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ABSTRACT 

P- to S- wave ratios are important seismic characterisation attributes. Velocity ratios are 

sensitive to the petrophysical properties of rocks and to the presence of gas. Attenuation 

ratios have also been shown to be sensitive to the presence of partial liquid/gas saturation. 

The relationship between liquid/gas saturation and P- and S- wave ratios have been used to 

distinguish gas saturated rocks from liquid saturated rocks. Aligned fractures are common in 

the Earth’s crust and cause seismic anisotropy and shear wave splitting. However, most 

existing relationships between partial gas/liquid saturation and P- and S-wave ratios are for 

non-fractured rocks. We present experimental results comparing the effects of changing water 

saturation on Qs/Qp versus Vp/Vs ratios between a non-fractured rock and one containing 

fractures aligned parallel to wave propagation direction. We also study the effects of aligned 

fractures on the response of   Vp/Vs to changing water saturation using synthetic fractured 

sandstones with fractures aligned at 45
o
 and parallel to wave propagation direction. The 

results suggest that aligned fractures could have significant effects on the observed trends, 

some of which may not be obvious. Fractures aligned parallel to wave propagation could 

change the response of Qs/Qp versus Vp/Vs ratios to water saturation from previously reported 

trends. Shear wave splitting due to the presence of aligned fractures results in two velocity 

ratios (Vp/Vs1 and Vp/Vs2). The fluid independence of shear wave splitting for fractures 

aligned parallel to wave propagation direction means the difference between Vp/Vs1 and 

Vp/Vs2 is independent of water saturation. For fractures aligned at oblique angles, shear wave 

splitting can be sensitive to water saturation and consequently frequency-dependent, which 

can lead to fluid and frequency dependent difference between Vp/Vs1 and Vp/Vs2. The effect 

of aligned fractures on Vp/Vs ratios not only depends on the fracture effects on both P- and S-

wave velocities but also on the effects of water saturation distribution on the rock and 

fracture stiffness, and hence on the P- and S-wave velocities. As such, these effects can be 
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frequency-dependent due to wave-induced fluid flow. A simple modelling study combining a 

frequency-dependent fractured rock model and a frequency-dependent partial saturation 

model was used to gain valuable interpretations of our experimental observations and 

possible implications, which would be useful for field seismic data interpretation. 
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1. INTRODUCTION 

Relating measured seismic properties (e.g. velocity and attenuation) to the physical properties 

of rocks (e.g. lithology, fluid content, fractures) is an important aspect of seismic exploration. 

Many existing relationships between seismic properties and physical properties of rocks have 

been established for non-fractured rocks; however, many reservoir formations contain 

fractures which are usually aligned. The effects of aligned fractures on these relationships are 

still not well explored. Elastic wave properties in rocks depend on the rock properties (e.g. 

porosity, pore/grain geometry, matrix mineral) and the pore fluid. The fact that the individual 

properties are sensitive to several parameters means observation of a single property alone 

may not be sufficient for characterizing rocks. However, since both P- and S-waves respond 

differently to changes in rock physical properties (e.g. saturation), S-waves have been 

suggested as a normalizing quantity with which to compare P-wave properties (e.g. Pickett 

1963, Tatham and Stoffa 1976, Winkler and Nur 1982, Klimentos 1995).  

The ratio of P- to S- velocity (Vp/Vs) has long been shown to be sensitive to lithology, 

saturation and porosity (Pickett 1963, Castagna, Batzle and Eastwood 1985), and has since 

been a commonly used tool in exploration seismology and formation evaluation. Similar 

relationships between attenuation and petrophysical properties of rocks have been sought 

with much less success and we are still far from inferring petrophysical properties from 

attenuation than from velocities (Dvorkin and Mavko 2006). However, the ratio of P- to S-

wave attenuation (Qs/Qp) has been shown to be a good discriminator of partial gas/water 

saturation and to be more sensitive to the amount of water saturation over a wider range than 

the velocity ratio (Murphy 1982, Winkler and Nur 1982, Klimentos 1995). Consequently, 

Winkler and Nur (1982) suggested that combining both Qs/Qp and Vp/Vs could improve 

estimation of the degree of saturation. Velocity ratios have therefore been extensively applied 

to the interpretation of seismic data for petrophysical and fluid properties and attenuation 
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ratios with more limited applications have been used for fluid discrimination (Klimentos 

1995, Sun et al. 2000, Koesoemadinata and McMechan 2001, Dvorkin and Mavko 2006). 

Studies combining both attenuation and velocity data for saturation estimation are limited 

and, furthermore, are constrained to approximately isotropic rocks. In particular, the effect of 

aligned fractures on these relationships is still poorly understood even though such conditions 

are common in the Earth’s crust.  

Rocks containing aligned fractures exhibit seismic anisotropy and shear wave splitting 

(SWS); hence, in anisotropic rocks, these ratios would not be unique and would depend on 

the direction and orientation of wave propagation. As such, for every direction, there would 

be two P- to S-wave ratios except in the direction of the symmetry axis where no SWS is 

expected. Therefore, the P- to S-wave ratios would depend on the effect of the rock-fluid 

properties and the fracture properties (e.g. SWS). The experimental results of Amalokwu et 

al. (2014) showed that the presence of fractures aligned in the direction of wave propagation 

not only results in attenuation anisotropy as expected but could also change the relationships 

that have been shown to be common in non-fractured rocks. Although the fluid and frequency 

dependence of SWS at oblique angles have been shown theoretically and observed 

experimentally (Chapman 2003, Qian et al. 2007, Tillotson et al. 2011), Amalokwu et al. 

(2015b) showed that partial liquid/gas saturation could also have this effect. Therefore, at 

oblique angles the difference between Vp/Vs1 and Vp/Vs2 could depend on the fluid, and hence 

on wave frequency. S1 and S2 represent the fast and slow shear waves polarised parallel and 

perpendicular to the fractures, respectively. 

