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ABSTRACT 17 

The fluid behavior of asphaltenes at elevated temperatures impacts on coke formation in a 18 

number of hydrocarbon conversion processes, including visbreaking and delayed coking. In this 19 

study, the asphaltenes from a number of sources, namely a vacuum residue, a petroleum source 20 

rock (Kimmeridge Clay) bitumen obtained by hydrous pyrolysis, and bitumen products from a 21 

sub-bituminous coal and pine wood obtained by thermolytic solvent extraction using tetralin, 22 

have been characterized using high temperature 1H NMR and the results correlated with those 23 

from small-amplitude oscillatory shear rheometry.  Further for comparison, the coke (toluene-24 

insolubles) obtained from visbreaking the vacuum residue was also characterized.  All the 25 

asphaltenes became completely fluid by 300 °C with the hydrogen being completely mobile with 26 

coke formation, identified as a solid phase, not occurring to a significant extent until 450 °C.  27 

Extremely good agreement was obtained between high temperature 1H NMR and rheometry 28 

results, which confirmed that the asphaltenes were highly fluid from 300 °C and initial signs of 29 

resolidification being observed at temperatures of around 450 °C.  During softening, extremely 30 

good correlations between fluid hydrogen and phase angle were obtained as the asphaltenes 31 

softened.  The toluene-insolubles however did contain some fluid material and, thus, it cannot be 32 

regarded as strictly solid coke but, clearly, with increasing temperature, the fluid material did 33 

convert to coke.  Under actual process conditions, this fluid material could be responsible for 34 

coke adhering to reactor surfaces. 35 

  36 
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1. INTRODUCTION 37 

Asphaltenes are operationally defined as toluene-soluble, n-heptane insoluble material and are 38 

extremely heterogeneous and complex mixtures of species comprising heteroatoms (N, O, S), 39 

relatively small condensed aromatic nuclei, aliphatic chains and naphthenic rings, as well as 40 

metals such as V, Ni and Fe.1  They have been the topic of intense structural investigation and to 41 

represent their complex nature, average molecular structures have been proposed, an example for 42 

Athabasca vacuum residue by Sheremata et al.2 using a Monte Carlo construction method is 43 

shown in Figure 1.  A wide range of techniques have been used to characterize the chemical 44 

composition of asphaltenes,3,4 including 1H and 13C nuclear magnetic resonance (NMR), size-45 

exclusion chromatography (SEC), mass spectrometry  and Fourier transform infrared 46 

spectroscopy (FTIR).  Disassociated petroleum asphaltenes are characterized by number average 47 

molecular masses of ca. 1500−25005 but contain fewer heteroatoms than asphaltenes from 48 

sources, such as biomass and coal liquefaction products.  Solubility is thus covered by a 49 

combination of molecular mass, polarity and the degree of condensation of aromatic nuclei, the 50 

latter two parameters controlling the extent of inter-molecular association.6  The more polar 51 

asphaltenes obtained from coal and biomass generally have lower molecular mass ranges.  The H 52 

donor ability, the chemical structure and sulfur content of the asphaltenes have been identified as 53 

factors that contribute to the formation of coke.  The H donor ability of asphaltenes is lower than 54 

their H acceptor ability, which is considered to be responsible for the combination of radical 55 

species during thermal conversion that leads to coke formation.7  Chiaberge et al.3 found that 56 

asphaltenes treated at 400 °C tend to aromatize to form structures that can be considered as coke 57 

precursors.   58 

 59 
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To understand their thermal and softening behavior, studies on asphaltenes have also been 60 

carried out using thermal gravimetric analysis (TGA) and rheometry.8−10  Trejo et al.8 used TGA 61 

to study the weight loss of asphaltenes as a function of temperature, and found that 62 

approximately 45 wt % of the asphaltenes mass was lost over the temperature range 300−500 °C.  63 

A small weight loss occurred at around 370 °C which was considered to result from the 64 

elimination of alkyl groups located in peripheral sites, and the maximum weight loss occurred at 65 

