaneously 324 

deposited sediments (cf. section 4.2) are highlighted with dashed lines. 325 

 326 

 327 



 328 

Figure 3: Selected grain size parameters for core AMP-112. GSD (volume %) plotted as a 329 

surface diagram, with darker blue/purple colour where the frequency of particular grain sizes 330 

is highest (plotted using software 'EMMAgeo'; Dietze and Dietze, 2013). The well-sorted, 331 

fine-grained Unit E is easily visually distinguishable from the coarser-grained units A-D. 332 

Cumulative plot highlights the background sediment with silt making up most of the 333 

sediment. 90 percentile GSD reveals that the volume of Unit A contains coarser-grained 334 

particles, and the more similar variance in grain sizes throughout units B-E. LOI (black line, 335 

%) is plotted on inverted scale, reflecting varying organic content throughout the core, co-336 

varying inversely with GSD90 (blue, R=-0.5). Note rapid drops in organic content during 337 

intervals of larger GSD.  338 

 339 

4.3 Environmental evolution of Hakluytvatnet – inferences from diatom analyses 340 



The main findings from the diatom analyses are presented in Fig. 4, and placed in 341 

environmental context below. 342 

Two significantly different environments are identified from the diatom analysis: an early 343 

unstable, silt- and clay-dominated environment (units A-C), and a later, more productive clear 344 

water lake environment (units D-E). Initially, in the sample from Unit A (160.5 cm), the 345 

diatom flora is characterized by the presence of species of Muelleria, Diadesmis, Luticola 346 

which are associated with polar subaerial environments, including cryoconite, soils, and 347 

microbial mats (cf. Johansen, 2010; van de Vijver et al., 2014). Pinnularia spp. and 348 

Stauroneis gracilis complex = cf. S. gracilis, S. pax, S. vandevijveri are also present, the latter 349 

of which have been found in very shallow pools/seepages elsewhere in the high Arctic (van de 350 

Vijver et al., 2004). Together, these suggest that Hakluytvatnet was not yet a lake, but a 351 

terrestrial landscape with a nascent soil and biofilm microbial community. This unit 352 

transitions to Unit B (sampled at 158 cm), where the soil diatoms have largely disappeared, 353 

and are replaced by Navicula digitulus, as well as small pioneering Fragilaria s.l. species 354 

(Staurosirella pinnata, Pseudostaurosira pseudoconstruens), a community characteristic of 355 

cold, oligotrophic, postglacial lake environments with high sedimentation rates (cf. Perren et 356 

al., 2012; Wojtal et al., 2014). In two samples from Unit C (150 and 130 cm), small 357 

fragilarioids continue to dominate (S. pinnata, P. pseudoconstruens, S. exiguiformis) as well 358 

as very small Navicula. cf. submuralis, suggesting a typically nutrient-poor, high-arctic lake, 359 

where suspended sediment load still precludes the development of a planktonic diatom 360 

community. Samples from units D (108 cm) and E (98 cm) record a fundamental shift to a 361 

more productive lake environment that supports a higher diversity of benthic as well as 362 

planktonic taxa (e.g. Aulacoseira distans). In these last units, most of the clay is gone, 363 

improving the light quality, and allowing for colonization and enhanced biological activity in 364 



all parts of the lake. This is in agreement with the observed increase in Si/Ti at the transition 365 

to Unit E, which also suggests an increased production of biogenic silica (Fig 2). 366 

 367 

Figure 4: Percent abundance of diatom taxa that indicate environmental evolution of the lake 368 

and landscape. The two significant zones in the core stratigraphy are highlighted.  369 

 370 

4.4 Principal component analysis 371 

Ordination with PCA returned one significant Principal Component (PC) axis; explaining 372 

49% of the variability in the dataset from the upper 105 cm of AMP-112. Most of the 373 

geochemical elements, except Sr and Mg, align closely with PCA1, with Mn correlating 374 

positively with LOI and the remaining elements correlating inversely with LOI (Si, K, Ca, Ti, 375 

and Fe). The second PC axis captures mainly the variability of GSD90 and Mg, although this 376 

axis may not be significant, explaining only 11% of the total variability. This shows that 377 

variations in grain size are not correlated with general changes in geochemistry, although 378 

there is a weak inverse correlation with Mg. Visually it is apparent that large GSD 379 

perturbations often occur at the same time as large fluctuations in the XRF data, but there is 380 



no clear relationship in the direction of change, and additionally there is a long-term trend in 381 

the geochemical elements that is not observed in GSD. A linear detrending of the dataset 382 

increases the correlation between GSD90 and LOI, whereas it decreases the correlation 383 

between LOI and the geochemical elements. This could indicate that the long-term trend in 384 

the XRF-data is driven by LOI and water content through dilution of the XRF signal, which 385 

means that geochemistry and LOI are not governed by the same process(es) on shorter 386 

timescales. After detrending, the strongest correlation is found between GSD90 and LOI (R=-387 