In this study, we present experimental results comparing the effects of water saturation (Sw) 

on Qs/Qp versus Vp/Vs ratios between a non-fractured rock and one containing fractures 

aligned parallel to direction of wave propagation. Although some of the data presented in this 

work has been presented in previous publications (Amalokwu et al. 2014, Amalokwu et al. 
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2015b), they are presented here for completeness. This paper adds the effects on velocity 

ratios, combining both attenuation and velocity effects, and focuses on the implications of the 

results through qualitative interpretation with the help of some theoretical modelling. The 

results suggest that aligned fractures can change the Qs/Qp versus Vp/Vs ratios from the trends 

previously observed in the literature. We also study the effects of water saturation on Vp/Vs 

ratios in a rock containing fracture aligned at 45
o
 to wave propagation direction. Following 

Amalokwu et al. (2015a,b), we combine a model for partial saturation and the model of 

Chapman (2003) for saturated rocks containing aligned fractures both of which are 

frequency-dependent, to explain our experimental observations for the Vp/Vs ratios. As 

expected, Vp/Vs2 ratio depends on the amount of SWS. Although we did not measure the 

Vp/Vs ratio for fractures aligned perpendicular to the direction of wave propagation in this 

study, the modelling study gives some interesting insights into what could be expected for 

this case, and is supported by previous experimental observations (Tillotson et al. 2014, 

Amalokwu et al. 2015a). This direction has the lowest Vp/Vs ratio for the dry case; however, 

the fluid acts to stiffen the fractures, hence stiffening the rock to compression, but saturation 

leads to a decrease in shear wave velocity due to the effect of bulk density. This in turn leads 

to a greater increase in Vp/Vs ratios from the dry state compared to the increase seen in other 

directions.  

2. METHODS 

2.1. Synthetic rock samples 

A summary of the synthetic rock manufacturing process is presented here as the process is 

well documented by Tillotson et al. (2012). A non-fractured (blank) sample was made as a 

control sample along with a set of fractured samples. The samples were made from a mixture 

of sand, kaolinite, and aqueous sodium silicate gel. Fractures were created using a similar 

approach to (Rathore et al. 1995), by arranging a predetermined number of 2 mm diameter 
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aluminium discs of 0.2 mm thickness on successive 4 mm layers of sand mixture. The rocks 

were baked and then cored at 45
o
 and parallel to wave propagation direction (90

o
 fractured 

sample). The rock was cored parallel to the layers in the case of the blank sample. Figure 1 

shows a schematic of the layer/fracture orientations within the rock samples. The aluminium 

discs were leached out with acid to leave penny-shaped voids in the silica-cemented 

sandstones. Image analysis of X-ray CT scans was used to obtain the fracture density, εf = 

0.0298 ± 0.0077 and an average fracture aspect ratio of 0.088 ± 0.001 (see Tillotson et al. 

2012) for the sample containing vertically aligned fractures. The fracture density of the 

sample containing fractures aligned 45
o 

to wave propagation direction was not obtained using 

X-ray CT scans, however, both samples were made as part of the same batch and as such we 

will assume similar fracture properties (Amalokwu et al. 2015b). The porosity and 

Klinkenberg corrected permeability were measured using Helium porosimetry and Nitrogen 

permeametry respectively and are given in Table 1. Note the difference in permeability 

between the samples, attributed to differences in grain packing during rock manufacturing 

stage and the direction in which the rocks were cored as permeability was measured in the 

direction of the core axis. 

2.2. SATURATION METHOD 

The saturation methods used are detailed in an earlier paper (see supplementary information 

section of Amalokwu et al. 2014). Partial water saturation was achieved using a combination 

of two methods which aim to avoid/minimize heterogeneous saturation distribution. The 

samples were placed in an atmosphere of known and controlled relative humidity (RH) for 

about two weeks, until they had reached equilibrium. This method is known to give 

homogeneous Sw distributions for the lower Sw values (compared to imbibition and drainage); 

similar methods have been used elsewhere (Schmitt, Forsans and Santarelli 1994, 

Papamichos, Brignoli and Santarelli 1997, King, Marsden and Dennis 2000). The relative 
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humidity was controlled using aqueous saturated salt solutions. Greenspan (1977) gave a 

range of salt solutions that would maintain a given RH at a particular temperature. The 

maximum Sw achieved using this method was about 0.4 for the blank rock and the 90
o 

fractured sample, and 0.2 for the 45
o
 fractured rock.  

To achieve intermediate Sw values, we used a modified air/water drainage technique. In order 

to minimise effects of heterogeneous saturation distribution caused by drainage (Cadoret, 

Marion and Zinszner 1995, Knight, Dvorkin and Nur 1998), the samples were wrapped in 

plastic (“cling”) film after each drainage process. The wrapped samples were then placed in a 

desiccator containing the 98% RH solution, sealed (not vacuum-sealed) and left for a 

minimum of 48 hours. The plastic film (and also the high RH atmosphere) prevented further 

air/water drainage, thus allowing capillary re-distribution over the length of time left to 

equilibrate (≥ 48 hours). Although we took steps to minimize heterogeneous distribution 

saturation, the objective was to observe differences between the blank rock response and the 

fractured rocks. Full water saturation was achieved using the method described by McCann 

and Sothcott (1992). 

2.3. ULTRASONIC EXPERIMENTS 

Ultrasonic wave phase velocity and attenuation coefficient were measured at different 

air/water saturation (Sw) states to accuracies of ± 0.3% and ± 0.2 dB/cm respectively using 

the pulse reflection method (see Best, Sothcott and McCann 2007, Tillotson et al. 2012). P- 

and S-wave velocity measurements were made on all three samples. Shear-wave splitting was 

measured by rotating the piezoelectric shear-wave transducer (while the sample was under 

elevated pressure) and observing the maximum and minimum signal amplitudes 

corresponding to S1 and S2 waves, respectively (see Best et al. 2007, Tillotson et al. 2012). 
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The equations of Dellinger and Vernik (1994) were used to ensure we were measuring a 

phase velocity for the 45
o 

sample (see Amalokwu et al. 2015b).  

We did not measure attenuation for the 45
o
 sample because of difficulties in obtaining 

reliable attenuation measurements for this sample. Our pulse-echo method is sensitive to the 

presence of heterogeneities that are not sufficiently smaller than the ultrasonic wavelength. A 

typical P-wave trace from the 45
o
 sample (Figure 2) shows a multiple arrival which separates 

the reflection from the top of the rock from that from the base of the rock compared to the 

cleaner waveforms for the blank and 90
o 

rock samples shown by Amalokwu et al. (2014). 

