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Abstract The Southern Ocean is riddled with mesoscale eddies. Although just a few kilometers in size,
these loops and vortices are key parts of the climate system and are important in controlling how ocean
circulation responds to changes in forcing. Observations reveal that changes in the intensity of these eddies
vary significantly around the Southern Ocean. This contrasts with the nature of the atmospheric forcing,
which is more zonally symmetric. Recent progress using high-resolution modeling has pinpointed where
intrinsic variability dominates over wind-driven variability; and hence, the areas where future responses to
climatic changes in forcing are likely to be clearest.

1. Introduction

The global ocean is a fundamental component of the climate and ecological systems of our planet. It absorbs
anthropogenic carbon and heat from the atmosphere, thus moderating the rate of climate change. In this
role, the Southern Ocean—the vast sea that encircles Antarctica—is especially important, accounting for
around half of the oceanic uptake of carbon and more than three quarters of its heat uptake [Frölicher
et al., 2014; Mikaloff Fletcher et al., 2006]. This disproportionate influence is a consequence of the unique
pattern of circulation of the Southern Ocean. Driven by the mighty westerly winds overlying it, and by strong
exchanges of heat and freshwater at the sea surface, the Antarctic Circumpolar Current (ACC) flows continu-
ously around the continent and is the largest current system on the planet (Figure 1). It redistributes heat,
carbon, freshwater, and other important environmental properties between each of the world’s major ocean
basins, thus setting their large-scale distributions across the planet [Rintoul et al., 2001].

The Southern Ocean is also significant as the key site globally where waters from 1 to 2 km depth rise up
to the surface (Figure 1). This brings waters that are several hundred years old (and hence formed in a
preindustrial era) into contact with the atmosphere, with which they can exchange heat and carbon
[Lumpkin and Speer, 2007]. New water masses are formed that sink back into the interior of the ocean;
these include the comparatively light mode and intermediate waters that sink to a few hundred meters
depth and the dense bottom waters that flood the deepest layers of the global abyss [Johnson, 2008;
McCartney, 1977].

Against this background of large-scale flows and planetary scale climate, it is increasingly being seen that
small-scale processes are critical in structuring the ocean circulation and controlling its effects. Mesoscale
eddies—the weather systems of the sea—are much smaller than their atmospheric counterparts, but their
profound importance belies their size. In the Southern Ocean, a band of enhanced eddy variability lies along
the path of the ACC (Figure 2); these eddies account for the majority of poleward oceanic heat transport
across the current. Importantly, the small size of these eddies (a few kilometers to just a few tens of
kilometers) means that most state-of-the-art climate models cannot resolve them explicitly and instead
use parameterizations to attempt to capture their effects [Gent and Danabasoglu, 2011].

Dynamically, the role that these eddies play is of profound importance. While the ACC is at least partially wind
forced, changes in its flow are known to be surprisingly small, despite much larger changes in the overlying
wind field [Böning et al., 2008]. One key factor in this is a cascade of energy from large scales (the hundreds or
thousands of kilometers that typify basin-scale ocean circulation) to the much smaller scales that typify
oceanic eddies. Consistent with this, observations from satellites indicate that the Southern Ocean eddy field
varies more significantly in response to winds than does the ACC flow itself [Hogg et al., 2015; Meredith and
Hogg, 2006]. Further, it is known that changes in the wind-driven overturning circulation of the Southern
Ocean (the collective upwelling of old waters and sinking of new waters; Figure 2) are dampened by eddy
processes [Marshall and Speer, 2012].
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Despite a widespread acceptance of the importance of Southern Ocean eddies, some key aspects of their
functioning have proved challenging to interpret, including the spatial structure of their temporal changes.
Initial reports emphasized the circumpolarity of the wind-driven changes in the eddy field [Meredith and
Hogg, 2006], though more recently it was noted that the Pacific, Indian, and Atlantic sectors of the
Southern Ocean do not behave identically and the potential role of the El Niño–Southern Oscillation
phenomenon has been suggested [Morrow et al., 2010]. Such issues are hard to assess using observational
data alone: even with the availability of satellite-derived measures of surface eddy intensity (e.g., Figure 2),
full understanding requires detailed dynamical investigations and additional insights below the sea surface.

2. Advances With Eddy-Resolving Simulations

Recent progress has been made using high-resolution ocean modeling, which has the potential for revealing
the underlying dynamics of the changes observed, but whichmust be sufficiently realistic for the results to be
reliably translatable to real-world scenarios. Patara et al. [2016] conducted simulations spanning several dec-
ades using a novel global ocean model configuration, with realistic seabed topography and eddy-resolving

Figure 2. Distribution of the intensity of mesoscale eddies in the Southern Ocean, as depicted by the pattern of eddy
kinetic energy measured by satellite radar instruments. The two main current cores of the ACC are marked (black lines),
following Orsi et al. [1995].

