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Abstract. The North Atlantic is an important basin for the global ocean’s7

uptake of anthropogenic and natural carbon dioxide (CO2), but the mech-8

anisms controlling this carbon flux are not fully understood. The air-sea flux9

of CO2, F , is the product of a gas transfer velocity, k, the air-sea CO2 con-10

centration gradient, ∆pCO2, and the temperature and salinity-dependent11

solubility coefficient, α. k is difficult to constrain, representing the dominant12

uncertainty in F on short (instantaneous to interannual) timescales. Previ-13

ous work shows that in the North Atlantic, ∆pCO2 and k both contribute14

significantly to interannual F variability, but that k is unimportant for mul-15

tidecadal variability. On some timescale between interannual and multidecadal,16

gas transfer velocity variability and its associated uncertainty become neg-17

ligible. Here, we quantify this critical timescale for the first time. Using an18
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ocean model, we determine the importance of k, ∆pCO2 and α on a range19

of timescales. On interannual and shorter timescales, both ∆pCO2 and k are20

important controls on F . In contrast, pentadal to multidecadal North At-21

lantic flux variability is driven almost entirely by ∆pCO2; k contributes less22

than 25%. Finally, we explore how accurately one can estimate North At-23

lantic F without a knowledge of non-seasonal k variability, finding it pos-24

sible for interannual and longer timescales. These findings suggest that con-25

tinued efforts to better constrain gas transfer velocities are necessary to quan-26

tify interannual variability in the North Atlantic carbon sink. However, un-27

certainty in k variability is unlikely to limit the accuracy of estimates of longer28

term flux variability.29
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1. Introduction

Since the onset of the industrial era in the middle of the 18th Century, human activities30

have altered oceanic and atmospheric chemistry, affecting the climate system. Fossil fuel31

consumption, changes in land use and cement production rapidly release carbon as carbon32

dioxide (CO2) gas from geological reservoirs into the atmosphere, oceans and terrestrial33

biosphere. This adds large amounts of ‘anthropogenic carbon’ to the biogeochemically34

and/or radiatively active ‘natural carbon’ pool. The effects of CO2 on the Earth system35

are numerous and complex, but as a ‘greenhouse gas’ it is a prominent control on climate36

[Myhre et al., 2013]. Of the 555 ± 85 petagrams of carbon emitted to the atmosphere37

between 1750 and 2011 by human activities, about half has remained in the atmosphere38

while 28% ± 5% has been taken up by the oceans, with the remainder taken up by the39

terrestrial biosphere [Ciais et al., 2013].40

The flux equation, (1), describes the net exchange of CO2 between the air and the ocean41

(F ). Here, ∆pCO2 is the disequilibrium between the partial pressures of CO2 in the air42

and ocean (pCOair
2 - pCOocean

2 ). Under this sign convention, an excess of CO2 in the air43

gives positive ∆pCO2 and F , and driving exchange into seawater. If pCOocean
2 is greater,44

outgassing occurs. pCO2 in seawater is primarily a function of temperature (T ), and45

dissolved inorganic carbon (DIC), but salinity (S ) and alkalinity also affect this. The gas46

transfer velocity, k, is a parameterization of how several aspects the physical environment47

enable CO2 flux. Wind velocity is the main variable affecting k (increasing winds increases48

k), but ice, surfactants, bubbles and other factors also play important roles [Wanninkhof49

et al., 2009]. The Schmidt number (the ratio between kinematic viscosity and molecular50
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diffusion) also affects k, varying with water temperature. α is Henry’s constant of CO251

solubility in seawater [Weiss , 1974], quantifying how temperature, salinity and pressure52

affect solubility.53

F = ∆pCO2 × k × α (1)

CO2 flux is difficult to measure directly due to the need for high temporal resolu-54

tion measurements of pCO2 and small scale turbulence [McGillis et al., 2001], and so a55

more common approach is to measure or estimate each quantity on the right hand side56

(RHS) of equation (1). α is the most straightforward to determine, varying primarily57

with temperature, but also with salinity. α’s contribution to flux variability is generally58

well-constrained, and found to be minor on interannual timescales (e.g. [Doney et al.,59

2009]). ∆pCO2 and k, however, present distinct challenges for ocean carbon research.60

The primary challenge with studying global ∆pCO2 variability is to place as many mea-61

surement systems in as many locations as possible, and to maintain those observations62

through time. The Surface Ocean CO2 Atlas (SOCAT) is an example of a global effort to63

compile measurements of ocean surface CO2 gathered by autonomous underway systems64

on commercial vessels and research cruises [Bakker et al., 2014].65

The main difficulties in quantifying gas transfer velocity stem from its dependence on66

several elements of the physico-chemical environment. The main variable used to derive67

a gas transfer velocity is wind speed, but k is also dependent on the smoothness of the68

sea surface (i.e. the presence of breaking and non-breaking waves [Frew et al., 2007]),69

bubble entrainment, rain, buoyancy generated turbulence, surfactants and other factors70

[Wanninkhof et al., 2009]. Given the large range of variables, and poor constraints of71
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their effects on k, field measurement of gas transfer velocity is difficult. In attempts to72

refine these uncertainties, several parameterizations have been proposed, derived using73

a number of techniques, but there is no consensus which is the most accurate [Bender74

et al., 2011]. Instead, authors tend to attempt to quantify k uncertainty in two ways:75

the uncertainty inherent to a particular parameterization (resulting from the spread of76

datapoints about the polynomial fitted) and the variation in derived k from the use of77

different parameterizations. Published uncertainties relating to k are often not statistically78

sound, and represent ad-hoc best estimates of error [Wanninkhof , 2014]. The result is79

that considerable CO2 flux uncertainty originates from uncertainties in the gas transfer80

velocity.81

While the whole global ocean represents a large net sink of CO2 for the atmosphere,82

its uptake is not uniform spatially or temporally. The tropical oceans are net CO2 out-83

gassing regions, whereas at higher latitudes there is net uptake by seawater [Takahashi84

et al., 2009; Landschützer et al., 2014]. The major upwelling regions are outgassing zones,85

and the strongest sites of ocean CO2 uptake are areas of deep waters formation. In the86

North Atlantic, the combination of deep water formation and high biological carbon fix-87

ation create ideal physical and biogeochemical conditions for strong ocean CO2 uptake,88

distinguishing it from other basins [Sabine et al., 2004; Khatiwala et al., 2009]. It is89

therefore an important focus region in the ocean carbon cycle.90

The evolution of the North Atlantic carbon sink on decadal and longer timescales is91

unclear, yet its quantification is necessary for future climate change prediction [Halloran92

et al., 2015]. Bates [2007] and Takahashi et al. [2009] call attention to this gap in knowl-93

edge, highlighting that a major limitation to our ability to understand this variability94
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stems from limited spatiotemporal coverage of CO2 observations. Although datasets with95

large spatial coverage exist (e.g. SOCAT [Bakker et al., 2014]), they lack the temporal96

duration required to study long timescales [Halloran et al., 2015]. Equally, the long time-97

series sites with sufficient data to quantify multiannual variability, such as the Bermuda98