There is no way to accurately take this into account in the calculation of the reflection 

coefficient that goes into the attenuation calculation (see Best, McCann and Sothcott 1994, 

Best et al. 2007). This and the fact that we do not have the full elastic tensor of the rock in 

order to calculate the anisotropic reflection coefficient makes it difficult to obtain reliable 

attenuation measurements from the 45
o
 sample. Therefore, attenuation was only calculated 

for the blank and 90
o 

fractured sample. It should be pointed out that the shear waveforms do 

not show this multiple arrival in the 45
o 

sample as shown by Amalokwu et al. (2015b), hence 

we show only a P-wave example.  

A major issue with fractured rock experiments is scattering attenuation, which is undesirable 

as we are interested in intrinsic attenuation. Scattering attenuation becomes significant when 

the size of the heterogeneity becomes comparable to the elastic wavelength (Blair 1990, Liu 

et al. 2003). As pointed out by Amalokwu et al. (2014), we do not expect significant 

contributions from scattering attenuation for the P- and S1- waves in the 90
o 

sample as we 

measure Qp
-1

, Qs1
-1

 parallel to the fractures (see Figure 1b). This is because amplitudes of the 

P- and S1-waves propagating parallel to the fractures depend mainly on the fracture aperture 

(thickness) and not the diameter of the fractures (Wei and Di 2008, de Figueiredo et al. 

2013). In our ultrasonic pulse-echo experiments, the wavelength is approximately 5 mm and 
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3 mm for P- and S1-waves, respectively, and the ratio of wavelength to fracture aperture (0.2 

mm) is ~ 25 and 16, respectively, suggesting that the presence of fractures should not 

contribute significantly to scattering attenuation for wave propagation parallel to wave 

propagation direction.  

 

3. RESULTS 

All results are presented at an effective pressure of 40 MPa (pore fluid pressure equal to 

atmospheric pressure) and a single frequency of 650 kHz obtained from Fourier analysis of 

broadband signals. 

3.1. VELOCITY RATIOS 

All three samples show fairly similar Vp/Vs trends. The blank rock sample has a dry value of 

~ 1.58 (Figure 3) and shows an increase between Sw ≈ 0.03 and Sw ≈ 0.09 where it remains 

fairly constant up to Sw ≈ 0.4, followed by a sharp increase at Sw ≈ 0.55, increasing steadily to 

a maximum of 1.76 ± 0.6%  at Sw = 1.0. The observed Vp/Vs ratios are in agreement with 

values reported for clean sandstones (Gregory 1976, Castagna et al. 1985, Brie et al. 1995). 

In the 90
o
 fractured sample (Figure 4a), both Vp/Vs1 and Vp/Vs2 show similar behaviour to the 

blank sample except for Vp/Vs1 and Vp/Vs2 between Sw ≈ 0.6 – 0.9 being higher than the 

values for Sw = 1.0. The 90
o
 fractured sample has dry Vp/Vs1 and Vp/Vs2 values of ~ 1.56 and 

1.61 respectively. The slower S2 wave shows the presence of fractures can also cause an 

increase in measured Vp/Vs ratios. The difference between Vp/Vs1 and Vp/Vs2 remains fairly 

constant from dry to full water saturation. 

In the 45
o 

fractured sample (Figure 4b), although we do not see the same amount of increase 

at Sw ≈ 0.1, the trend is similar to that observed for the blank and 90
o 

samples. The 45
o
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fractured sample has dry Vp/Vs1 and Vp/Vs2 values of ~ 1.56 and 1.59 respectively. The 

difference between Vp/Vs1 and Vp/Vs2 remains constant between dry and Sw ≈ 0.7, after which 

the difference begins to decrease until full water saturation. 

 

3.2. SHEAR WAVE SPLITTING 

To understand the differences between the Vp/Vs1 and Vp/Vs2 it is useful to study shear wave 

splitting. Shear-wave splitting is expressed as SWS (%) = 100 × (S1 − S2)/S1, where S1 and 

S2 are the parallel and perpendicular shear-wave velocities relative to the fracture direction, 

respectively. Figure 5 shows the SWS in the blank sample; both Vs1 and Vs2 have similar 

values for all Sw showing that SWS induced by layering is negligibly small (~ 0.4 ± 0.6%) 

and stays fairly constant for all Sw values. 

The 90
o 

fractured sample shows significant SWS (Figure 6a) as expected as a result of the 

fractures. Similar to the blank sample, the SWS stays fairly constant for all Sw values. Similar 

observations of the fluid independence in this direction has been made (e.g. Rathore et al. 

1995, Tillotson et al. 2012) and predicted by theory (e.g. Hudson 1981, Xu 1998, Giraud et 

al. 2007).  

The 45
o 

fractured sample also shows significant SWS (Figure 6b) compared to the blank 

sample but less than that observed in the 90
o 

fractured sample. Shear-wave splitting begins at 

~ 2 ± 0.6% at Sw = 0 (dry), remaining fairly constant until Sw ≈ 0.7, then followed by a steady 

decrease between Sw ≈ 0.8 – 1.0. This shows that SWS due to fractures aligned at oblique 

angles to wave propagation direction can be sensitive to water saturation at higher Sw values, 

something not observed in either the blank or 90
o 
fractured sample 

3.3. QS/QP RATIOS 
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The ratio of Qp
-1 

to Qs
-1

 has been presented by Amalokwu et al. (2014) but we present it here 

again for completeness as we will be comparing Qs/Qp versus Vp/Vs ratios in the analysis to 

come. We only measured attenuation for the blank and 90
o 

samples. For approximately 

isotropic rocks, the Qs/Qp ratio is greater than unity for Sw < 0.9 and less than unity at higher 

saturations (e.g. Murphy 1982), which is also in good agreement with our observations for 

the blank rock (Figure 7a). Although there is negligible SWS induced by layering, Qs1
-1

 and 

Qs2
-1

 are similar so we only plot Qs1/Qp (see Amalokwu et al. 2014). 