Figure 1. Schematic of the three-dimensional circulation of the Southern Ocean overlaid on the regional bathymetry.
Mesoscale eddies play a key role in determining this circulation, being intimately involved in the upwelling of old, deep
waters to the surface and in moderating the rate at which new water masses are formed and sink. Eddies also act to
suppress changes in the horizontal flow of the Antarctic Circumpolar Current (ACC), the world’s largest current system.
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(1/12°) resolution in the ACC region. Encouragingly, the model performed well in reproducing the observed
spatial pattern in eddy intensity in the Southern Ocean and also its recently observed trends [Hogg et al.,
2015]. The model was also able to reproduce a lagged response of eddy activity to changes in wind forcing,
not dissimilar to that observed from satellite measurements [Meredith and Hogg, 2006].

This performance builds confidence that such models can capture many of the main elements of the
Southern Ocean eddy field and their influence on globally-important flows. To investigate further the cause
of the spatial pattern in the time-varying eddy distribution, Patara et al. [2016] derived a quantity that esti-
mates how much of the eddy variability at a particular location is atmospherically forced, and how much is
intrinsic. This is an important consideration: the Southern Ocean eddy field can generate its own variability
via complex feedbacks that involve interaction with the seabed [Hogg and Blundell, 2006] and which could
confound simple attempts to relate variability to surface forcings. Patara et al. [2016] found that the
sensitivity of eddy intensity to changes in winds on interannual timescales is not uniformly distributed along
the ACC. In the Pacific and Indian sectors of the Southern Ocean, the simulated eddy field was found to have a
variability that matched that inferred from satellite observations and to be significantly dependent on
changing winds. Conversely, in the Atlantic sector the eddy variability was seen not to match the satellite
observations and was found to be mostly stochastic in nature.

The relative importance of stochastic and wind-driven contributions to interannual eddy variability was also
reflected in different multidecadal trends, which were found to be stronger and predominantly wind-forced
in the Pacific and Indian Oceans and weaker and more stochastic in the Atlantic. This represents progress in
explaining the recently reported decadal trends in eddy intensity, which was found to be accelerating signif-
icantly around the Southern Ocean except in the Atlantic [Hogg et al., 2015]. Patara et al. [2016] speculate that
the cause of the different behavior in the Atlantic could be due to the ACC being anomalously unstable upon
leaving Drake Passage (the gap between South America and Antarctica, and the narrowest constriction of the
ACC along its path) and potentially also due to the influence of highly variable systems on the northern flank
of the ACC in the Atlantic, such as the Brazil-Malvinas Confluence zone and the Agulhas Retroflection.

Looking forward, the westerly winds that overlie the Southern Ocean are projected to continue strengthen-
ing under continued greenhouse gas forcing, and the work of Patara et al. [2016] reinforces assertions that
the oceanic eddy field is likely to change in response, with potentially significant impacts. In particular,
changes in mesoscale activity in a particular locality could impact upwelling, water mass formation, sea ice
production and melt, marine biogeochemistry, and biological productivity. The findings of Patara et al.
[2016] demonstrate that such future changes are likely to be markedly nonuniform in distribution, despite
the much more zonally coherent changes in winds that may be driving them.

There are many unanswered questions, however, and many challenges remain in relation to our understanding
and ability to predict the role of Southern Ocean eddies in the planetary system. The regionality of changes in
eddy intensity is now well established, and its causes are becoming better known. Within these regions, areas
of high eddy intensity associated with topographic obstacles and standingmeanders of the ACC are increasingly
being seen as important, both for determining the mean structure of the ACC and its overturning circulation
[Thompson and Naveira Garabato, 2014]. It is important that we improve our understanding on this local scale
and better determine the impacts of the difference in dynamics between these “hot spots” of variability and
the rest of the ACC. Future effort should also investigate whether eddies will continue to moderate changes in
overturning circulation to the same degree and whether any future reversals in the recent strengthening of
winds over the Southern Ocean will return the circulation to the same state as it was previously or to a different
one. There is also much to learn about the processes and rates by which Southern Ocean eddies act to mix deep
and abyssal waters and how these rates will change as climatic forcing of the circulation evolves. Nonetheless,
studies such as Patara et al. [2016] give cause for optimism that the spatially and temporally changing
Southern Ocean eddy field could be represented well in future climatemodeling efforts and that their depictions
of the Southern Ocean’s role in global climatic and ecological systems might be more reliably predicted.
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