430 °C, with the asphaltenes converting into coke, gases, oils and resins.  Above 450 °C, 66 

condensation reactions dominated and the asphaltenes converted into coke.  They also found that 67 

slower heating rates (4 °C/min) produced more coke and less liquids and gases than faster 68 

heating rates (16 °C/min).  Regarding softening, Asprino et al.9 studied the fluid properties of 69 

asphaltenes at 310−530 °C using an apparatus that allowed the calculation of the surface tension 70 

of the melted asphaltenes.  The surface tension was then used to calculate the viscosity of the 71 

liquid bridge of asphaltenes during elongation.  The viscosity of the asphaltenes decreased with 72 

temperature and it was found to be in the range of 9−18 Pa.s at 312−358 °C, whereas the 73 

viscosity increased above 400 °C due to compositional changes in the asphaltenes induced by 74 

thermal reactions.  Thermogravimetric analysis also showed that asphaltenes were the main 75 

contributor to coke formation during thermal cracking of atmospheric distillation residues.10   76 

 77 

A powerful technique that can monitor in situ the development of fluidity at temperatures up to 78 

around 500 °C is high temperature 1H NMR, also defined as proton magnetic resonance thermal 79 

analysis (PMRTA).  There is a vast amount of published literature related to the use of this 80 

technique combined with small-amplitude oscillatory shear (SAOS) rheometry to study fluidity 81 

development in coals during carbonization.11−16  High temperature 1H NMR monitors the fluid 82 
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and rigid components in the sample, whereby the spectrum peak at a particular temperature is 83 

deconvoluted into a Lorentzian distribution function and a Gaussian distribution function.  The 84 

area of the Lorentzian peak provides the fraction of fluid phase and its width at half-height is 85 

inversely proportional to the spin-spin relaxation time (T2L), which is a measure of the changes 86 

in the mobility of the fluid phase.  This technique can also be used to monitor the evolution of 87 

the solid and liquid phases in the asphaltenes at high temperatures, and hence, elucidate in situ 88 

the role of these compounds on coke formation.17,18  High temperature SAOS rheometry is a 89 

technique that measures the linear viscoelastic properties of the sample as a function of 90 

temperature and has been used in the past in combination with high temperature 1H NMR to 91 

elucidate the effect of carbonaceous additives in coking blends used in the carbonization 92 

process.19,20  In this manner, the aim of this study is to investigate the fluidity development in 93 

asphaltenes during pyrolysis through the combined use of high temperature 1H NMR and high 94 

temperature SAOS rheometry to provide a more detailed understanding of fluidity development 95 

with respect to softening and then conversion to coke at temperatures above 400 °C.   96 

 97 

Visbreaking which is an important thermal cracking process used to convert petroleum 98 

vacuum residue into lighter distillate fuels21 is used as a conversion process to demonstrate the 99 

applicability of the approach.  There is the simultaneous formation of unwanted pyrolytic coke, 100 

which is known to comprise condensed large ring polyaromatic hydrocarbons with low hydrogen 101 

to carbon ratios.  Coke formation results in the fouling of reactor and causes pipeline blockages, 102 

which ultimately leads to shut down of the visbreaker unit for maintenance.22,23  Wiehe21 103 

postulated the process of coke formation to be a result of polymerization and condensation 104 

reactions from light to heavy aromatic fractions in the order: aromatics → resins → asphaltenes 105 
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→ coke.  Goncalves et al.10 also found that asphaltenes produce coke when they are thermally 106 

stressed at high temperatures, whereas Wiehe21,24 showed that asphaltenes directly convert to 107 

coke without an induction period, although the formation of coke was inhibited by the presence 108 

of n-heptane solubles.  Indeed, feeds with initial high resins and asphaltenes contents generally 109 

had higher tendencies to form coke than paraffinic feeds under same operating conditions.25,26  110 