However, our results show markedly different behaviour in the fractured rock. For the 90
o 

fractured sample, Qs/Qp is only significantly greater than 1 at intermediate saturations of 

about Sw = 0.45 for fast S-waves only (S1) (Figure 7b). Otherwise, Qs/Qp is about unity (± 

0.2) except at low saturations (Sw < 0.1) and high saturations (Sw > 0.8) for both fast (S1) and 

slow (S2) shear waves for which Qs/Qp is less than 1.  

These observations show that the presence of aligned fractures can significantly change the 

Qs/Qp relationships previously established for approximately isotropic rocks.  

3.4. VP/VS VERSUS QS/QP  

The ratio of Qp
-1 

to Qs
-1 

when combined with the ratio of P- to S-wave velocity could give a 

more precise estimate of the degree of saturation (Winkler and Nur 1982). In the blank rock 

(Figure 8a), the Qs/Qp ratio is greater than unity for Sw < 0.9 and less than unity at higher 

saturations (e.g. Murphy 1982, Winkler and Nur 1982), with the reference line of Qs/Qp = 1 

clearly separating partial saturation from full water saturation. For the Vp/Vs ratios, dispersion 

is evident from the gradual increase from dry to water saturation. This dispersion results in a 

spreading out of Vp/Vs values with the general trend being higher saturation values plotting 

towards the right (higher Vp/Vs ratios). This is in contrast to the low frequency observations 

and low frequency theoretical predictions (Gassmann-Wood) where the Vp/Vs values for both 
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dry and partially saturated states essentially have the same values and as such would cluster 

together (e.g. Murphy 1982, Winkler and Nur 1982). In practice, it has been shown that the 

low frequency observations may not always be consistent with sonic well log observations 

due to dispersion (e.g. Brie et al. 1995, Caspari, Müller and Gurevich 2011). In the presence 

of this velocity (and hence Vp/Vs) dispersion due to wave-induced fluid flow, the reference 

line of Qs/Qp = 1 still clearly separates partial saturation from full water saturation. As such, 

combining both Qs/Qp and Vp/Vs ratios could help improve gas discrimination by reducing the 

possible ambiguity associated with velocity dispersion, which could cause higher Vp/Vs ratios 

for partially saturated rocks (for example, at higher frequencies of sonic well logs).  

One mechanism that has been suggested to explain the Qs/Qp behaviour is viscous loss from 

inter-crack fluid flow; bulk compression from P-waves generates more inter-crack flow than 

S-waves in partially saturated rocks while the reverse is the case in 100% water saturated 

rocks (Winkler and Nur 1979, Winkler and Nur 1982). There is considerable literature 

addressing water saturation effects on attenuation and velocities (e.g. Winkler and Nur 1982, 

Murphy 1984, Gist 1994, Müller, Gurevich and Lebedev 2010). Here we will focus on the 

differences between the blank rock response and those from the samples containing aligned 

fractures. 

The 90
o 
fractured rock (Figure 8b) shows a similar behaviour to the blank rock in terms of the 

Vp/Vs trend where the higher Sw values plot towards higher values of Vp/Vs ratios. There is 

significant shear wave splitting as expected, resulting in two Vp/Vs ratios. Therefore, the 

Vp/Vs ratio is not unique and depending on direction of wave propagation and on S-wave 

polarization, Vp/Vs ratio would be different as expected for an anisotropic medium.  

The first thing to note about the attenuation ratios in the fractured rock is the reduction in 

magnitude of the ratios (the plot is pushed down). As a result, the attenuation ratios are not 
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clearly separated by the reference value of Qs/Qp = 1 (compared to the blank sample) as 

partial saturation values fall below the reference line, with the Qp/Qs2 ratios falling even 

lower. For wave propagation parallel to the fractures, the three waves (P, S1, S2) respond 

differently to the extra weakness introduced by the presence of the fractures as they propagate 

in different planes relative to the fractures. P-wave attenuation is not significantly increased 

by the presence of fractures as long as the fracture aperture is much less than the wavelength 

(e.g., Wei and Di 2008); however, the presence of fractures appears to increase both Qs1
-1

 and 

Qs2
-1

 (the effect being greater on Qs2
-1

). This produces a striking difference in the Qs/Qp 

versus saturation
 
relationship from that seen in the blank sample (see Amalokwu et al. 2014). 

This could lead to interpretation errors when using Qs/Qp as a diagnostic tool for fluid 

saturation.  

4. DISCUSSION  

Although all three samples were made from a single batch of constituents, there are still small 

microstructural differences associated with the manufacturing process and as such they 

cannot all be considered to have the same background material. Also, the fact that the 

samples were packed in different moulds mean that there are some little differences in 

fracture parameters between both fractured samples. This prevents interpretations and 

comparisons of absolute values; however, we can interpret differences in trends observed.  

Seismic attenuation and velocity dispersion are now widely accepted to be caused by wave-

induced fluid flow mechanisms (Mavko and Nur 1979, Winkler and Nur 1979, Murphy 1982, 

Winkler and Nur 1982, Murphy, Winkler and Kleinberg 1986, Müller et al. 2010). Different 

viscous loss mechanisms have been proposed to quantify attenuation and velocity dispersion 

observed in both field and experimental data; Müller et al. (2010) give a detailed review. 

However, several challenges still remain that make currently existing models unsatisfactory 
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such as the necessary reliance on parameters that are not readily available or are unknown 

(e.g. squirt-flow radius, relaxation timescales and other microstructural details) (Winkler and 

Nur 1982, Dvorkin and Mavko 2006), the lack of a satisfactory unified framework for 

different viscous mechanisms which are possibly competing or co-existing (Winkler and Nur 

1982, Gist 1994, Wu et al. 2014).  

The ambiguities associated with the rock manufacturing process, and the fact that there are 

still no suitable frequency-dependent theoretical models for elastic wave velocities in 

partially saturated fractured rocks, mean we will seek to understand the results and their 

implications through a more qualitative interpretation with the help of existing theoretical 

mechanisms and models. In the model of White (1975), shear waves are unaffected by 

saturation and as such, no shear wave dispersion or attenuation is predicted. Also, the model 

of Chapman (2003) only considers fluid effects and predicts no dispersion in bulk or shear for 

wave propagation at 90
o 

to the fracture normal. Therefore, we cannot model the difference in 

observed experimental attenuation trends between the blank and 90
o 
fractured rock samples.  