0.50), suggesting some common driver of these signals.   388 

 389 

4. 5 Chronology and sedimentation rates 390 

Compaction during piston coring caused loss of the sediment-water interface in core AMP-391 

112, and pressed the upper soft sediments together. Intra-basin correlation between the short 392 

cores (AMD-0212 and AMD-0112) and AMP-112 was done based on XRF Ti count rates in 393 

order to construct a common depth scale for the cores and produce a composite age-depth 394 

model. From this correlation, it was found that 23 cm was missing from the top of core AMP-395 

112. In Fig. 5A the radiocarbon-based AMP-112 age-depth model produced in ‘Bacon’ is 396 

stippled with the 95% uncertainty range derived from the radiocarbon ages highlighted in 397 

grey. Also plotted in Fig. 5A is the PSV-synchronized age-depth relationship constructed 398 

from radiocarbon dates from both Hakluytvatnet and Lake Hajeren along with several PSV-399 

synchronized tie points between the lakes.  400 

Sediment accumulation rate (SAR) at Hakluytvatnet (Fig. 5B) changed significantly 401 

throughout the core. Periods of non-deposition, or extremely low SAR, <0.01 (cm/yr), are 402 

found at two intervals; from ~12,400 – 9600 cal yr BP and from ~7500 – 5000 cal yr BP. 403 

Between these two periods, a significant increase in SAR (up to ~0.05 cm/yr) is seen around 404 



9400 cal yr BP. After 5000 cal yr BP, the SAR increases and varies more frequently with 405 

larger amplitudes than in the lower sediment sequence. Several intervals of increased SAR are 406 

detected: ~ 5000 – 4500; ~ 3900 – 3600; 3000 – 2600; 2100 – 1600; and between ~ 500 cal yr 407 

BP and present (Fig. 5B). 408 

 409 

Figure 5: A) Age-depth relationship for cores AMP-112 and AMD-0212. Radiocarbon 410 

(‘Bacon’) age-model (red line) with 95% confidence interval (grey shaded area); blue points 411 

denote individual calibrated 14C ages. ‘Best’ age-depth relationship (red line) is based on the 412 

weighted mean age for each depth. The PSV-derived age-depth model is marked as a black 413 

line including colour-coded PSV-derived radiocarbon ages from AMP-112 and AMD-0212, 414 

PSV tie-points (Ólafsdóttir et al., 2016), and radiocarbon ages from HAP0212 (van der Bilt et 415 

al., 2015). PSV-derived age model is truncated at transition to Unit A (159 cm depth AMP-416 

112 depth scale; c.f. section 5.2). Depth scales are shown both as the combined depth scale 417 



coupling AMD-0212 and AMP-112 (left) and as individual AMP-112 depth scale (right) (i.e.: 418 

+23 cm [yellow shaded area] added to AMD-0212; c.f. section 4.5. B) Sediment accumulation 419 

rate calculated from ‘Bacon’-derived age-depth relationship (AMP-112 core top age: ~1150 420 

cal yr BP).  421 

4.6 Equilibrium-line altitude reconstruction 422 

Modern-day regional equilibrium-line altitude (ELA) is situated above the highest point of the 423 

catchment area, i.e. above ~400 m a.s.l. (regional ELA overview in: Hagen et al., 2003). We 424 

estimated the ELA of the glacier that deposited the moraine ridge NW of the lake (Fig. 1C) 425 

based on a simple cartographic reconstruction of the palaeo-glacier’s hypsometry (orange 426 

outline in Fig. 1C). Calculating palaeo-ELAs can be done in several ways, but due to the few 427 

constraints available to define the glacier geometry (e.g. lateral moraines), we have chosen to 428 

apply the Accumulation Area Ratio (AAR) and the Area-Altitude Balance Ratio (AABR) 429 

methods (e.g. Benn and Lehmkuhl, 2000; Osmaston, 2005). 430 

The AAR method assumes that the accumulation area constitutes a fixed ratio of the total 431 

glacier area, and the ratio applied for cirque and valley glaciers (as here) is normally ~0.6 432 