Other authors27−29 believe that when the concentration of asphaltenes exceeds their solubility 111 

limit, the asphaltenes create a new phase referred to as ‘coke precursor’ that separates out from 112 

the oil phase.  However, Kok and Karacan30 did not find a good correlation between coke yield 113 

and the amount of asphaltenes in the crude oil.  Here, 1H NMR and rheometry were used to 114 

follow coke formation in-situ from vacuum residue asphaltenes to compare with the results from 115 

laboratory visbreaking experiments.  Further, the toluene-insolubles obtained from the laboratory 116 

experiments have also been characterized by 1H NMR and comparisons drawn with those from 117 

the hydrous pyrolysis products.   118 

 119 

2. EXPERIMENTAL SECTION 120 

2.1. Vacuum residue and visbreaking 121 

A vacuum residue derived from an Urals crude oil was used in this study.  The maltene 122 

fraction was separated into aliphatics, aromatics and resins by silica/alumina column 123 

chromatography using a 5 mL burette.  This involved adsorption of the maltene (30 mg) onto 124 

silica gel which was placed above a silica/alumina column, followed by elution with 15 mL of n-125 

hexane for the aliphatics, 15 mL of n-hexane/dichloromethane (60:40 volume/volume) mixture 126 

for the aromatics and 15 mL of dichloromethane/methanol (50:50 volume/volume) mixture for 127 

the resins.  Laboratory-scale visbreaking of the vacuum residue was conducted by heating 128 



 7

approximately 2 g of the sample under nitrogen atmosphere at 410 °C for 60 minutes in a 129 

stainless steel mini reactor immersed in a temperature controlled fluidized sand bath pre-heated 130 

to 410 °C.31  The amount of distilled water added to the reactor was approximately 1 wt% of the 131 

sample mass.  After pyrolysis, the reactor was removed from the sand bath and allowed to cool 132 

to ambient temperature.  Then, the reactor contents were recovered and refluxed overnight in 133 

toluene, followed by filtration to separate toluene insoluble (coke) from toluene soluble (oil).  134 

The toluene-soluble oil was rotary evaporated so as to contain a minimal amount of toluene.  The 135 

asphaltenes fraction was separated from the maltene fraction by adding 40-fold excess of n-136 

heptane to the toluene soluble present in minimal amount of toluene, and the mixture was stirred 137 

for 30 minutes with a magnetic stirrer.  The mixture was then transferred to centrifuge tubes and 138 

centrifuged for 5 minutes at 2500 revolutions per minute to remove the n-heptane insoluble 139 

asphaltenes from suspension before decanting off the n-heptane solution.  The process was 140 

repeated 5 times with the asphaltenes re-dissolved in 1.0 mL of dichloromethane each time until 141 

a clear n-heptane solution was obtained. 142 

 143 

2.2. Other samples 144 

Asphaltenes from Kimmeridge Clay source rock, a sub-bituminous coal (Illinois No 6) and 145 

pine wood bitumens were used for comparison purposes.  The Kimmeridge Clay source rock 146 

bitumen was generated using hydrous pyrolysis at 310 °C for 7 hours as previously described.32  147 

The bitumens from the sub-bituminous coal and pine wood were obtained using liquefied solvent 148 

extraction at 410 °C for 1 hour using tetralin as solvent.  The asphaltenes from the Kimmeridge 149 

Clay source rock, sub-bituminous coal and pine wood bitumens were isolated by the addition of 150 

700 mL of n-heptane to about 2.5 g of bitumen previously dissolved in 7 mL of dichloromethane.  151 
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The mixture was then stirred using a magnetic stirrer for 30 minutes and left overnight in the 152 

fume cupboard for the n-heptane insoluble asphaltenes suspension to precipitate out of solution.  153 