We will instead focus on discussing possible mechanisms causing the observed effects of 

aligned fractures on the observed Vp/Vs trends by using a simple modelling approach. We 

would like to stress that the mechanisms suggested here are not the only mechanisms (or 

combination of mechanisms) that can explain the data and is just an example of how a 

combination of mechanisms can produce these effects. 

4.1. Modelling of VP/VS AND SWS 

Our results show that as expected, high Vp/Vs ratios can be observed for wave propagation in 

rocks containing aligned fractures depending on the shear wave polarizations (Vp/Vs2 > 

Vp/Vs1). These differences in Vp/Vs ratios would depend on SWS which in turn is related to 
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the fracture density. Consequently, understanding the effects of aligned fractures on Vp/Vs 

ratios require an understanding of the SWS behaviour as well.  

Shear wave splitting for waves propagating parallel to the fractures has been shown to be 

independent of saturating fluid (e.g., Tillotson et al. 2012), in agreement with our 

observations (Figure 6a), however, at oblique angles fluid compressibility can affect SWS. 

Amalokwu et al. (2015b) showed that water saturation can affect SWS in rocks containing 

fractures aligned at oblique angles and that this fluid effect can be frequency-dependent. This 

fluid-sensitivity is due to the fact that the S2 wave is sensitive to the fluid compressibility 

when the fractures are aligned at oblique angles to the direction of wave propagation. The 

modelled effect of partial gas saturation on SWS presented by Amalokwu et al. (2015b) was 

not very significant, however, it was implied that the effect could increase if additional 

viscous mechanisms were considered. Amalokwu et al. (2015a) showed that the effects of 

water saturation on P-wave anisotropy can be significant depending on the mixing of the 

liquid and gas (water and air) at the crack/pore scale. Considering this crack/pore-scale 

mixing, we will repeat the modelling study of Amalokwu et al. (2015b) to explain our 

experimental observations.  

4.1.1. Modelling approach 

The modelling approach combines the fractured rock model of Chapman (2003) and the 

partial saturation model of White (1975). The stiffness tensor, Cijkl, given by Chapman (2003) 

relating the contributions from the isotropic elastic tensor (C
0
, with Lamé parameters, λ and 

μ), C
1
 (pores), C

2
 (microcracks) and C

3
 (fractures) scaled by the porosity (Фp), microcrack 

density (εc) and fracture density (εf) is of the form: 

𝐶𝑖𝑗𝑘𝑙 =  𝐶𝑖𝑗𝑘𝑙
𝑜 −  Ф𝑝𝐶𝑖𝑗𝑘𝑙

1 −  𝜀𝑐𝐶𝑖𝑗𝑙𝑘
2 −  𝜀𝑓𝐶𝑖𝑗𝑘𝑙

3                                                                          (1) 
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This model is not designed for partial saturation, so in the elastic tensors, we replace all terms 

apart from the fracture correction, with the Lamé parameters λ
o
 and μ

o
 obtained from the 

model of White (1975) for each water saturation value. The Lamé parameters λ
o
 and μ

o
 from 

White’s model already contain porosity effects, and as shown by Chapman et al. (2003), εc  

can be set to zero in high porosity rocks which would make the contribution from C
2 

zero. 

We now have an equation of the form: 

𝐶𝑖𝑗𝑘𝑙 =  𝐶𝑖𝑗𝑘𝑙
𝑖𝑠𝑜 (𝜆𝑜 , 𝜇𝑜) −  𝜀𝑓𝐶𝑖𝑗𝑘𝑙

3 ;                                                                                                          (2) 

where the term 𝐶𝑖𝑗𝑘𝑙
𝑖𝑠𝑜  is obtained from the Lamé parameters λ

o
 and μ

o
 calculated using the 

model of White (1975) (see Mavko, Mukerji and Dvorkin 2009, p. 327), after which the 

fracture correction C
3 

(see Chapman et al. 2003 p. 200) is applied. It should be pointed out 

here that the Lamé parameter, μ
o 

is the rock shear modulus which is unaffected by saturation 

in White’s model. The frequency-dependent partial (“patchy” in the case of White’s model) 

effect in the background rock comes in through White’s model because the model of 

Chapman (2003) was not developed for multiphase saturation. We are not suggesting that the 

dispersion in our experiments is restricted to patchy saturation. The idea is to achieve 

frequency-dependent bulk moduli due to the presence of partial saturation. White’s model in 

the above equation could be replaced with any other partial saturation model. For example we 

could use Gassmann’s theory with an effective fluid modulus from Brie’s equation and still 

obtain a decent fit. 

Modelling parameters are the same as those used by Amalokwu et al. (2015b) and also given 

in Table 2. In order to adapt the model of Chapman (2003) for partial multiphase saturation 

modelling, we require an effective modulus as input for the fluid bulk modulus in the fracture 

model. Amalokwu et al. (2015b) considered this fluid modulus to be the Reuss average of air 

and water which corresponds to a uniform fluid mix so the wave-induced pore pressures have 
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enough time to equilibrate during a seismic period (Mavko and Mukerji 1998). The result 

obtained in this case predicted no stiffening effects due to a reduction in fracture compliance 

as a result of partial saturation as there is always time for any wave induced pressures to 

equilibrate. Therefore the effective fluid modulus within the fractures would be that of the 

fluid with the lower bulk modulus (air in this case) except at about Sw > 0.95. It might not 

always be the case that the fluids within the fractures are mixed uniformly; for example, in a 

partially saturated fracture, the wetting fluid phase (e.g. water) could preferentially adhere to 

the rock surface, leaving patches of air/water within the fractures since it is not fully 

saturated. In this case, the Reuss averaged bulk modulus might not be sufficient to describe 

the effective fluid bulk modulus effect on the fractures. 

To explore this scenario, following Amalokwu et al. (2015a) we will assume that air and 

water are not uniformly mixed within the fractures and as such take a non-Reuss averaged 

fluid modulus as the effective fluid modulus for input into the model of Chapman (2003). 