(Benn and Evans, 1998; Rea, 2009), whereas the AABR method takes into account both 433 

glacier hypsometry and the difference between the accumulation and ablation gradients (Rea, 434 

2009). We calculated ELAs for the palaeo-glacier using a range of AAR values between 0.65 435 

and 0.45, which returned ELAs ranging from 50-180 m a.s.l.; with a mean of 60 and 125 m 436 

a.s.l. for AAR of 0.6 ±0.5 and 0.5 ±0.5, respectively (Table 2). As such, we find that the 437 

hypsometry of the palaeo-glacier, which includes a steep and narrow part between 150 and 438 

250 m a.s.l., makes it very sensitive to small changes in accumulation area within the likely 439 

AAR range investigated here. The AABR ratios applied are calculated from the regional 440 

Svalbard range (2.13 ±0.52) from the compilation in Rea (2009) and are also presented in 441 

Table 2. The palaeo-ELAs calculated applying the AABR method display a narrower range 442 

from 150-175 m a.s.l., which is within the wider AAR range. With the limited data available, 443 



we conclude that the ELA of the Hakluytvatnet palaeo-glacier was situated somewhere 444 

between 50 – 180 m a.s.l. when the moraine ridge north of Hakluytvatnet was deposited. 445 

Although there are large uncertainties in our ELA estimate, it highlights that the regional ELA 446 

does not have to be lowered very much to allow glaciation in the catchment, i.e. in the range 447 

of 100-200 m (Hagen et al., 2003). 448 

 449 

Table 2: ELA’s calculated for the reconstructed palaeo-glacier covering Hakluytvatnet. 450 

 451 

 452 

DISCUSSION 453 

The main objective of this study has been to reconstruct the Late Glacial and Holocene 454 

climate history of Amsterdamøya based on sediments deposited in lake Hakluytvatnet. Below 455 

we discuss the deglaciation history, the large environmental changes observed in the Early- 456 

and Mid-Holocene, and finally, late Holocene changes in hydroclimate, based on 457 

interpretations of the lake record. 458 

 459 

5.1 Chronology 460 

The results from PSV-synchronizing between the lakes Hakluytvatnet and Hajeren highlight 461 

the potential of applying this methodology on high-Arctic lakes where robust radiocarbon 462 



chronologies are usually challenging to construct due to a general lack of organic detritus. 463 

However, due to two intervals in the core showing relatively large offsets in age between the 464 

two age-modelling approaches, as well as the large number of radiocarbon ages obtained for 465 

the Hakluytvatnet lake record (n=28), we have chosen to simply use the ‘Bacon’-derived age-466 

depth relationship for plotting our lake proxies against age. 467 

 468 

5.2 Late Glacial ELA reconstruction 469 

The massive diamicton constituting Unit A in core AMP-112 from Hakluytvatnet is 470 

interpreted as a basal till deposited just prior to the final deglaciation of the Hakluytvatnet 471 

catchment. Two radiocarbon dates within the till, and one directly overlying it, returned 472 

overlapping ages (see Table 1) centred around 12,800 cal yr BP. From the geomorphological 473 

mapping, our interpretation is that the moraine ridge deposited outside Hakluytvatnet (Fig. 474 

1C) was formed by a local cirque glacier occupying the catchment covering the lake, and the 475 

basal till in AMP-112 is therefore interpreted to be related to this local glacier re-advance and 476 

not the Barents Sea Ice Sheet (BSIS). During the Last Glacial Maximum (LGM) ice extended 477 

to the shelf break some 8 km northwest of Amsterdamøya (Ingólfsson and Landvik, 2013), 478 

leaving most of the Hakluytvatnet catchment covered by a glacier, although the highest areas 479 

of Amsterdamøya were probably ice-free (Landvik et al., 2003). The Hakluytvatnet catchment 480 

might therefore have become more-or-less ice-free when the BSIS first retreated from the 481 

northwest Spitsbergen area around ~13,800 cal yr BP (~12 14C ka BP) (Ingólfsson and 482 

Landvik, 2013), and from our interpretation a local cirque glacier then formed and advanced 483 

across Hakluytvatnet, before finally retreating in the early Younger Dryas (~12,800 cal yr 484 

BP). This could imply that this glacier advance commenced sometime during the warmer 485 

Bølling-Allerød period, and that it was initiated by increased precipitation and favourable 486 



wind conditions in the form of prevailing polar easterlies (Birgel and Hass, 2004). During the 487 

transition to the colder YD, moisture starvation induced by increased sea-ice cover (e.g. 488 