The n-heptane solution was decanted off and the process was repeated 5 times until a clear n-154 

heptane solution was obtained.  The isolation method used for the source rock, coal and pine 155 

wood asphaltenes was different to that used for the vacuum residue asphaltenes due to the larger 156 

amount of sample used.   157 

 158 

2.3. Nuclear magnetic resonance (NMR) 159 

A Doty 200 MHz 1H NMR probe was used in conjunction with a Bruker MSL300 instrument 160 

to determine fluidity development in the coke and asphaltenes obtained after visbreaking and the 161 

asphaltenes from Kimmeridge Clay source rock bitumen.  A flow of 25 L/min of dry nitrogen 162 

was used to transfer heat to the sample and to remove the volatiles that escape from the ceramic 163 

sample container.  Below the sample region, a flow of 60 L/min of dry air prevented the 164 

temperature rising above 50 °C to protect the electrical components.  In addition, air was blown 165 

at 20 L/min into the region between the top bell Dewar enclosing the sample region and the outer 166 

side of the probe to prevent the temperature exceeding 110 °C.  The sample temperature was 167 

monitored using a thermocouple in direct contact with the sample container.  The solid echo 168 

pulse sequence (90°−τ−90°) was used to acquire the data.  A pulse length of 3.50 μs was 169 

maintained throughout the test.  Approximately 140−150 mg of sample (<53 μm) was packed 170 

lightly into a boron nitride container, and 100 scans were accumulated using a recycle delay of 171 

0.3 seconds.  The asphaltenes derived from the vacuum residue, Kimmeridge Clay source rock 172 

bitumen, sub-bituminous coal and pine wood were analyzed using a slow heating rate (3 °C/min) 173 

from 50 °C to 410 °C.  The cokes derived from these samples with the exception of the source 174 
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rock bitumen were also analyzed using the same conditions.  The spectra were acquired at 175 

increments of 25 °C and were deconvoluted into Gaussian and Lorentzian distribution functions.  176 

The area of the Lorentzian peak multiplied by 100 and divided by the total area of the NMR 177 

signal represents the concentration of fluid H in the sample and the width of the Lorentzian peak 178 

at half-height is inversely proportional to the mobility of the fluid phase (T2L).  In addition, the 179 

asphaltenes and coke from the vacuum residue were heated from room temperature to 410 °C at 180 

approximately 70 °C/min and then held at that temperature for 20 minutes.  The spectra were 181 

acquired at intervals of 1 minute and were deconvoluted into Gaussian and Lorentzian 182 

distribution functions.  As an example, Figure 2 shows the deconvoluted 1H NMR spectra of the 183 

composite toluene insoluble coke sample from visbreaking acquired at 410 °C after 0, 10 and 20 184 

minutes.  These spectra show that the liquid component (Lorentzian peak) reduces with time and 185 

the solid component increases (Gaussian peak).  This deconvolution procedure has previously 186 

been used to monitor the softening, maximum fluidity and resolidification stages of coal during 187 

carbonization.13   188 

 189 

2.4. Small-amplitude oscillatory shear (SAOS) rheometry 190 

Rheological measurements were performed in a Rheometrics RDA-III high-torque controlled-191 

strain rheometer.  A TA AR-2000 rheometer with smooth parallel plates was also used to 192 

characterize the asphaltenes from coal and wood and to validate the results obtained with the 193 

RDA-III rheometer.  The TA rheometer is best suited for measuring the viscosity of asphaltenes 194 

since it possesses a lower torque measuring range (0.05–200 μN.m) than that for the Rheometrics 195 

instrument (100–107 μN.m).  For this purpose, identical sample preparation and analysis 196 

conditions were employed in both instruments.  The asphaltenes (1.0 g) from the vacuum 197 
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residue, source rock bitumen, sub-bituminous coal and pine wood were compacted under 5 tons 198 

of pressure in a 25 mm die to form disks with thickness of approximately 2.6 mm.  The test 199 

involved placing the sample disk between two 25 mm parallel plates which had serrated surfaces 200 

to reduce slippage.  The sample was heated from room temperature to 500 °C at a rate of 3 201 