This can be viewed for example as some sort of patchy saturation distribution (which we do 

not make explicit) within the fractures. To achieve this, for simplicity, we will assume the 

stiffening effect resulting from the saturation distribution within the fractures is the same as 

that from White’s effect in the rock matrix instead of using fluid mixing equations (e.g. Brie 

et al. 1995) or explicitly calculating a dynamic fluid modulus (e.g. Yao et al. 2015). As 

pointed out by Amalokwu et al. (2015a), this is probably not the case in reality but taking this 

approach would give us a reference frequency for the fluid bulk modulus effect in the 

background isotropic rock model and the fractured rock model. We will refer to this approach 

as ‘assumption 1’. This assumption is restrictive as we cannot fit the Vp/Vs trend in the rocks 

and the SWS at the same time using this approach. However this is sufficient as at this point 

we are more concerned with the effect of saturation on SWS and how this in turn affects the 

behaviour of the Vp/Vs ratios relative to direction of propagation. We will later show that 
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relaxing this assumption, we can get a better fit to the Vp/Vs versus Sw behaviour as well as a 

good fit to the SWS by relaxing ‘assumption 1’. This second modelling approach will be 

denoted as ‘assumption 2’. We calculate the frequency-dependent saturated bulk modulus 

using White’s model using a patch size of 0.5 mm chosen (as a fitting parameter) to fit the 

water saturation where the SWS in the experimental data begins to decline. This modulus 

should be reproducible with Gassmann’s equation using a suitable “effective” fluid modulus, 

which we solve for. This is done by taking the real part of the bulk modulus obtained from 

White’s model at each frequency as the saturated rock bulk modulus and then solve 

Gassmann’s equation for the fluid bulk modulus (see Amalokwu et al. 2015a).  

4.1.2. Modelling results - Assumption 1  

Figure 9a shows the frequency-dependent bulk modulus versus Sw obtained from White’s 

model for the isotropic background rock and Figure 9b shows the corresponding effective 

fluid modulus calculated from Gassmann’s formula as described above. Figure 10a shows the 

modelling of the experimental results of SWS for the 90
o 

sample while Figure 10b shows the 

best fitting model for the 45
o
 sample when there is no dispersion and when there is dispersion 

from the fractured sample. For waves propagating parallel to the fractures, no fluid 

dependence is seen, in general agreement with our observations and previous studies. At 45
o 

to the fracture normal, a fluid dependence (and hence frequency-dependence) of SWS can be 

seen. Amalokwu et al. (2015a) showed that this approach better explained the water 

saturation effects on P-wave anisotropy. This same approach appears to also better explain 

our experimental observations of water saturation effects on SWS when fractures are aligned 

at oblique angles and as such could give valuable insight into the trends observed. The goal 

here is to illustrate the potential effect of this additional dispersion from the fractures due to 

the presence of partial saturation although the specific mechanisms used to achieve this may 

not represent the actual mechanisms responsible for our experimental observations.  



20 
 

The 90
o 

fit was achieved by taking the fracture density of 0.029 stated above, while the best 

fit for the 45
o
 sample was achieved by also taking a fracture density of 0.023, within the 

uncertainty range given above, and using microcrack relaxation timescale τm = 1.6 x 10
-8 

s. 

This relaxation time was chosen to fit the SWS at Sw = 1, and is similar to the value given  by 

Tillotson et al. (2014), who estimated a value of 2.4 x 10
-8 

s for comparable synthetic 

sandstones.  Both fracture aspect ratios are taken as 0.088 obtained from CT images of the 

90
o 

sample. Using this resulting model for partial saturation effects in fractured rocks, we can 

better understand the effects of saturation on the behaviour of the Vp/Vs ratios in rocks 

containing aligned fractures. Plotting Vp/Vs1 and Vp/Vs2 parallel to the fractures (Figure 11a), 

we can see that apart from the SWS, this would show a similar behaviour to the blank rock 

behaviour as the shear waves are not dependent on saturation. Consequently, the difference 

between Vp/Vs1 and Vp/Vs2 would remain the same for a given fracture density, independent 

of water saturation, in general agreement with our observations. Depending on the fracture 

properties, even higher Vp/Vs2 ratios could be measured and if anisotropy is not taken into 

account could be misinterpreted, for example, as a different lithology. For oblique angles 

(e.g. 45
o
 to wave propagation direction) (Figure 11b), the general Vp/Vs1  and Vp/Vs2 trend 

would be similar to that of the blank and the 90
o 

fractured sample; however, both P- and S-2 

waves would be sensitive to water saturation and hence frequency-dependent. Therefore the 

difference between Vp/Vs1 and Vp/Vs2 would be saturation dependent as SWS would be 

saturation dependent (Figure 11b). A decrease in the difference between Vp/Vs1 and Vp/Vs2 

can be seen at higher values of Sw, which is in agreement with our experimental observations.  

Although we do not have measurements for waves propagating perpendicular to the fractures, 

this modelling exercise could give some insight into the effect of water saturation on the 

Vp/Vs ratio in this direction. There is no shear wave splitting as expected in this direction and 

the general trend is similar to the other directions, so only one Vp/Vs ratio is expected in this 
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direction. The interesting thing to note is that in this direction, the fractures are a lot more 

compliant to compression, as such the P-wave velocity is much more affected by the fractures 

compared to the shear wave velocity. This would give a lower dry (or air) Vp/Vs ratio in this 

direction because the fracture filling fluid is very compressible. However, as Sw increases and 

begins to stiffen the fractures, the rock P-wave modulus increases significantly compared to 

its dry value while the shear stiffness is unaffected; hence the Vp/Vs ratio increases 

significantly at high to full water saturation (depending on frequency effects). This direction 

would be expected to show the highest increase in Vp/Vs ratio from dry to full water 

saturation (Figure 12). This suggests that although shear wave splitting is not observed in this 

direction, the presence of saturated fractures could lead to high Vp/Vs ratios being measured 

in this direction. This was shown by the modelling study of Wang et al. (2012) and is 

supported by the experimental observations of Tillotson et al. (2014) and Amalokwu et al. 