Müller et al., 2009) likely caused the demise of the cirque glacier, and the Hakluytvatnet lake 489 

has not been covered by a glacier ever since. OSL and radiocarbon ages of the sediment 490 

(‘valley-fill’) below the moraine ridge centred around 50 ka (Landvik et al., 2003) and 491 

indicate that the stratigraphically younger moraine was deposited sometime after 50 ka. Thus, 492 

we acknowledge that the moraine ridge might be older than the glacier event detected in the 493 

sediment core, but our interpretation that Unit A is a subglacially deposited diamict implies 494 

that the glacier at least covered the part of the lake where the core was retrieved and the ridge 495 

acts as a maximum estimate of the palaeo-glacier extent. As there are no indications of marine 496 

sedimentation in Hakluytvatnet, sea level must have remained below the top part of this ridge 497 

at 16 m a.s.l. ever since deglaciation and it is therefore not necessary to adjust our estimated 498 

palaeo-ELA due to changes in relative sea level. Relative to the highest point of the present-499 

day snowfield (~400 m a.s.l.; Fig. 1C), the reconstructed ELA lowering is on the order of 500 

~220 – 350 m (AAR) and from 225 – 250 m (AABR) (Table 2). This is comparable with YD 501 

ELA lowering in Northern Norway of ~370 m (Rea and Evans, 2007) and a recent study from 502 

Northern Norway showing 220 and 130 m ELA lowering during the Late Glacial and the YD, 503 

respectively (Wittmeier et al., submitted).  504 

Our ELA estimate is the first YD ELA estimate from NW Svalbard; in western Svalbard the 505 

glacier extent has generally been thought to be larger during the LIA than during YD  506 

(Mangerud and Landvik, 2007). This may reflect that the west coast glaciers were located in 507 

the precipitation shadow from possible prevailing YD easterlies (Birgel and Hass, 2004), 508 

thereby reducing accumulation on these glaciers. The Hakluytvatnet catchment receives 509 

snowdrift from the plateau, though mostly from snow that accumulates from N-NE winds, 510 

which could further support the idea that YD atmospheric conditions (e.g. Mayewski et al., 511 



1993) could support a glacier in the Hakluytvatnet catchment for a short while before it 512 

started retreating.  513 

 514 

5.3 Early and Mid-Holocene depositional environment 515 

During the early- and mid-Holocene, the depositional environment changed significantly for 516 

Hakluytvatnet, which is easily detected in the lithostratigraphy of AMP-112. Large shifts in 517 

the environment are reflected in changing SAR and geochemical properties, as well as 518 

environmental shifts detected in diatom assemblages when the lake was transitioning from a 519 

dry polar soil/biofilm environment after deglaciation to an oligotrophic lake (section 4.3). 520 

During deposition of Unit B (~12,800 – 11,900 cal yr BP), the diatom assemblage indicates 521 

that the sedimentary environment was likely a cold postglacial lake environment (cf. section 522 

4.3), and this is further supported by low Si/Ti values (Fig. 2), which reflect low production of 523 

biogenic silica (e.g. Balascio et al., 2011; Melles et al., 2012). Unit C represents the early-524 

Holocene depositional environment in lake Hakluytvatnet (~11,900 – 7700 cal yr BP), and is 525 

clearly distinguishable from Units A and B below. The diatom assemblage is typical of a 526 

nutrient-poor, high-Arctic lake where not much is living in the photic zone. Unit C is 527 

suggested to reflect an anoxic depositional environment (as indicated by high sulphur counts 528 

and low Mn/Fe ratios; Fig. 2) and this might, combined with the nutrient-poor environment 529 

indicated by the diatom analyses, suggest that the lake was covered by lake ice for a longer 530 

period of the year than what is presently the case. Freshwater forcing by meltwater pulses 531 

originating from the decaying ice sheets in the North Atlantic induced enhanced seasonality 532 

and unstable climatic conditions during the Early Holocene (e.g. Beck et al., 1997; Stager and 533 

Mayewski, 1997; Renssen et al., 2002), and we suggest that the more extreme seasonality 534 

during the Early Holocene (e.g. Haug et al., 2001) could have acted as a driver for 535 



stratification of the lake, with more severe winters inducing a longer ice cover season. 536 