Atlantic Time Series (BATS) and others reviewed recently by Bates et al. [2014] may not99

necessarily represent the systems at the basin scale [McKinley et al., 2004]. Given these100

temporal and spatial data gaps, numerical modelling studies provide unique insight into101

an incompletely observed system.102

It is necessary to understand where observational uncertainties limit our ability to con-103

fidently predict future climate change. Previous work investigating global ocean carbon104

flux interannual variability has found both ∆pCO2 and k to be important drivers [Doney105

et al., 2009; Long et al., 2013]. Other work has found that North Atlantic multidecadal106

CO2 flux variability is controlled chiefly by the contribution from ∆pCO2 [McKinley et al.,107

2011]. Therefore, on these multidecadal timescales, uncertainty in gas transfer velocity108

variability does not considerably limit estimates of flux variability, because the contribu-109

tion from k is minor. On some intermediate critical timescale between interannual and110

multidecadal, flux variability transitions from a regime that is k - and ∆pCO2-controlled111

to purely ∆pCO2-controlled. Presently, neither the magnitude of this critical timescale112

nor its spatial structure are known, yet both are needed to understand where uncertainties113

in ∆pCO2 and k add uncertainty in derived fluxes.114

Here, we attribute CO2 flux variability to contributions from all flux equation compo-115

nents on a range of timescales, to identify the timescales where k becomes unimportant.116

We hypothesise that on interannual and shorter timescales, both k and ∆pCO2 will both117
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be important in controlling flux variability, but that for longer term variability, ∆pCO2118

will be the dominant contributor. We examine 150 years of ocean biogeochemical model119

output, forced with two scenarios: 1) sharply rising, following historical measurements120

and RCP 8.5 [Riahi et al., 2011] and 2) fixed preindustrial atmospheric CO2 concentra-121

tions. First, we determine that our setup is appropriate to test our hypothesis, comparing122

observed and modelled variability. Next, we compare our model’s representation of inter-123

annual flux variability with those of previous studies, before expanding our methodology124

to examine more specific timescales of variability. We then identify which long timescales125

of flux variability, if any, are driven entirely by the ∆pCO2 contribution, with negligible126

influence from k. Finally, we examine how successfully one can estimate flux variability127

with only a very limited knowledge of the contribution of k.128

2. Methods

2.1. Model Setup

We investigate the controls of ocean carbon flux variability on different time scales129

using a numerical ocean general circulation model (GCM); version 3.2 of the Nucleus130

for European Modelling of the Ocean (NEMO) physical ocean model [Madec, 2008]. This131

model includes sea-ice; version 2 of the Louvain-la-Nueve Ice Model (LIM2, [Timmermann132

et al., 2005]). NEMO was run with a 1◦ horizontal resolution using the ORCA-1 grid133

[Madec and Imbard , 1996]. This grid is not sufficient to resolve the mesoscale, but has a134

finer scale of about 1/3◦ of latitude at the equator to better represent equatorial upwelling.135

The grid has 292 × 362 horizontal points and 64 vertical levels (with smaller spacing at136

the surface, increasing with depth).137
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NEMO is coupled with an intermediate-complexity ecosystem model, MEDUSA 2.0138

[Yool et al., 2013a]. MEDUSA 2.0 separately simulates “large” organisms (mesozooplank-139

ton and microphytoplankton like diatoms) and “small” ecosystem members (to represent140

the microbial loop). MEDUSA 2.0 resolves nitrogen, silicon, iron, carbon, alkalinity and141

oxygen cycles. The model includes representations of sinking of detrital matter and ben-142

thic interactions. The Nightingale et al. [2000] gas transfer velocity parameterization is143

used, with the Schmidt number of Wanninkhof [1992]. This parameterization is com-144

monly used as it is considered to be one of the more robust; the function shows a high145

proportion (82%) the variance of dual-tracer release data explained by wind speed [Ho146

et al., 2011].147

Output from the HadGEM2-ES Earth system model is used as the atmospheric forc-148

ing set [Yool et al., 2013b]. HadGEM2-ES includes physical models of the ocean and149

atmosphere, the terrestrial and ocean carbon cycles, tropospheric chemistry and aerosols150

[Collins et al., 2011]. The surface fluxes of heat, momentum and freshwater, and atmo-151

spheric chemistry from HadGEM2-ES were used to force NEMO at 6-hourly intervals.152

The atmospheric forcing set for the ‘anthropogenic’ run prescribes concentrations of at-153

mospheric CO2 (and other greenhouse gases: methane, nitrous oxide and halocarbons)154

following RCP 8.5 [Jones et al., 2011]. RCP 8.5 is a high greenhouse gas emissions sce-155

nario, with atmospheric pCO2 exceeding 900ppm by the year 2100 [Riahi et al., 2011]156

(Figure 1a, green curve). This prescribed anthropogenic source of greenhouse gases into157

the atmosphere affects the radiative forcing balance and causes a net rise in global tem-158

peratures, including Sea Surface Temperature (SST) (Figure 1b). The integration was159

run for 240 years.160
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A control run was also generated using a very similar setup to the experimental run,161

except with a different atmospheric pCO2 scenario. In this run, atmospheric pCO2 is162

held at a preindustrial value of 286 ppmv (Figure 1a, red curve). Only 30 years of this163

forcing set (i.e. output from HadGEM2-ES run with fixed preindustrial atmospheric164

CO2) were available to force NEMO-MEDUSA. Therefore, to obtain a comparable 240165

year control run, NEMO-MEDUSA was forced with eight repetitions of the forcing set.166

The control provides insight into the system’s internal variability, without forced changes167

in the radiation budget (observable in global mean SST: Figure 1, right panel) and global168

biogeochemistry. Internal variability in the control run on timescales longer than 30 years169

is evident (e.g. in atmospheric pCO2 and SST, Figure 1, red curves), but given the forcing170

setup of this run, it is not included in our analysis.171

2.2. Decomposition of CO2 Flux Variability

To explore the drivers behind CO2 flux variability, we use a Reynolds decomposition172

to separate the time-varying (y’ ) and time-mean (ȳ) components of monthly averaged173

model output, as in equation (2). The time-varying component is therefore the monthly174

anomaly from a time mean, representing non-seasonal variability.175

y = y′ + y (2)

The flux of CO2 is the product of three variables, equation (1). Therefore, a Reynolds176

decomposition for three forcing components is needed. The generalised decomposition for177

three components and its expansion is shown in equations (3-5), where a, b and c are the178

forcing components, corresponding to the three RHS variables in equation (1).179
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y = abc (3)

y′ + ȳ = (a′ + ā)(b′ + b̄)(c′ + c̄) (4)

= āb̄c̄+ a′b̄c̄+ āb′c̄+ āb̄c′ + āb′c′ + a′b̄c′ + a′b′c̄+ a′b′c′ (5)

The time-mean component, ȳ, is time mean of each of the RHS terms in equation180

(5), as in equation (6). Terms in equation (6) containing the time means of two forcing181

components (a′b̄c̄, āb′c̄ and āb̄c′) always have values of zero, giving equation (7).182

ȳ = āb̄c̄+ a′b̄c̄+ āb′c̄+ āb̄c′ + āb′c′ + a′b̄c′ + a′b′c̄+ a′b′c′ (6)

= āb̄c̄+ āb′c′ + a′b̄c′ + a′b′c̄+ a′b′c′ (7)