(2015a). In practice, this scenario is possible in cross-well surveys where there are vertically 

aligned fractures; for example, an initially fully liquid saturated (e.g. oil) reservoir would 

show a significant decrease in Vp/Vs ratio compared to a non-fractured rock as the oil is 

produced without liquid replacement and gas comes out of solution as a result of the drop in 

reservoir pressure.  

4.1.3. Modelling results – Assumption 2 

To obtain a better fit for both the Sw dependence of Vp/Vs trend and SWS trend, we have to 

relax the assumption that the stiffening effect in both the background matrix and the fractures 

is the same. This assumption was made for simplicity and reduces the number of free 

variables. Without this requirement, a different effective fluid modulus would have to be 

fitted to the fractured rock model as opposed to the consistency between both models. 

Another implication of the way the modelling was implemented is the implicit assumption 

the Sw in the background and the fractures are the same at any point in time which in reality 
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might not be the case. Larger fractures might drain quicker than smaller pores and might be 

almost empty by the time the pores in the background rock still contained high amounts of 

water saturation. This situation is not considered here but could potentially be explored with 

the present implementation setup which allows the fluid effects to be accounted for separately 

in both the fractures and background matrix. In order to achieve better fit for the Vp/Vs trend 

and a decent fit for the SWS trend using the same modelling implementation, we take the 

stiffening effects from saturation to be different in the background matrix and the fractures. 

To do this we take the patch size in White’s model to be 2 mm which also gives a good 

qualitative fit to the attenuation data (see Amalokwu et al. 2014), but in the fractured rock 

model we use a fluid modulus from the mixing law of Brie et al. (1995). The exponent in the 

equation of Brie et al. (1995) is chosen to fit where the stiffening effect from the fracture 

begins (Sw ≈ 0.7) and an exponent of 6 was chosen (values between 5-8 give good fits as 

well). All other parameters used are the same as those used in ‘assumption 1’. Figure 13 

shows the model fit for the Vp/Vs ratios versus Sw for the blank (Figure 13a) and 90
o
 fractured 

sample (Figure 13b). Figure 14a shows the model fit for the Vp/Vs ratios versus Sw for the 45
o
 

fractured sample, while Figure 14b shows its corresponding SWS versus Sw fit to the model. 

It can be seen that a good fit to the model can be obtained for both the Vp/Vs and the SWS. 

This suggests that in terms of partial saturation effects on SWS, the contribution from the 

effects in the background rock is subtle and the additional dispersion from the fractures is the 

more important contribution (Figures 10b and 14b). So it appears the stiffening effect from 

the fractures occur at higher water saturation in this present experiment, which would make 

sense as we would expect the fractures to preferentially drain relative to the background rock 

matrix.  

Plotting Vp/Vs1 and Vp/Vs2 (Figure 15) provides us with another way of visualizing the effects 

of aligned fractures on Vp/Vs ratios and of comparing our experimental trends to our 
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modelling results (from Figures 13 and 14). We can see the relationship between Vp/Vs1 and 

Vp/Vs2 gives a straight line and the experimental trend follows the trend predicted by the 

model even in the presence of additional dispersion (and other ambiguities in the data) not 

considered in the modelling, which also leads to an under-prediction of the upper limit of the 

Vp/Vs ratios.  

 

5. CONCLUSIONS 

We have presented experimental observations of possible effects of aligned fractures on the 

response of Vp/Vs and Qs/Qp ratios to water saturation compared to observations in non-

fractured rocks. We used synthetic porous sandstones that provide realistic analogues to 

naturally occurring sandstones. The results for the blank sample support previous suggestions 

that combining both Vp/Vs and Qs/Qp ratios could help improve partial/liquid gas saturation 

discrimination. However, in the sample with fractures aligned parallel to wave propagation 

direction, although the trend and values of the Vp/Vs ratios are similar to those in the blank 

sample, the Qs/Qp ratios are reduced in magnitude and the separation between partial 

saturation and full saturation is not as clear as it is for the blank sample.  

Partial-gas saturation in rocks could lead to frequency-dependent effects on the Vp/Vs ratios, 

and in rocks containing aligned fractures, this could lead to frequency-dependent anisotropic 

effects that could be amplified depending on the crack-scale effect of Sw on the fracture 

stiffness. Parallel to wave propagation direction, theory predicts shear wave splitting is not 

sensitive to saturation hence the difference between both Vp/Vs1 and Vp/Vs2 remains the same 

for all SW. This is in general agreement with our experimental observations. At 45
o 

degrees to 

wave propagation direction, both Vp and Vs2 are sensitive to Sw and as such SWS and the 

difference between both Vp/Vs1 and Vp/Vs2 would depend on Sw (and frequency). The simple 
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modelling study and previous results show that rocks with fractures aligned perpendicular to 

wave propagation direction would show the highest increase from dry to full water saturation. 

The modelling also showed that a Reuss averaged fluid modulus for the fractured rock model 

underestimates the effect of Sw on the dispersion observed at higher Sw values and as such 

provided a poor fit to the trends observed in the 45
o 

sample. However, an alternative fluid 

modulus average gives better agreement with the magnitude of dispersion observed which 

has a physical interpretation in terms of non-equal fluid pressures. These results could have 

important implications for seismic characterisation of fractured reservoirs. Further 

experimental and theoretical studies are needed for better understanding of these effects. 
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TABLES 

Petrophysical parameters Values 

Blank sample   

Porosity, φp 30.43% 

Permeability, κ 40.7 mDarcy 

90
o
 Fractured sample   

Porosity, φp 31.68% 

Permeability, κ  18.1 mDarcy 

45
o 

Fractured sample   

Porosity, φp 31.80% 

Permeability, κ  2.66 mDarcy 

 

Table 1. Petrophysical properties of synthetic sandstones. 
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Grain 

Bulk modulus 

 

38 GPa 

Shear modulus 

 

44 GPa 

Density 

 

2590 Kg/m
3
 

Grain size 

 

120 μm 

Matrix 

Bulk modulus 

 

10.27 GPa 

Shear modulus 

 

8.9 GPa 

Density 

 

1828 Kg/m
3
 

Porosity 

 

30.43% 

Permeability 

 

40.7 mD 

Gas (Air) 

Bulk modulus  

 

0.0001GPa 

Density 

 

1.2 Kg/m
3
 

Viscosity  

 

0.00002 Pa s 

Water 

Bulk modulus 

 

2.25 GPa 

Density 

 

1000 Kg/m
3
 

Viscosity 

 

0.001 Pa s 

Fracture properties 

Fracture density 

 

0.0298 ± 0.0077  

Average aspect ratio 

 

0.088 ± 0.001  

 

Table 2. Modelling parameters. 
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FIGURE CAPTIONS 

Figure 1. Schematic showing the orientation of a) layering in the blank rock, fracture planes 

for the b) 90
o
 degree fractured sample and c) the 45

o 
degree fractured sample, relative to the 

direction of wave propagation. 