Additionally, shallowing lake levels could have progressed until the aquatic mosses were able 537 

to establish on the bed of the succeeding clearer lake waters (~5000 cal yr BP), in conjunction 538 

with turnover by wind on the smaller surface area of the lake preventing any strong 539 

stratification ever since. 540 

Unit D (~7700 – 5000 cal yr BP) either represents a period of very low sedimentation rate, or 541 

a hiatus in deposition when the lake might even have disappeared completely as a result of the 542 

warmer and drier climate of the Mid-Holocene on Svalbard, as is recorded in terrestrial 543 

(Birks, 1991) and marine records (Salvigsen, 2002). We can only speculate as to why the lake 544 

dried out, but conclude that there was a large shift in depositional environment at the time of 545 

Unit D being deposited, which is also reflected in the diatom assemblages with a shift to a 546 

more diverse lake environment and improved light quality in Unit E. Increased productivity is 547 

also reflected in the large increase in Si/Ti (Fig. 2). At this point we make no conclusions 548 

about what caused this transition, and we have chosen to focus mainly on the last 5000 years 549 

for the remainder of this discussion, because it reflects a stable depositional environment in 550 

Hakluytvatnet, and because this period is particularly interesting with respect to the 551 

Neoglacial period on Svalbard (e.g. Røthe et al., 2015). Furthermore, our age-model is well 552 

constrained for this time period. 553 

 554 

5.4 Neoglacial runoff and productivity changes in Hakluytvatnet 555 

The late-Holocene part of the sediment record from AMP-112 represented by Unit E covers 556 

the time period from ~5000 cal yr BP to ~1150 cal yr BP (core top age). Based on our 557 

geomorphological mapping and understanding of active earth surface processes in the 558 

catchment, we interpret changes in detrital input to Hakluytvatnet during the last 5000 cal yr 559 



BP (i.e. the Neoglacial) as primarily reflecting precipitation- or meltwater-induced sediment 560 

transport from the surrounding catchment area, as the flat topography surrounding the lake 561 

does not promote mass-wasting processes. Changes in grain size (GSD90) might therefore 562 

reflect changes in the intensity of precipitation events or increased erosional energy associated 563 

with runoff from melting snow. The fairly strong (negative) correlation (R=-0.5) between 564 

GSD90 and detrended LOI suggests that periods of more intense precipitation and runoff is 565 

also an important driver for increased minerogenic sedimentation in the lake. Based on the 566 

GSD90 record, increased runoff intensity at Hakluytvatnet is observed during four distinct 567 

intervals (grey vertical bars in Fig. 6): between ~5000 – 4750 cal yr BP; between ~3150 – 568 

3000 cal yr BP; between ~2250 – 2150 cal yr BP; and between ~1600 – 1350 cal yr BP (top 569 

of runoff record; Fig. 6A).  570 

The diatom analysis provides snapshots of detailed environmental information for 571 

Hakluytvatnet (Fig. 4), and it shows a distinct change to a more productive clear-water 572 

environment around 5000 cal yr BP. At the same level we observe a strong increase in the 573 

XRF Si/Ti ratio, which in some cases can act as a proxy for biogenic silica (e.g. Balascio et 574 

al., 2011; Melles et al., 2012), and thereby reflect internal productivity in the lake. This is 575 

based on the argument that Ti can only be provided to the lake sediments through detrital 576 

input while Si can be provided both through detrital input and through diatom growth in the 577 

lake. Observing that the sharp increase in Si/Ti around 5000 cal yr BP coincides with a 578 

change in diatom flora that reflects increased productivity, we suggest that the Si/Ti ratio does 579 

reflect production of biogenic silica in Hakluytvatnet, thereby providing a high-resolution 580 

record of productivity change for the entire Neoglacial period on Svalbard. The highest 581 

productivity is indicated between 5000-4000 cal yr BP, after which a gradual decrease is seen 582 

(Fig. 6B). This pattern follows the general trend of decreasing insolation at high northern 583 

latitudes; however, the maritime setting of Hakluytvatnet should also make this site highly 584 



sensitive to oceanic influence. When initiation of modern oceanographic conditions in the 585 

eastern Fram Strait occurred ~5200 cal yr BP (Werner et al., 2013) this allowed for the WSC 586 

to transport heat and moisture up to NW Svalbard. This adjustment in oceanic configuration 587 

could explain the change in boundary conditions in the Hakluytvatnet catchment around the 588 

same time. During the Neoglacial, the decreasing trend in summer insolation  is also reflected 589 

in increasing sea ice extent in the adjacent Fram Strait (Müller et al., 2012) (Fig. 6C). 590 