We subtract ȳ from both sides of equation (5) to solve for the time-varying component183

of y, equations (8-9). This gives an expression for y’ in terms of the contributions from184

separate components, equation (10). Note that āb̄c̄ = āb̄c̄, so the difference between the185

two terms cancels to zero in equation (10).186

y′ = y − ȳ (8)

= (āb̄c̄+ a′b̄c̄+ āb′c̄+ āb̄c′ + āb′c′ + a′b̄c′ + a′b′c̄+ a′b′c′)

−(āb̄c̄+ āb′c′ + a′b̄c′ + a′b′c̄+ a′b′c′) (9)

= a′b̄c̄+ āb′c̄+ āb̄c′ + (a′b′c′ − a′b′c′) + (a′b′c̄− a′b′c̄)

+(a′b̄c′ − a′b̄c′) + (āb′c′ − āb′c′) (10)
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We arrive at an equation for flux anomalies by expressing anomalies in the flux equation187

(1) using the expansion in equation (10):188

F ′ = ∆pCO′2k̄ᾱ︸ ︷︷ ︸
term1

+ ∆pCO2k
′ᾱ︸ ︷︷ ︸

term2

+ ∆pCO2k̄α
′︸ ︷︷ ︸

term3

+ (∆pCO′2k
′ᾱ− ∆pCO′2k

′ᾱ)︸ ︷︷ ︸
term4

+ (∆pCO′2k̄α
′ − ∆pCO′2α

′k̄)︸ ︷︷ ︸
term5

+ (∆pCO2k
′α′ − ∆pCO2 k′α′)︸ ︷︷ ︸

term6

+ (∆pCO′2k
′α′ − ∆pCO′2k

′α′)︸ ︷︷ ︸
term7

(11)

The physical interpretation of these terms is the anomaly in CO2 flux from a long term189

monthly mean produced by variability in ∆pCO2 (term 1), in k (term 2) and in α (term190

3) and through non-linear interactions between components (terms 4 to 7). Rather than191

consider each of the cross terms (terms 4 to 7) in equation (11) separately, we consider their192

sum as one term. This is because the role of the cross terms (even when added together)193

in controlling F ′ is minor, demonstrated in section 4.1. When summed, the decomposed194

contributions reliably reconstruct monthly mean fluxes, suggesting that the decomposition195

is not compromised by covariances between components of the flux equation and synoptic196

scale variability.197

To investigate how much each term in equation (11) contributes to variability in F ′,198

we regress the values of terms 1, 2 and 3 at each gridpoint for each month against the199

monthly flux anomaly at that gridpoint. This method is detailed further by Doney et al.200

[2007] and Doney et al. [2009]. For example, to solve for the change in y′ due to the first201

forcing component a′b̄c̄, we regress the former against the latter:202

∂y′

∂a′b̄c̄
= βa (12)
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This yields a slope, β, which quantifies how strongly a given RHS term in equation (11)203

contributes to anomalies in the CO2 flux. In equation (12), the subscripted a denotes204

that in this example, βa signifies the change in y′ with respect to variability in the forcing205

component, a. β close to one indicates that a term contributes strongly to the value of206

F ′, whereas a slope of 0 shows that F ′ is insensitive to that term. Values of β may be less207

than 0 if a term is anticorrelated with F ′. In such cases, one or more terms will have slopes208

greater than 1 to compensate for a different β being smaller than 0. In general, Σβ = 1209

(i.e. the linearity assumption of the regression) does not hold due to cross-correlations,210

but we find that the sum of all slopes is predominantly in the range 0.8 < Σβ < 1. This211

suggests that the assumption of linearity in the response of y′ to its predictors is effectively212

met.213

3. Validation

Previous work has compared output from MEDUSA 2.0 to biogeochemical observations214

on global and regional scales in more detail [Yool et al., 2013a], which we briefly summarise215

before elaborating our own validation. In general, the model captures much of the spatial216

and seasonal patterns of primary productivity, but shows a low bias in the subtropics, a217

high bias in high nutrient/low chlorophyll regions and underestimates the strength of the218

North Atlantic spring bloom. MEDUSA 2.0 tends to show ‘higher highs’ of surface DIC219

than the GLODAP [Takahashi et al., 2009] fields ([Yool et al., 2013a], their Figure 16),220

but the broader spatial patterns are well reproduced. Similarly, air-sea ∆pCO2 seasonal221

highs and lows are somewhat exaggerated, particularly the North Atlantic winter ([Yool222

et al., 2013a], their Figures 21 and 22). While these findings are useful to bear in mind,223
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our study focuses on carbon flux variability on interannual and longer timescales that has224

not been thoroughly validated.225

We first assess the ability of our setup to reproduce the major spatial features of the cli-226

matological CO2 flux by comparing observational time-mean fluxes (the Lamont-Doherty227

Earth Observatory, or LDEO flux climatology[Takahashi et al., 2009]) with model output228

(Figure 2). The most prominent large-scale features are well represented in our model:229

low latitude efflux and high latitude influx. Some of the largest discrepancies between the230

model and observations occur in the South Pacific, where measurements are sparse. For231

the purposes of our study, these differences are unimportant, since we focus on the North232

Atlantic. After interpolating the model North Atlantic CO2 flux climatology onto the233

coarser grid of the Takahashi observational climatology, the two can be compared quanti-234

tatively. The North Atlantic climatological CO2 flux is one of the best represented basins235

in our setup; here, the model somewhat underestimates high values of flux, but otherwise236

the two are well correlated (with a correlation coefficient r value of 0.80, p < 0.01) (Figure237

2c).238

Next, we attempt to validate the model’s temporal variability. Direct CO2 flux obser-239

vations representing large spatial and temporal scales do not exist, so instead we validate240

our model’s f CO2 fields (CO2 fugacity is almost equivalent to pCO2, but is scaled for241

the non-ideal nature of real world gases). We compare our model output against 1) the242

SOCAT database of surface f CO2 observations (which maximises spatial coverage at the243

expense of temporal length) [Bakker et al., 2014] and 2) data collected at the BATS site244

(to compare variability on the longest timescale possible, although only for a limited area).245

We compare fields of f CO2 rather than ∆pCO2 because in our setup, the atmospheric246
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pCO2 only varies with the increase prescribed under RCP8.5, and so all of the modelled247

∆pCO2 variability arises from the oceanic side. Spatial and temporal (other than the248

trend) variability in atmospheric pCO2 are omitted in our setup, but are small (order249

1-10ppm) in comparison to the oceanic pCO2 variability of interest (order 10-100ppm)250

[Wanninkhof et al., 2013].251

We compare our model output with 1×1◦ monthly mean gridded f CO2 fields from the252

SOCAT database (version 2) [Bakker et al., 2014]. For this comparison, we first regrid253

our model output onto the SOCAT grid. Although the dataset includes values from the254

1970s, the most consistent temporal coverage in the North Atlantic is between 2002 and255

2011. We chose three locations in zonally distinct regions on the basis that they had the256

most complete set of observations for this period. We select data from 5×5◦ degree areas257

across the North Atlantic (subtropical: northeast of the Carribbean, mid-latitude: east258

of the Bay of Biscay, and high-latitude: south of Greenland/Iceland) to compare against259

our model output (Figure 3a, orange boxes). The comparison is insensitive to the exact260

location of the boxes (shifting their positions by a few degrees gives similar results), and261

the time period of model output used. It was not possible to apply this comparison to262

the equatorial Atlantic, as there were insufficient monthly mean f CO2 values (Figure 3a).263