Figure 2. Typical P-waveform for the 45
o 
sample showing reflections from (a) the top of the 

rock (window A) (b) the base of the rock (window B), clearly separated by reflections of 

significant amplitude from within the rock sample. 

Figure 3. VP/Vs versus Sw ratios for the blank rock (both fast S1 and slow S2 wave results are 

shown). 

Figure 4. VP/Vs versus Sw ratios for a) the 90
o 
fractured rock b) the 45

o 
fractured rock. Both 

fast S1 and slow S2 wave results are shown. 

Figure 5. SWS versus Sw for the blank rock. Vertical error bar included.  

Figure 6. SWS versus Sw for a) the 90
o 
fractured rock b) the 45

o 
fractured rock. Vertical error 

bar included.  

Figure 7. Qs/Qp versus Sw for a) the blank rock b) the 90
o 
fractured rock. 

Figure 8. Qs/Qp versus Vp/Vs ratios at different saturation values for a) the blank rock b) the 

90
o 
fractured rock. The colour bar represents water saturation from 0 – 1.0. 

Figure 9. a) White’s model predictions of bulk modulus versus Sw at different frequencies 

(using a constant patch size of 0.5 mm). b) Corresponding effective fluid bulk modulus 

calculated from Figure 7a using Gassmann’s equation. 

Figure 10. Model fit to experimental trend for a) the 90
o 
fractured rock b) the 45

o 
fractured 

rock. 
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Figure 11. Model predictions for VP/Vs ratios versus Sw for wave propagation a) parallel to 

the fractures (90
o 
to the fracture normal) b) 45

o 
to the fractures. 

Figure 12. Model predictions for VP/Vs normalized by dry values versus Sw perpendicular (0
o
 

to the fracture normal), 45
o
, and parallel to the fractures (90

o
 to the fracture normal) 

Figure 13. Model comparisons of VP/Vs versus Sw ratios using a gas patch size of 2 mm in 

White’s model for a) the blank rock b) the 90
o 
fractured rock.  

Figure 14. a) Model comparison of VP/Vs versus Sw ratios for the 45
o 
fractured sample using 

a gas patch size of 2 mm in White’s model. b) Model fit to experimental SWS trend for the 

45
o 
fractured rock using a gas patch size of 2 mm for the background rock saturation and the 

mixing law of Brie et al. (1995) for the fractured rock. 

Figure 15. Model predictions (from Figures 13 and 14) for VP/Vs1 versus VP/Vs2 at 45
o
 and 

parallel to the fractures (90
o 
to the fracture normal). The colour bar represents water 

saturation from 0 – 1.0. 
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FIGURES 

 

Figure 1. Schematic showing the orientation of a) layering in the blank rock, fracture planes 

for the b) 90
o
 degree fractured sample and c) the 45

o 
degree fractured sample, relative to the 

direction of wave propagation. 

 

 

Figure 2. Typical P-waveform for the 45
o 
sample showing reflections from (a) the top of the 

rock (window A) (b) the base of the rock (window B), clearly separated by reflections of 

significant amplitude from within the rock sample. 
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Figure 3. VP/Vs versus Sw ratios for the blank rock (both fast S1 and slow S2 wave results are 

shown). 
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Figure 4. VP/Vs versus Sw ratios for a) the 90
o 
fractured rock b) the 45

o 
fractured rock. Both 

fast S1 and slow S2 wave results are shown. 
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Figure 5. SWS versus Sw for the blank rock. Vertical error bar included.  

 



38 
 

 

Figure 6. SWS versus Sw for a) the 90
o 
fractured rock b) the 45

o 
fractured rock. Vertical error 

bar included.  
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Figure 7. Qs/Qp versus Sw for a) the blank rock b) the 90
o 
fractured rock. 
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Figure 8. Qs/Qp versus Vp/Vs ratios at different saturation values for a) the blank rock b) the 

90
o 
fractured rock. The colour bar represents water saturation from 0 – 1.0. 
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Figure 9. a) White’s model predictions of bulk modulus versus Sw at different frequencies 

(using a constant patch size of 0.5 mm). b) Corresponding effective fluid bulk modulus 

calculated from Figure 7a using Gassmann’s equation. 
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Figure 10. Model fit to experimental trend for a) the 90
o 
fractured rock b) the 45

o 
fractured 

rock. 
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Figure 11. Model predictions for VP/Vs ratios versus Sw for wave propagation a) parallel to 

the fractures (90
o 
to the fracture normal) b) 45

o 
to the fractures. 
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Figure 12. Model predictions for VP/Vs normalized by dry values versus Sw perpendicular (0
o
 

to the fracture normal), 45
o
, and parallel to the fractures (90

o
 to the fracture normal) 
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Figure 13. Model comparisons of VP/Vs versus Sw ratios using a gas patch size of 2 mm in 

White’s model for a) the blank rock b) the 90
o 
fractured rock.  
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Figure 14. a) Model comparison of VP/Vs versus Sw ratios for the 45
o 
fractured sample using 

a gas patch size of 2 mm in White’s model. b) Model fit to experimental SWS trend for the 

45
o 
fractured rock using a gas patch size of 2 mm for the background rock saturation and the 

mixing law of Brie et al. (1995) for the fractured rock. 
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Figure 15. Model predictions (from Figures 13 and 14) for VP/Vs1 versus VP/Vs2 at 45
o
 and 

parallel to the fractures (90
o 
to the fracture normal). The colour bar represents water 

saturation from 0 – 1.0. 

 

 

 

 

 

 

 