Productivity in Hakluytvatnet (Fig. 6B and C) displays similar trends as changes in sea-ice 591 

extent in the Fram Strait, indicating that the distribution of sea ice impacts lake productivity in 592 

Hakluytvatnet. Reduced sea ice thereby seems to promote lake productivity, reflecting milder 593 

and wetter (i.e. more maritime) conditions. The Si/Ti record from Hakluytvatnet could 594 

therefore provide a high-resolution record of local sea ice conditions around Amsterdamøya. 595 

As sea ice cover is a key factor in controlling the moisture availability for Svalbard, 596 

particularly for the very northernmost coast where Hakluytvatnet is situated, it should also 597 

impact runoff from the Hakluytvatnet catchment. Looking at the GSD90 record, we observe 598 

that there seems to be an increase in runoff to Hakluytvatnet during periods of decreasing sea 599 

ice extent, as reflected in higher Si/Ti values (Fig. 6C). We therefore suggest that the runoff 600 

record reflects the atmospheric moisture supply to the Hakluytvatnet catchment, which is 601 

highly dependent on the prevailing sea-ice conditions. There might also be a component 602 

related to atmospheric circulation in the runoff record, reflecting changes in e.g. the Arctic 603 

Oscillation (AO). In instrumental data, a link is seen between increased snow-depth in SW 604 

Svalbard and a more negative AO index (Luks et al., 2011), making it possible that this large-605 

scale circulation feature might affect runoff to Hakluytvatnet, though variability in sea level 606 

pressure caused by AO changes might affect sea ice configuration that in turn affect moisture 607 

supply to the Hakluytvatnet catchment. However, as our runoff record does not overlap with 608 



instrumental data, we cannot establish a firm connection between atmospheric circulation and 609 

our lake data. 610 

 611 

Figure 6: A) Runoff record from Hakluytvatnet (standardized GSD90); B) lake productivity 612 

record (XRF Si/Ti ratios, coupling AMP-0212 and AMP-112 [cf. section 4.5 and Fig. 5]); C) 613 

June insolation (dashed line) at 80°N (Huybers, 2006) and reconstructed sea ice variability in 614 

the Fram Strait from sea ice biomarker proxy IP25 (sediment core MSM5/5-712-2) (Müller et 615 

al., 2012). Also plotted in C) are Si/Ti XRF ratios as in B) to highlight similarity in trend. 616 

Grey vertical bars denote periods with relatively large runoff. 617 

 618 

CONCLUSIONS 619 



- Fundamental changes in the depositional environment represented by the sediments 620 

reveal large changes in the hydrology of northwest Svalbard during the Holocene and 621 

the Hakluytvatnet record gives insight into these large changes 622 

- We present the first evidence for a larger YD glacier extent on Svalbard than during 623 

the LIA and propose that the glacier extent was governed by favourable winds and 624 

precipitation before subsequent YD cooling and sea-ice expansion led to glacier 625 

starvation. Estimated YD equilibrium-line altitude (ELA) lowering is 285±60 m, and 626 

the glacier retreated rapidly up-valley ~12,800 cal yr BP 627 

- Between 12,800 – 11,900 cal yr BP dry conditions precluded the formation of a lake 628 

or cold conditions led to a shallow lake that was frozen to the bottom. Sediment 629 

accumulated very slowly 630 

- Between 11,900 – 7500 cal yr BP increased moisture led to a lake in the basin. In-631 

wash of silt from the catchment made it a murky lake and restricted the growth of 632 

aquatic mosses 633 

- Between 7500 – 5000 cal yr BP the lake completely dried up and no sediment was 634 

deposited, likely as a result of the warm Holocene Thermal Optimum 635 

- The onset of Neoglacial conditions ~5000 cal yr BP resulted in a positive moisture 636 

balance for the site and allowed the lake to form. Clear water allowed aquatic moss to 637 

grow. Punctuated episodes of clastic in-wash point toward rapid snowmelt events or 638 

high precipitation events that carried minerogenic material into the lake 639 

- The sedimentary signal in the lake since 5000 cal yr BP reflects runoff from the 640 

catchment, and we constructed a time-series representing runoff at NW Svalbard. 641 

Further, we have constructed a time-series reflecting productivity that seems highly 642 

influenced by sea ice variability, thereby showing the potential of applying 643 



productivity changes in Hakluytvatnet as a high-resolution proxy for sea ice variability 644 

at the northwesternmost corner of Svalbard 645 

 646 
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