We calculate a monthly climatology of time mean f CO2 fields (Figure 3b, d and f), and264

monthly anomalies from this climatology for the 2002-2011 period. We then calculate265

frequency spectra of the f CO2 anomalies for each box (Figure 3c, e and g). Data gaps266

were filled with that month’s mean value, plus the contribution of the linear trend. Where267

gaps existed in the SOCAT data, the model output was accordingly subsampled and the268

resulting gaps were filled in the same way as for the observations.269
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Clear differences exist between the modelled and observed seasonal cycles of f CO2270

(Figure 3b, d and f). These differences are unimportant for our study, which does not focus271

on seasonal variability. The comparison between the frequency spectra of the model output272

and the observations is similar across all boxes: high frequency (short timescale) variability273

is similar or slightly higher in observations, and low frequencies (long timescales) show274

slightly more energy in the model. The discrepancies at high frequencies are unsurprising,275

as the observations will reflect features that are unresolved by the model, such as mesoscale276

eddies. Although the f CO2 variability at low frequencies is larger in the model, the277

agreement with observations is within a factor of 2.278

The carbon system data collected at BATS, Bermuda (64◦ W, 31.5◦ N), are among the279

longest and most consistent, covering the years 1991 to 2011. The seasonal cycle am-280

plitudes of all four parameters are well resolved in the model, with systematic offsets in281

salinity and alkalinity (Figure 4c, e). Non-seasonal variability is well represented (Figure282

4b, d, f and h). As with the SOCAT-NEMO comparison, there is substantial high fre-283

quency variability in the observations not present in the model output, since the former284

represents snapshots of real world features, while the latter represents monthly-mean out-285

put from a 1×1◦ model grid cell. Overall, the model tends to underestimate sub-annual286

variability, but captures the amplitudes on longer timescales that are relevant for this287

study.288

The gas transfer velocity is primarily a function of wind speed, so it is important that289

our setup reproduces realistic wind fields and variability. Other work has explored the290

performance of the HadGEM2 models more generally [Martin et al., 2011; Collins et al.,291

2011]. We compare the wind fields used to force NEMO-MEDUSA with monthly mean292
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Cross-Calibrated Multiplatform (CCMP) sea surface (10m) winds [Atlas et al., 2011],293

which cover the period 1988-2011. CCMP zonal wind speed variability is similar to other294

products’ [Wanninkhof et al., 2013], and so our comparison would likely produce similar295

results if other wind datasets were chosen. We regrid the data from its 0.25×0.25◦ grid onto296

a 1×1◦ grid for comparison with our model output. We construct a monthly climatology297

and fields of anomalies of wind speeds. Similarly to the other aspects of the validation,298

we construct frequency spectra of the model and observation anomaly fields (Figure 5).299

In general, agreement between the model and observations is good for variability with300

frequencies higher than 0.25 year−1, and somewhat poorer for lower frequencies (longer301

timescales). In the subpolar and polar North Atlantic, the model underestimates low302

frequency wind variability.303

4. Results

4.1. The roles of flux components in interannual variability

In this section, we investigate the drivers behind interannual CO2 flux variability, quan-304

tifying the contributions of its components, ∆pCO2, k and α. This approach builds on the305

methodology of Doney et al. [2009], attributing interannual flux variability to each com-306

ponent. First, we establish that our model setup is able to represent CO2 flux variability307

comparable to previous estimates using the portion of the simulation which overlaps the308

observational record.309

To assess global CO2 flux interannual variability, we calculate the root mean square310

(RMS) or standard deviation of globally integrated monthly flux anomalies. From monthly311

averaged CO2 flux fields at each gridpoint, we subtract a long-term mean flux (spanning312

1980-2009) for each month to generate anomaly fields. For this time period, variability is313
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insensitive to the choice of RCP because the scenarios have not yet substantially diverged314

[Myhre et al., 2013]. We globally integrate those flux anomalies, and calculate the square315

root of the mean squared anomaly, yielding the RMS. The metric is quite sensitive to316

the duration over which it is calculated. We calculate the RMS over a similar time317

period to other studies (1980 to 2009), finding a value of 0.29 Pg C yr−1, comparable318

previous estimates (Table 1). Two recent observational estimates of interannual flux319

variability differ by a factor of two ([Rödenbeck et al., 2014] and [Landschützer et al.,320

2014]), which the authors attribute to differing time periods of study. Landschützer et al.321

[2014] comment that their data do not cover the strong 1997/1998 El Niño period, which322

made the Rödenbeck et al. [2014] estimate much larger.323

Qualitatively, our setup captures many of the key regional hotspots of interannual vari-324

ability between 1980-2009 (Figure 6a): the equatorial Pacific, the subpolar and subtropical325

oceans, and the south Southern Ocean [e.g. Doney et al., 2009; Rödenbeck et al., 2014].326

The North Atlantic is a notable region for its large interannual CO2 flux variability. The327

areas with the strongest variability (>1.0 mol m−2 yr−1) are in the subpolar gyre, along328

the sea ice edge of the Labrador Sea, along the Greenland coast and along the path of the329

North Atlantic Current (NAC). The subtropical gyre shows a relatively moderate level330

of variability (up to 1 mol m−2 yr−1) which decays with distance from the NAC. The331

equatorial Atlantic shows the lowest overall CO2 flux variability.332

To investigate the causes of the interannual variability illustrated in Figure 6a, we333

estimate the contribution of each component of the flux equation (1) using the linear334

expansion of F ′ (equation (11)). At each grid point for all months, we calculate the con-335

tribution of each term in equation (11). Taking each of these contributions, we regress336
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them against the gridpoint’s monthly CO2 flux anomalies (F ′) to quantify the influence337

of that particular term on F ′, as in equation (12). This allows us to compare the contri-338

butions of ∆pCO2, k, α and the cross terms (Figure 6b-e, respectively) to variability in339

F ′.340

Over much the global ocean, ∆pCO2 is the most important contributor to interannual341

CO2 flux variability (Figure 6b), in agreement with the findings of Doney et al. [2009].342

The global area-weighted mean ∆pCO2 contribution is 0.20 mol m−2 yr−1; about 60%343

of the global interannual CO2 flux variability. The role of k is also important in almost344

all regions, contributing about 35% of global interannual flux variability, but is the most345

significant where the role of ∆pCO2 is smaller (6c). Indeed, Figure 6b and c mirror each346

other, since nearly all interannual variability in the CO2 flux comes from variability in347

either ∆pCO2 or k. This is because the contributions from α and the cross terms are348

minor (Figure 6d and e). Furthermore, most of the variability observed when considering349

k and α together as one component comes from k, as was assumed by Doney et al. [2009].350

Many of the locations where k is an important driver behind interannual CO2 flux351

variability coincide with the edges of the seasonally ice-covered oceans. This is because352

k is scaled by the proportion of each ocean grid cell area that is ice-free. Away from ice353

edges, k is an important control on F ′ in such locations as the tropical Pacific and the354

storm track of the North Atlantic (and to a lesser extent the Pacific). Here, interannual355

variability in winds is considerable, probably associated with low-frequency modes of356

climate variability such as the ENSO and the NAO, respectively.357

Overall, this analysis yields findings that agree with many of those of Doney et al.358