°C/min.  The furnace surrounding the sample was purged with a constant flow of nitrogen to 202 

transfer heat to the sample and remove volatiles.  The sample temperature was monitored using a 203 

thermocouple inside the furnace.  A continuous sinusoidal varying strain with amplitude of 0.1% 204 

and frequency of 1 Hz (6.28 rad/s) was applied to the sample from the bottom plate throughout 205 

the heating period.  The stress response on the top plate was measured to obtain the complex 206 

viscosity (η*) and phase angle (δ) as a function of temperature.  The complex viscosity decreases 207 

as the material becomes more liquid-like in character whereas the phase angle varies between 0° 208 

for an ideal elastic or rigid material and 90° for an ideal viscous or fluid material.33   209 

 210 

3. RESULTS AND DISCUSSION 211 

3.1. High temperature 1H NMR of asphaltenes 212 

The high temperature 1H NMR results for the asphaltenes when heated from 50 °C to 410 °C at 213 

3 °C/min are presented in Figure 3.  All the asphaltenes soften with temperature and become 214 

completely fluid by 300 °C, although differences are evident in their softening behavior.  Further 215 

heating of the asphaltenes to 410 °C failed to produce any measurable quantity of coke, as 216 

indicated by the absence of any measurable amount of rigid H.  The high fluidity in the 217 

asphaltenes (100%) was accompanied by high mobility or relatively low viscosity as indicated 218 

by the relatively long T2Lvalues of ~200 μs.  Kopsch34 reported that the glass transition 219 

temperatures of asphaltenes derived from vacuum residues were around 294 °C, which matches 220 
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the temperature for the minimum in mobility within experimental error for the vacuum residue 221 

investigated here.  However, this may be a coincidence as the glass transition temperature may 222 

vary depending on the measuring technique, the heating rate used and the sample pre-223 

treatment.35   224 

 225 

The differences in the concentration and mobility of the fluid phase for the different 226 

asphaltenes are probably related to differences in their chemical/physical characteristics.  227 

Regarding the asphaltenes from Kimmeridge Clay source rock bitumen, there is a gradual 228 

increase in the amount of fluid material from room temperature up to 250 °C, and the asphaltenes 229 

are completely fluid from 250 °C up to the final temperature (410 °C).  The mobility of the fluid 230 

phase as measured by T2L is fairly constant up to 100 °C, and then starts to increase from 50 μs to 231 

approximately 190 μs at 300 °C.  Compared to the vacuum residue, the asphaltenes from the 232 

source rock bitumen become completely fluid at a lower temperature (250 cf. 275 °C) with the 233 

increase in fluidity with temperature being more gradual.  Furthermore, the apparent mobility of 234 

the fluid phase for the asphaltenes from the source rock bitumen reaches a maximum at higher 235 

temperatures (300 °C cf. 225 °C) and it is slightly lower (T2L of 190 μs cf. 210 μs) than in the 236 

case for the asphaltenes from the vacuum residue.  However, other factors, particularly 237 

difference in free radical concentration could account for these relatively small differences in 238 

T2L.   239 

 240 

The trends for the percentage of fluid H as a function of temperature for the asphaltenes from 241 

the sub-bituminous coal and pine wood extracts are fairly similar to those from the asphaltenes 242 

derived from the vacuum residue and Kimmeridge Clay source rock bitumen.  The mobility of 243 
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the fluid phase in the asphaltenes derived from pine wood presents a similar trend to those of the 244 

asphaltenes from the vacuum residue and Kimmeridge Clay source rock bitumen.  However, the 245 

fluid component of the asphaltenes obtained from the sub-bituminous coal shows an abnormal 246 

decrease in mobility at intermediate temperatures (150−200 °C).  These results suggest that the 247 

initial material that softens is highly mobile but this is followed by generation of extremely 248 

viscous fluid material as the temperature increases.  Eventually, the mobility increases with 249 

further softening and achieves similar mobility values (T2L180 μs) to the other samples once 250 

complete softening has occurred.   251 

 252 

3.2. High temperature rheometry of asphaltenes 253 

The tests were carried out in the Rheometrics RDA-III rheometer using the same heating rate 254 

of 3 °C/min as in the 1H NMR tests in order to compare the results from both techniques.  It is 255 

important to mention that the definition of a fluid from a rheological standpoint differs from the 256 

concept of a fluid defined by NMR.  A rheological fluid is defined here as a system composed of 257 

gas and liquid phases that undergo thermally-induced physical and chemical transformations and 258 

affect the viscoelastic properties of the whole sample mas.  For instance, an increase in the 259 

amount and/or mobility of the rheological fluid material during softening will cause a decrease in 260 

complex viscosity or increase in phase angle.  On the other hand, the fluid material defined by 261 