[2009] insofar as that interannual variability in the global oceanic flux of CO2 is controlled359
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primarily by ∆pCO2, but that k contributes about 40% of this. In the following section,360

we build upon these findings, exploring the longer multiannual to multidecadal timescales361

of variability, with an emphasis on the North Atlantic.362

4.2. Critical timescale of ∆pCO2 dominance of CO2 flux variability

In this section we identify at what time scale, if any, does variability in F become dom-363

inated by variability in ∆pCO2. To explore which parameters dominate flux variability364

over specific timescales, we average each component’s contributions (i.e. ∆pCO′2k̄ᾱ for365

the contribution of ∆pCO2, etc.) over various zonal areas to obtain mean contributions366

on the sub-basin scale. We define zones as polar (Baffin Bay and the Greenland-Iceland-367

Norwegian, or GIN, Sea), subpolar (60◦ N-35◦ N), subtropical (35◦ N-10◦ N) and equa-368

torial (10◦ N-10◦ S) (Figure 7a). We construct frequency spectra of these zonal mean369

contributions to quantify the energy of each contribution at specific timescales. Since370

the contributions from each component are in units of CO2 flux (mmol m−2 d−1), one371

can compare their magnitudes directly. We also employ Welch’s method of segmenting372

signals to better constrain estimates of the spectra [Welch, 1967]. Briefly, this involves373

segmenting a signal into shorter segments of equal length, calculating the spectra of each374

segment and then averaging over all segments’ spectra to obtain one more robust estimate375

of the spectrum. In our case, we segment the 150 year series of zonally averaged CO2 flux376

anomalies and the contribution from k into 5 non-overlapping segments of 30 year length.377

This method improves the confidence intervals of the spectrum calculated at the cost of378

being unable to solve for variability on timescales longer than the segment length. This is379

because the timescales of interest correspond to the lowest frequencies of variability, and380

so we plot the spectra in period space to highlight this end of the domain.381
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Across the North Atlantic, most of the variability in CO2 flux is attributable to the382

contribution from either ∆pCO2 or k ; the roles of α and the cross terms are minor (not383

shown). Therefore, almost all of the spectral energy in CO2 flux anomalies (Figure 7b-e,384

blue lines) that does not correspond with the spectrum of k (red) is attributable to the385

contribution from ∆pCO2. In other words, where the energy in CO2 flux anomalies is386

high, but the energy of k ’s contribution is lower, most of the discrepancy comes from387

the contribution of ∆pCO2. In general, the long period CO2 flux variability comes from388

the variability of ∆pCO2, rather than k. We quantify the CO2 flux variability that is389

dominated by the contribution from ∆pCO2 as being the shortest period of variability390

where the amplitude of F ′ variability is at least twice as large as the contribution from391

k for all longer periods. A factor of two was chosen as it identifies the point at which a392

clear majority (at least half) of flux variability is attributable to the ∆pCO2 contribution.393

To do this, we search along the spectrum from long to short periods for the first period394

where the spectrum of F ′ is equal to or less than double the energy of the contribution395

from k. The vertical dashed lines in Figure 7b-e show the value of this critical timescale396

for each zonal band. If this number is small, then it means a wider band of long period397

CO2 flux variability is controlled entirely by ∆pCO2.398

In the equatorial and subtropical latitudes, a very wide band of long-period variability399

in CO2 flux is controlled by ∆pCO2 (all timescales to the right of the vertical dashed400

lines in Figure 7c-e). That is to say that the roles of k and α are negligible for these401

long periods. The same is also true at subpolar latitudes, but the band of timescales402

is narrower: approximately decadal and longer-term variability in CO2 flux is almost403

entirely controlled by ∆pCO2. The separation of the (95% confidence) error envelopes404
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around the best estimates of the subpolar, subtropical and equatorial spectra (darker405

blue and pink lines) indicate that the differences between the spectra at the large-period406

end are significant. For the polar zone, both ∆pCO2 and k have an important role in407

driving flux variability for all timescales longer than interannual (even without curtailing408

the series length by segmentation), and so there is no long period dominated by ∆pCO2.409

In addition to the strong influence of ∆pCO2, there is also long period variability in k.410

As k is scaled by sea-ice cover, a negative trend in ice area (in response to a warming411

climate) will therefore force F ′ in the long term at high latitudes. Such a decline has been412

documented in this model setup [Yool et al., 2013b]. Taken over the whole North Atlantic,413

we find that flux variability on pentadal and longer timescales is greatly dominated by the414

influence of ∆pCO2, and k contributes to less than quarter of long period flux variability.415

To more fully interpret the spectra of zonally averaged contributions, it is helpful to416

examine the critical timescale of ∆pCO2 dominance at each grid point for the anthro-417

pogenic run (Figure 8a). At the grid-point scale, one can infer which physical phenomena418

give rise to the spectra in Figure 7. The polar zone in both runs is dominated by points419

with no long timescale of ∆pCO2 dominance: much of Baffin Bay and the western GIN420

Sea. These regions are strongly influenced by sea ice, but in the eastern ice-free GIN Sea421

long-period variability is dominated by ∆pCO2.422

The subpolar zone features a soutwest-to-northeast band of gridpoints whose flux vari-423

ability is only dominated by ∆pCO2 on multidecadal timescales (higher than elsewhere in424

the basin). This location coincides with the southern boundary of the NAC. Here, there425

is long period variability in wind speeds in the model, which drives the critical timescale426
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of ∆pCO2 dominance in the subpolar zone (∼10 years) to be longer than the subtropical427

or equatorial zones (∼3 and ∼1 years respectively).428

We also estimate the critical timescale using observations in the three locations described429

in section 3. In the three 5-by-5 degree areas with the largest number of SOCAT monthly430

mean f CO2 values, we construct and decompose CO2 fluxes using these f CO2 data (as in431

Figure 3), monthly mean CCMP winds, SST values from the EN4 gridded dataset [Good432

et al., 2013], and atmospheric pCO2 from Mauna Loa, Hawai’i [Thoning et al., 2014]. In433

these locations, there is a sufficient history of ocean f CO2 data to determine the critical434

timescale: 2 years in the subtropical box, 0.5 years in the mid-latitude box and 4 years435

in the high latitude box (values shown as color within black squares in Figure 8a). These436

values are comparable to those determined using model output in the same locations; 4.6,437

3.7 and 4.6 years, respectively.438

By examining the same metric for the control run, we can learn the extent to which439

∆pCO2 controls natural variability in the global ocean, without the influence of antho-440

pogenic CO2 input. For much of the North Atlantic, ∆pCO2 variability controls most441

of the CO2 flux variability in the control run (Figure 8b). Due to the construction of442

the control run, it is not possible to comment on variability on timescales longer than443

30 years, yet this period is sufficiently longer than the ∆pCO2 critical timescale for most444

of the ice-free North Atlantic. This means that natural, internal ocean multiannual CO2445

flux variability is quite insensitive to the contribution from k, and therefore that much of446

the control exerted by the ∆pCO2 is not purely the product of anthropogenic emissions.447

In other words, the strong influence of the ∆pCO2 in many parts of the North Atlantic448

is naturally occurring, and not purely due to rising atmospheric carbon concentrations.449
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Such variability in ∆pCO2 may arise without a rise in atmospheric pCO2 due to ocean450

circulation (particularly horizontal and vertical advection). Advection acts to reorgan-451

ise the surface inventories of heat, DIC and alkalinity, thereby modulating ocean pCO2452

[Doney et al., 2009; Halloran et al., 2015].453

4.3. CO2 flux estimation with simplified k

Here, we explore the extent to which flux variability can be reliably estimated in cir-454

cumstances where we have a minimal knowledge of the variability in gas transfer velocity.455

In section 1, some of the uncertainties associated with k were outlined. A key question is456

understanding the extent to which those uncertainties limit our ability to estimate oceanic457

CO2 flux variability. We can approximate equation (11) by assuming that variations in458

the gas transfer velocity (k′) and the role of the cross terms (terms 4 to 7) are small459

(demonstrated in section 4.2). Under these assumptions, terms 2, 4, 5, 6, and 7 vanish,460

yielding equation (13).461

F ′ ≈ ∆pCO′2k̄ᾱ + ∆pCO2k̄α
′ (13)

If these assumptions are valid and equation (13) is a reasonable approximation, the462

uncertainties associated with k would also become irrelevant in the determination of flux463

variability. This estimation would be useful in estimating multidecadal flux variability464

using limited observations, or simple box models. The ‘true’ simulated CO2 flux is known465

in the model, and we are therefore able to determine the error due to the approximation466

in equation (13). By omitting some contributions, the estimated flux will necessarily have467

less variability than the actual flux. We therefore assess our estimation by quantifying468
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at each grid point 1) the correlation coefficient (r values) between estimated and model469

actual fluxes that are significant beyond a level of 95% confidence and 2) the proportion470

of the flux variability that is captured by the estimation relative to the model’s actual flux471

variability. The error in observational reconstructions of CO2 flux is likely to differ due472

to the parameterization of gas transfer in the model, but the model validation (section 3)473

indicates that the statistical properties of the error should be similar on interannual to474

decadal timescales.475

The longest-term variability in the North Atlantic CO2 flux is primarily controlled476

by the positive trend in atmospheric pCO2. Correspondingly, the estimated CO2 flux477

correlates very closely with the model’s actual series (Figure 9a). However, even without478

this trend (as in the control run), the actual and estimated fluxes correlate well (Figure479

9d). In general, the correlations are weaker in the control than in the anthropogenic run,480

and several local minima are apparent; these also correspond to regions where variability481

is generally small (Figure 9b and f). The good correlation between estimated and actual482

fluxes in both the anthropogenic and control runs suggest that the estimation captures483

the key patterns of flux variability; both anthropogenically and internally driven.484

In addition to reproducing patterns of flux variability, it is also necessary for the esti-485

mation to correctly predict magnitudes. Since the estimation omits some contributions,486

it will naturally show either equal or lower variability than the actual flux. To quantify487

this, we show the ratio between the estimated and actual modelled CO2 flux variability488

(as the RMS of monthly anomalies) (Figure 9c,f). Where the value is 1, the estimation489

reproduces all the modelled variability; values between 0 and 1 indicate the proportion490

of variability retained by the estimation. This metric indicates that the estimation is491
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robust at reproducing most of the modelled variability across the Atlantic, in both the492

anthropogenic and control runs.493

The main area where the flux estimation fares poorly is in the ice-covered North At-494

lantic. Here, non-seasonal sea ice variability is an important control on fluxes. Our495

estimation implicitly excludes interannual variability in the ice edge and the multidecadal496

decline of ice extent, so the fluxes in the region are not well represented. To the south of497

the NAC there are local minima in correlations and the RMS retained, which are more498

pronounced in the control run than the anthropogenic. Although these areas are less well499

estimated than elsewhere in the Atlantic, the variability in these regions is small, and so500

flux variability on the basin and sub-basin scale will still be well captured.501

5. Discussion

Presently, large uncertainties are introduced into calculated CO2 fluxes via the gas502

transfer velocity. The choice of wind speed parameterization can vary k by approximately503

50% at global mean wind speeds (∼7 m/s) and by 100% at speeds higher than 15 m/s504

[e.g. Woolf , 2005]. The choice of wind product can affect k by 10-40% [Wanninkhof et al.,505

2002], and variability differs between products [Wanninkhof et al., 2013; Wanninkhof ,506

2014; Kent et al., 2013]. The roles of breaking waves and bubbles are not taken into507

account when using a purely wind speed-based parameterization of k, so these phenomena508

introduce poorly constrained uncertainty [Prytherch et al., 2010]. Certainly, these factors509

all limit our ability to accurately estimate CO2 flux variability on interannual and shorter510

timescales, and ongoing work is needed in these areas.511
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In the high-latitude North Atlantic, the gas transfer velocity controls CO2 flux variabil-512

ity on longer timescales than elsewhere in the basin. In the regions of the Labrador Sea,513

Baffin Bay, Denmark Strait and Fram Strait, sea ice cover is an important mediator of514

gas exchange. Here, long period variability in sea ice cover controls CO2 flux variability515

via the gas transfer velocity, since k is scaled by the fraction of area that is ice-free. As516

a result, there is no long period of variability over which ∆pCO2 predominantly controls517

the carbon flux. Therefore, to accurately quantify estimates of the high-latitude North518

Atlantic carbon flux, a detailed knowledge of sea ice dynamics is necessary.519

Over the whole North Atlantic, pentadal and longer-term CO2 flux variability is dom-520

inated by the influence of ∆pCO2. These longer timescales contrast the shorter, where521

the role of k is crucial. This suggests that a detailed knowledge of the pentadal to multi-522

decadal control of k on F may not be necessary to quantify the longer term variability of523

the North Atlantic carbon sink. This finding therefore lends support to the approaches of524

studies such as that of McKinley et al. [2011], which attempt to make judgements about525

multidecadal variability of the North Atlantic CO2 sink based purely on pCO2 observa-526

tions. In their study, it was found that the oceanic trend in pCO2 converges to that of527

the atmosphere when examined over the full 29 year period between 1981 and 2009, but528

when only decadal timescales are considered the two trends differ. Therefore, if on these529

same multidecadal timescales, the present day air-sea pCO2 difference is maintained as530

McKinley et al. [2011] suggest, then the North Atlantic CO2 sink is approximately stable;531

neither a decline nor an enhancement of the flux is apparent. Our work would support532

this approach, since we find the roles of k and α in governing flux variability over this533

timescale to be minor.534
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There is a broad increase in the critical timescale with latitude in the North Atlantic,535

which is explainable in terms of wind speed variability. At the low latitudes, wind speed536

variability is lower, increasing toward the poles (Figure 5). In addition, mean wind speeds537

are higher at the poles than the equator, so a given magnitude of wind speed variability538

at subpolar latitudes will produce greater variability in k than at the equator. This is539

because k scales with the square of the wind speed in our setup [Nightingale et al., 2000].540

This zonal increase in k variability, in addition to the presence of sea ice at the highest541

latitudes, is what causes the comparable zonal increase of the critical timescale (Figures 7542

and 8). Furthermore, wind speed (and hence k) variability is a stronger control on carbon543

fluxes in the control simulation than the anthropogenic run. This is because the control’s544

fixed atmospheric CO2 concentration mean there is much less variability in ∆pCO2 (and545

therefore also in the CO2 flux) than in the anthropogenic run. As a result, wind speed546

variability patterns become relatively more important in setting the critical timescale for547

the control run than the anthropogenic (Figure 8). This means that k is a more important548

controller of variability of preindustrial carbon fluxes, although not more important than549