NMR only considers the hydrogenated mobile entities at the molecular level, i.e. fluid H.  262 

Despite these differences, an increase in the percentage of fluid H in coal during carbonization 263 

has been found to be associated with a decrease in complex viscosity (or increase in phase angle) 264 

and viceversa.12   265 

 266 
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The viscoelastic properties of the asphaltenes obtained from the vacuum residue, Kimmeridge 267 

Clay source rock bitumen, the sub-bituminous coal and pine wood are presented in Figure 4.  As 268 

expected, the results show that the phase angle (δ) increases when the complex viscosity (η*) 269 

decreases.  The scattering of the data over the temperature range of 200−450 °C results from the 270 

limitations of the rheometer, which cannot analyze materials that develop complex viscosity 271 

values below 1000 Pa.s and asphaltenes can reach complex viscosity values of around 10 Pa.s at 272 

these temperatures.9  However, differences are evident in the temperatures at which the various 273 

asphaltenes soften and resolidify, which reflect their different chemical compositions.  The 274 

asphaltenes from the source rock bitumen develop similar viscoelastic behavior to those from the 275 

vacuum residue although they soften at lower temperatures (180 °C cf. 230 °C).  Qualitatively, 276 

the fact that asphaltenes from the source rock bitumen soften at lower temperatures than those 277 

from the vacuum residue corroborates the results obtained through high temperature 1H NMR 278 

(Figure 3).  The resolidification of the asphaltenes due to condensation reactions starts at around 279 

450 °C, which is comparable to the resolidification temperature of the asphaltenes from the 280 

vacuum residue.  The asphaltenes from the coal and pine wood develop minima in complex 281 

viscosity that fall below 1000 Pa.s indicating that the asphaltenes from these carbonaceous 282 

materials also develop high fluidity.  However, the asphaltenes from coal soften at lower 283 

temperatures (170 °C) than the other asphaltenes (200 °C) whereas the asphaltenes from pine 284 

wood seem to be less fluid (i.e. higher viscosity) than the other asphaltenes in the temperature 285 

range 250−450 °C.   286 

 287 

Figure 5 shows that there is linear relationship between the phase angle and the percentage of 288 

fluid H during softening of the asphaltenes derived from the vacuum residue, Kimmeridge Clay 289 
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source rock bitumen and pine wood.  The asphaltenes from the sub-bituminous coal are not 290 

included in this plot since the softening process in the rheometer occurs too rapidly to obtain 291 

representative data.  This correlation indicates that the viscoelastic behavior during softening is 292 

controlled by the amount of fluid H in the asphaltenes.  The gradient values for the asphaltenes 293 

from source rock bitumen and pine wood are fairly similar (1.2−1.5) despite the expected higher 294 

content of oxygenated structures in pine wood asphaltenes as a result of the higher oxygen 295 

content in the parent material.   296 

 297 

The asphaltenes from the sub-bituminous coal and pine wood were also analyzed in a TA AR-298 

2000 rheometer with smooth parallel plates to validate the results obtained in the Rheometrics 299 

RDA-III instrument.  Figure 6 proves that these asphaltenes are also highly fluid and confirms 300 

that the scattered data presented in Figure 4 are due to the limitations of the instrument when 301 

analyzing materials that develop complex viscosity values <1000 Pa.s.  The viscoelastic behavior 302 

of the sub-bituminous coal asphaltenes is fairly similar in both rheometers.  However, the 303 

different viscoelastic behavior observed with the asphaltenes from pine wood could be due to 304 

changes in the chemical structure during storage and/or due to the use of different types of 305 

parallel plates (i.e. with smooth and serrated surfaces).  The minimum complex viscosity of the 306 

asphaltenes from pine wood determined using the TA rheometer is 40 Pa.s, which is comparable 307 

to the viscosity values reported by Asprino et al.9 for Athabasca vacuum residue (10 Pa.s).   308 