∆pCO2 on pentadal and longer timescales.550

Through the comparison of modelled ocean f CO2 fields against observations from SO-551

CAT and Bermuda, it was shown that our setup underestimates variability on timescales552

shorter than 1 year. This result is to be expected, since GCMs of this scale will tend553

not to represent high frequency and small spatial-scale variability well [e.g. Taylor et al.,554

2012]. This could indicate that the ∆pCO2 contribution may be a stronger control on555

fluxes on shorter timescales than our study suggests. Our forcing set underestimates556

multiannual wind speed variability at high latitudes, which may be associated with an557

D R A F T April 13, 2016, 11:39am D R A F T



COULDREY ET AL.: CARBON FLUX CONTROLS X - 29

inability to appropriately represent the NAO (an issue common to many GCMs [Lee and558

Black , 2013]). This could cause the real world critical timescale to be longer than what559

the model suggests. In the polar zone, the low bias does not affect the critical timescale,560

since k variability on all timescales is non-negligible. In the subpolar zone, the critical561

timescale may be underestimated, due to the low bias, yet the observation-derived critical562

timescales are comparable to the model prediction (∼1-5 years for all three locations,563

using both model output and observations, Figure 8a).564

Current ocean models (including NEMO-MEDUSA) do not derive k from the full range565

of kinetic factors that control it, and instead parameterize it purely from wind speed. It is566

likely then, that k variability on interannual and shorter timescales will be underestimated567

too; since real-world, shorter timescale variability in processes as wave breaking and bubble568

dynamics etc. is not represented in GCMs. Until a more thorough understanding of the569

mechanisms underlying k is developed, we will not know exactly how important it is in570

governing short timescale flux variability. While the unmodeled factors are very likely571

strong controls on k on short timescales, it is not clear if their variability on longer572

timescales (decadal and longer) is large, relative to the effect of wind speed. If on these573

long timescales k variability is dominated by the contribution from wind speed, then574

wind speed parameterizations of k should be sufficient to estimate decadal gas transfer575

variability.576

It is worth exploring the caveat that we have derived our findings from GCM out-577

put. One could expect that other models and configurations would yield slightly different578

timescales for the emergence of ∆pCO2 dominance of flux variability. Yet our choice of579

model and setup appears reliable for the purposes of our study. This experiment has been580
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shown to produce interannual flux variability comparable to other models as well as obser-581

vational estimates (Table 1). In addition, it captures real world multiannual f CO2 variance582

(Figures 3 and 4) and a reasonable degree of wind speed variability (Figure 5 and [Lee583

and Black , 2013]). Therefore, other models similarly capable of representing multiannual584

flux, f CO2 and wind variability would likely give results consistent with those presented585

here, even if the mechanisms underlying that variability differ. Finally, the choice of gas586

transfer velocity parameterization can have some effect on the critical timescale derived.587

Functions [e.g. McGillis et al., 2001] that produce a wider range of k values over the588

most commonly occurring wind speed range (3 to 15 m/s [Wanninkhof , 2014]) impart589

greater variability into the CO2 flux, and so would increase the critical timescale. Many590

of the most commonly used parameterizations, however, show the greatest concordance591

of derived k values over the range of commonly occurring wind speeds, and so the critical592

timescale is generally insensitive to the choice of function (see Supporting Information).593

While we have clearly identified the roles of each of the components of the flux equation594

in governing F variability, our methodology only hints at which underlying processes are595

important. To derive a more complete and mechanistic understanding of the controls on596

carbon flux variability, further work is necessary. A very broad range of physical, chemical597

and biological processes cause ocean pCO2 variability, and so future work should seek598

to quantify the relative importance of these drivers, while attributing them to specific599

timescales of variability.600
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6. Conclusions

We have examined the relative importance of the three components of the air-sea CO2601

flux equation (k, ∆pCO2 and α) in controlling flux variability on a range of timescales. In602

the North Atlantic, as for much of the global ocean, we find that sub-annual to interannual603

variability in ∆pCO2 and k both have important roles in controlling the air-sea carbon604

flux, in agreement with previous work (e.g. [Doney et al., 2009]). On these timescales, it605

is critical to obtain estimates of ∆pCO2 and k for accurate flux variability to be derived.606

On pentadal and longer timescales, variability in k is not important, and can be ignored607

when estimating flux variability. The critical timescale increases from interannual at low608

latitudes to decadal at high latitudes.609
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D R A F T April 13, 2016, 11:39am D R A F T



COULDREY ET AL.: CARBON FLUX CONTROLS X - 33

P. Thornton (2013), IPCC, 2013: Climate Change 2013: The Physical Science Basis.643

Contribution of Working Group I to the Fifth Assessment Report of the Intergovern-644

mental Panel on Climate Change, chap. 6 Carbon and Other Biogeochemical Cycles,645

Cambridge University Press.646

Collins, W., N. Bellouin, M. Doutriaux-Boucher, N. Gedney, P. Halloran, T. Hinton,647

J. Hughes, C. Jones, M. Joshi, S. Liddicoat, et al. (2011), Development and evaluation648

of an Earth-System model–HadGEM2, Geoscientific Model Development, 4 (4), 1051–649

1075.650

Doney, S. C., S. Yeager, G. Danabasoglu, W. G. Large, and J. C. McWilliams (2007),651

Mechanisms governing interannual variability of upper-ocean temperature in a global652

ocean hindcast simulation, Journal of Physical Oceanography, 37 (7), 1918–1938.653

Doney, S. C., I. Lima, R. A. Feely, D. M. Glover, K. Lindsay, N. Mahowald, J. K.654

Moore, and R. Wanninkhof (2009), Mechanisms governing interannual variability in655

upper-ocean inorganic carbon system and air–sea CO2 fluxes: Physical climate and at-656

mospheric dust, Deep Sea Research Part II: Topical Studies in Oceanography, 56 (8),657

640–655.658

Frew, N. M., D. M. Glover, E. J. Bock, and S. J. McCue (2007), A new approach to659

estimation of global air-sea gas transfer velocity fields using dual-frequency altimeter660

backscatter, Journal of Geophysical Research: Oceans (1978–2012), 112 (C11).661

Good, S. A., M. J. Martin, and N. A. Rayner (2013), EN4: Quality controlled ocean662

temperature and salinity profiles and monthly objective analyses with uncertainty esti-663

mates, Journal of Geophysical Research: Oceans, 118 (12), 6704–6716.664

D R A F T April 13, 2016, 11:39am D R A F T



X - 34 COULDREY ET AL.: CARBON FLUX CONTROLS

Halloran, P. R., B. B. B. Booth, C. D. Jones, F. H. Lambert, D. J. McNeall, I. J. Totterdell,665

and C. Völker (2015), The mechanisms of North Atlantic CO2 uptake in a large Earth666

System Model ensemble, Biogeosciences, 12 (14), 4497–4508, doi:10.5194/bg-12-4497-667

2015.668

Ho, D. T., R. Wanninkhof, P. Schlosser, D. S. Ullman, D. Hebert, and K. F. Sullivan669

(2011), Toward a universal relationship between wind speed and gas exchange: Gas670

transfer velocities measured with 3he/sf6 during the southern ocean gas exchange ex-671

periment, Journal of Geophysical Research: Oceans, 116 (C4).672

Jones, C., J. Hughes, N. Bellouin, S. Hardiman, G. Jones, J. Knight, S. Liddicoat,673

F. O’Connor, R. J. Andres, C. Bell, et al. (2011), The HadGEM2-ES implementation674

of CMIP5 centennial simulations, Geoscientific Model Development, 4 (3), 543–570.675

Kent, E. C., S. Fangohr, and D. I. Berry (2013), A comparative assessment of monthly676

mean wind speed products over the global ocean, International Journal of Climatology,677

33 (11), 2520–2541.678

Khatiwala, S., F. Primeau, and T. Hall (2009), Reconstruction of the history of anthro-679

pogenic CO2 concentrations in the ocean, Nature, 462 (7271), 346–349.680

Landschützer, P., N. Gruber, D. Bakker, and U. Schuster (2014), Recent variability of the681

global ocean carbon sink, Global Biogeochemical Cycles, 28 (9), 927–949.682
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Rödenbeck, C., D. C. Bakker, N. Metzl, A. Olsen, C. Sabine, N. Cassar, F. Reum,734

R. Keeling, and M. Heimann (2014), Interannual sea–air CO2 flux variability from735

an observation-driven ocean mixed-layer scheme, Biogeosciences, 11, 4599–4613.736

Sabine, C. L., R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof,737

C. Wong, D. W. Wallace, B. Tilbrook, et al. (2004), The oceanic sink for anthropogenic738

CO2, Science, 305 (5682), 367–371.739

Takahashi, T., S. C. Sutherland, R. Wanninkhof, C. Sweeney, R. A. Feely, D. W. Chip-740

man, B. Hales, G. Friederich, F. Chavez, C. Sabine, A. Watson, D. C. Bakker, U. Schus-741

ter, N. Metzl, H. Yoshikawa-Inoue, M. Ishii, T. Midorikawa, Y. Nojiri, A. Körtzinger,742
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7. Tables and Figure Captions

Table 1. Comparison of global interannual variability (RMS or Standard Deviation of monthly

CO2 flux anomalies) from various studies

Variability (Pg C yr−1) Approach Time Period Reference

0.20 Model 1979-1997 [Le Quéré et al., 2000]
0.23 Model 1961-1998 [Obata and Kitamura, 2003]
0.28 Model 1980-1998 [McKinley et al., 2004]
0.34 Model 1979-2004 [Doney et al., 2009]
0.20 Obs and Model 1990-2009 [Wanninkhof et al., 2013]
0.31 Observations 1993-2008 [Rödenbeck et al., 2014]
0.12 Observations 1998-2011 [Landschützer et al., 2014]
0.29 Model 1980-2009 This Study

D R A F T April 13, 2016, 11:39am D R A F T



X - 40 COULDREY ET AL.: CARBON FLUX CONTROLS

1950 2000 2050 2100
200

400

600

800

1000

Year

G
lo

b
a

l 
M

e
a

n
 A

tm
o

s
p

h
e

ri
c

p
C

O
2
 (

µ
a

tm
)

 

 

Anthropogenic

Control

1950 2000 2050 2100
17

18

19

20

21

22

G
lo

b
a

l 
M

e
a

n
 S

S
T

 (
°C

)

Year

a) b)

Figure 1. Annual mean atmospheric pCO2 (a) and Sea Surface Temperature (SST, b) for the

anthropogenic (green) and control (red) runs, for 1950-2099 (model year 1 is 1860)
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Figure 2. a) LDEO climatological flux of CO2 into the ocean for the reference year 2000,

positive values indicating ocean uptake of gas, [Takahashi et al., 2009], b) Modelled mean CO2 flux

over 1995-2005 for the anthropogenic run, c) LDEO versus modelled North Atlantic climatological

CO2 flux (mol C m−2 yr−1)
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Figure 3. Comparison of data from the SOCAT database and output from the anthropogenic

run. a) Coverage of SOCAT monthly mean f CO2 values 2002-2011, orange squares: locations

of comparison regions, orange cross: location of BATS site. b), d) and f), Monthly mean f CO2

climatologies for the three comparison regions (high-latitude, mid-latitude and subtropical, re-

spectively) for 2002-2011: for SOCAT (blue) and NEMO-MEDUSA (orange). c), e) and g),

frequency spectra of monthly f CO2 anomalies, smoothed with a 5 point running mean
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Figure 4. Comparison of (from top to bottom) Temperature, Salinity, Alkalinity and f CO2

from BATS, Bermuda (blue) with corresponding NEMO-MEDUSA anthropogenic run output

(orange). a), c), e) and g), Climatological monthly means for 1991-2011. b), d), f) and h), 5

point smoothed frequency spectra of monthly anomalies for 1991-2011
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Figure 5. Comparison of wind variability from the CCMP wind product ([Atlas et al., 2011])

and the anthropogenic run. a) Division of zones. b), d), f) and h), Monthly mean wind speed

climatologies for the four zonal areas (Polar, Subpolar, Subtropical and Equatorial, respectively)

for 1988-2011: for CCMP (blue) and NEMO-MEDUSA (orange). c), e), g) and i), frequency

spectra of monthly wind speed anomalies, smoothed with a 5 point running mean

D R A F T April 13, 2016, 11:39am D R A F T



COULDREY ET AL.: CARBON FLUX CONTROLS X - 45

Figure 6. Interannual CO2 flux variability as the RMS of deseasonalised monthly anomalies

(a) and contributions of ∆pCO2, k, α and cross terms (b to e) to interannual variability in the

CO2 flux for the period 1980-2009 of the anthropogenic run, as in equation (11)
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Figure 7. North Atlantic zones (a) and their period spectra of zonally averaged CO2 flux

(blue), and the contribution to flux variability from k (red) for in the anthropogenic run, 1950-

2099 (b-e). The dark coloured lines denote best estimates of spectra, lighter shaded regions

show the spectra within 95% confidence. Vertical dashed lines indicate the critical timescale: the

shortest timescale that for all longer timescales, the best estimate of CO2 flux variability is at

least twice as large as that of k
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Figure 8. Largest timescale of CO2 flux variability for which the contribution of k is non-

negligible, beyond which variability is dominated by ∆pCO2 for the anthropogenic (a) and control

(b) runs. Shades of purple indicate this timescale, orange areas show where ∆pCO2 never

dominates on the longest timescales and white non-Atlantic areas are out of bounds. Colors

inside the three black squares in a) show the timescale derived using observations in the same

locations as Figure 3 (CCMP winds [Atlas et al., 2011], SOCAT oceanic pCO2 [Bakker et al.,

2014], MLO atmospheric pCO2 [Thoning et al., 2014], and EN4 SST [Good et al., 2013])
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Figure 9. Evaluation of flux estimation applied to the anthropogenic (a-c) and control (d-f)

runs, 1950-2099. a) and d), correlation between modelled and estimated fluxes (all values are

>95% significance). b) and e), RMS of modelled CO2 flux anomalies (a measure of variability).

c) and f), ratio between estimated and modelled CO2 flux RMS (the proportion of variability

captured by the estimation)
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