 309 

3.3. Asphaltenes from vacuum residue visbreaking 310 

The compositions of the vacuum residue before and after visbreaking of the vacuum residue at 311 

410 °C for 60 minutes are listed in Table 1.  The asphaltenes content increased considerably 312 
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(19%) during visbreaking, largely at the expense of the maltenes and resins.  Simultaneously, 313 

there was an increase in toluene-insolubles (coke) from 0.1 to 2.4% w/w.  The aliphatics content 314 

did not change during visbreaking (21 wt%).  The fact that the aromatics and resins fractions 315 

are responsible for the increase in toluene-insolubles and asphaltenes is in agreement with the 316 

mechanism of coke formation proposed by Wiehe.21   317 

 318 

Figure 7 shows the changes in percentage of fluid H and mobility of the fluid phase as a 319 

function of time at 410 °C for the asphaltenes derived from visbreaking the vacuum residue.  The 320 

asphaltenes remain completely fluid after 20 minutes, although the mobility decreases with time, 321 

which could be related to the formation of higher molecular mass species by condensation 322 

reactions, the mobility is still appreciable (T2L of 120 μs).  This finding is consistent with 323 

induction period of over 30 minutes being required at 410 °C for the onset of coke formation31 324 

for this particular vacuum residue.  Asphaltenes do aromatize when thermally treated at 400 °C 325 

for 3 hours,3 and thus, agree with the results from Schabron et al.23 who found that coke yield is 326 

greatly affected by changes in residence time when treating petroleum residue.  For example, in 327 

contrast to the results here (Figure 7), asphaltenes from other vacuum residues have previously 328 

been found to form coke immediately at a high rate without any induction period.24   329 

 330 

3.4. Toluene-insolubles from vacuum residue visbreaking 331 

The high temperature 1H NMR results for the toluene insolubles when heated from 50 °C to 332 

410 °C at 3 °C/min are presented in Figure 8.  Coke softens between 100 °C and 200 °C, but 333 

higher temperatures do not increase significantly the amount of fluid material in the sample 334 

(40%).  Furthermore, the mobility of the fluid phase in the cokes obtained from the vacuum 335 



 16

residue and pine wood does not change throughout the temperature range studied.  However, the 336 

mobility of the fluid phase in the toluene-insolubles from the sub-bituminous coal increases 337 

sharply from 50 μs to more than 150 μs at 200 °C and remains at those levels up to 300 °C, but 338 

the amount of fluid H is negligible (<5%).   339 

 340 

Figure 9 shows the changes in percentage of fluid H and mobility of the fluid phase as a 341 

function of time at 410 °C for the toluene-insolubles coke from visbreaking the vacuum residue.  342 

Initially, the coke generated 44% mobile hydrogen with modest mobility (T2L of 66 μs).  343 

Afterwards, there is a gradual reduction of the fluid phase with time and this decrease in fluidity 344 

is considered to be a transformation phase from a highly viscous and sticky fluid (corresponding 345 

to sponge coke) to a more solid component (shot coke).  Therefore, it is likely that the initial 346 

coke formed in visbreaking with a high proportion of viscous fluid material could be responsible 347 

for its ability to case fouling by adhering to metal surfaces.   348 

 349 

4. CONCLUSIONS 350 

Consistent agreement was obtained for the non-isothermal studies on the asphaltenes between 351 

high temperature 1H NMR and rheometry, which confirmed that the asphaltenes were highly 352 

fluid from 300 °C.  This produced extremely good correlations between fluid hydrogen and 353 

phase angle as the asphaltenes softened.  Signs of resolidification were observed at temperatures 354 

of around 450 °C and indicate that the conversion of asphaltenes into toluene-insoluble coke is 355 

minimal over a wide temperature range (150 °C).  This behavior has also been observed in 356 

asphaltenes from the Kimmeridge Clay source rock bitumen, and the tetralin extracts of the sub-357 
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bituminous coal and pine wood, suggesting that these findings will apply to asphaltenes from 358 

many other hydrocarbon sources.   359 

 360 

High temperature 1H NMR tests on the toluene insolubles coke showed that at 410 °C they 361 

contain a significant amount of fluid hydrogen (43%).  This fluid H originates from a highly 362 

viscous liquid, and thus, the toluene insoluble material is not a completely solid coke as referred 363 

to by many investigators.  The subsequent decrease in fluidity with time is considered to be a 364 

transformation of a highly viscous and sticky fluid or sponge coke to a more solid component or 365 

shot coke in the case of visbreaking.   366 

 367 
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 473 

 474 

Table 1.  Composition of the vacuum residue feed before and after visbreaking at 410 °C for 60 475 

minutes. 476 

 
Coke 

(wt %) 

Asphaltenes 

(wt %) 

Maltene 

(wt %) 

Aliphatics 

(wt %) 

Aromatics 

(wt %) 

Resins 

(wt %)

Initial feed 0.1 6.5 93.4 20.0 30.6 36.8 

After visbreaking 2.4 25.6 72.0 22.2 15.2 20.0 

 477 

 478 

  479 
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 481 

 482 

 483 

Figure 1. Possible asphaltenes structure for Athabasca vacuum residue proposed by Sheremata 484 

et al.2 485 

 486 

 487 

 488 

 489 
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 490 

 491 

Figure 2. 1H NMR spectra of the toluene-insolubles (coke) obtained from visbreaking the 492 

vacuum residue after 0 minutes (top), 10 minutes (middle) and 20 minutes (bottom) at 410 °C. 493 
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 495 

 496 

 497 

Figure 3. Percentage of fluid H and the T2L of the fluid hydrogen as a function of temperature 498 

using a heating rate of 3 °C/min for the asphaltenes obtained from visbreaking the vacuum 499 

residue (top, left), the Kimmeridge Clay source rock (top, right), subbituminous coal (bottom, 500 

left) and pine wood (bottom, right) bitumens. 501 
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 503 

 504 

 505 

Figure 4. Complex viscosity (η*) and phase angle (δ) as a function of temperature using a 506 

heating rate of 3 °C/min for the asphaltenes obtained from the vacuum residue (top, left), the 507 

Kimmeridge Clay source rock (top, right), subbituminous coal (bottom, left) and pine wood 508 

(bottom, right) bitumens. 509 

 510 
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 512 

 513 

Figure 5. Correlation between phase angle (δ) and percentage of fluid H during softening of the 514 

asphaltenes obtained from visbreaking the vacuum residue (top), the Kimmeridge Clay source 515 

rock bitumen (middle) and the pine wood tetralin extract (bottom). 516 
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 518 

 519 

Figure 6. Complex viscosity (η*) as a function of temperature for the asphaltenes obtained from 520 

the tetralin extracts of the subbituminous coal (left) and pine wood (right) using the RDA-III 521 

rheometer (black symbol) and the TA AR-2000 rheometer (grey symbol). 522 

 523 

 524 

Figure 7. Percentage of fluid H and the T2L of the fluid hydrogen as a function of time at 410 °C 525 

for the asphaltenes obtained from visbreaking the vacuum residue.  526 
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 527 

 528 

Figure 8. Percentage fluid H and the T2L of the mobile phase as a function of temperature with a 529 

heating rate of 3 °C/min for the toluene-insolubles obtained from visbreaking the vacuum residue 530 

(top) and bitumen extracts from the subbituminous coal (middle) and pine wood (bottom).531 
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 532 

 533 

 534 

Figure 9. Percentage of fluid H and the T2L of the fluid hydrogen as a function of time at 410 °C 535 

for the toluene-insolubles obtained from visbreaking the vacuum residue. 536 
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