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events. Two observational datasets (APHRODITE and PERSIANN) are compared with two12

high-resolution global climate models (HiRAM and HadGEM3-GC2) and an ensemble of13

other lower resolution climate models from CMIP5.14

We first evaluate the performance of the high resolution models. They both exhibit good15

skill in reproducing extreme events, especially when compared with CMIP5 results. Signif-16

icant differences exist between the two observational datasets, highlighting the difficulty of17

having a clear estimate of extreme events.18

The link between the variability of the extremes and the large scale circulation is inves-19

tigated, on monthly and interannual timescales, using composite and correlation analyses.20

Both extreme indices DS15 and PR99 are significantly linked to the low level wind intensity21

over East Asia, i.e. the monsoon circulation. It is also found that DS15 events are strongly22

linked to the surface temperature over the Siberian region and to the land-sea pressure con-23

trast, while PR99 events are linked to the sea surface temperature anomalies over the West24

North Pacific. These results illustrate the importance of the monsoon circulation on extremes25

over East Asia. The dependencies on of the surface temperature over the continent and the26

sea surface temperature raise the question as to what extentthey could affect the occurrence27

of extremes over tropical regions in future projections.28

Keywords Extreme precipitation· Extremes variability· East Asia· High Resolution29

Models· Asian Monsoon30

1 Introduction31

East Asia has a dense population, with more than one billion people living in China, and is32

subject to strong seasonal atmospheric variations. The winter monsoon can bring dry and33

cold air from Northern-Asia, while the summer monsoon is characterized by warm and wet34
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air advected from the tropical Indopacific region. This dynamics has been reviewed in many35

papers and books (e.g. Ramage, 1971; Ding, 1994; Jhun and Lee, 2003; Wang, 2006; Ding,36

2007; Wang et al., 2008; Wang and Chen, 2014; Matsumura et al., 2015; Liu et al., 2015).37

Depending on the season, East Asia can also be impacted by droughts and floods which38

can have considerable socio-economic impacts. A number of studies have focused on the39

variations of major extreme events in recent warming decades and/or a potential future cli-40

mate change (Trenberth et al., 2003; Kharin and Zwiers, 2005; Meehl et al., 2005; Risnen,41

2005; Barnett et al., 2006; Tebaldi et al., 2006; Giorgi et al., 2011; Shiu et al., 2012; Scoc-42

cimarro et al., 2013). The Intergovernmental Panel on Climate Change Fourth Assessment43

Report (IPCC AR4) provides a summary of the associated studies, including projected fu-44

ture details of the Asian region in Chapters 10.3.6 (Meehl etal., 2007) and 11.4 (Christensen45

et al., 2007). The confidence in the spatial and temporal variations of a projected precipi-46

tation change is sensitive, the results being usually dependent on the models, especially for47

extreme events (Freychet et al., 2015), and it is important to understand the dynamical con-48

nection between the changes in the monsoon circulation and extreme events (e.g. Wang and49

Ding, 2006; Inoue and Ueda, 2011; Min et al., 2012; Turner andAnnamalai, 2012; Duan50

et al., 2013; Hsu et al., 2013; Jones and Carvalho, 2013; Sethet al., 2013; Kamae et al.,51

2014).52

If extreme events are rare by definition, their variability is also high (especially the short53

term variability on timescales of daily to intraseasonal),and they may sometimes occur con-54

secutively during a long period or over a large region. One important question is how the55

occurrence of extreme events over East Asia is linked to the large scale dynamics (including56

the monsoon system). In other words, is the variability of extremes mostly due to local con-57

ditions or the large scale atmospheric circulation? Previous work has shown the important58

role of the atmospheric moisture content when studying projections (e.g. Chou and Neelin,59
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2004; Stephens and Ellis, 2008; Chou et al., 2009; Seager et al., 2010; Giorgi et al., 2011;60

Chen et al., 2012; Chou et al., 2012; Kusunoki and Arakawa, 2012). However, it is still un-61

clear to what extent the dynamics and monsoon circulation could impact extreme events,62

especially their variability. Understanding what controls this variability may help to better63

estimate future risks.64

One problem when studying extremes related to precipitation is their poor representation65

in the current Global Climate Models (GCMs), because of low resolution and inefficient66

physical parametrization. Indeed, GCMs usually have low resolution (from 1.5◦ to 3◦ or67

coarser in the CMIP5 models). High resolution model data arestill rare and precious for68

climate studies, especially when studying extreme events.One common approach to solve69

this point consists of using regional climate models with higher resolution and forced by70

low resolution GCM output at the domain boundaries. However, the use of such models is71

limited to regional studies, and cannot be used to investigate large spatial scale correlations72

(eg the links between the monsoonal circulation and extremes).73

In this study, we use two global high-resolution state-of-the-art GCMs (introduced in74

section 2) to investigate extremes at regional scale (over East Asia) and also to study the75

correlations between this specific region and the global atmospheric environment. We first76

compare these two models with observations and study how they can reproduce extreme77

events compared to low resolution GCMs from CMIP5 (section 3). Then, the large scale78

atmospheric controls on the seasonal and interannual variability of extreme events in the79

observations and models is investigated in section 4. Section 5 presents a summary and80

discussion.81
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2 Data and methodology82

We first specify the region of our study and define the type of extremes we are studying83

(section 2.1). We then present in section 2.2 the observational and model datasets used in84

this investigation.85

2.1 The East Asia region and extreme indices86

2.1.1 Definition of regions87

The precipitation climatology over East Asia and China has clearly defined patterns, as illus-88

trated by Fig. 1. In this figure, the mean precipitation from the Tropical Rainfall Measuring89

Mission (TRMM, Huffman et al. (2007)) is averaged between 1998 and 2013. There is a90

clear contrast between the Northwestern continental dry region, and the Southeastern wet91

regions. The Meiyu front rain band, corresponding to the East Asian summer monsoon, can92

be easily identified, ranging from South-East China to North-East Japan. Precipitation as-93

sociated with the Indian summer monsoon gives rise to a further a maximum in the Bay of94

Bengal and North-East India.95

Because we are interested in the vulnerability of population, we focus on land areas. The96

area of interest can be divided into two sub-regions, as shown on Fig. 1 with black boxes:97

North China and Korea (NCK) and South China (SC). In the text,we also consider West98

China (WC) which covers the West and central part of China, including Himalayan plateau.99

Table 1 defines the boundaries of the three regions cited above. WC is characterized by100

very dry conditions while SC, in contrast, experiences verywet conditions. NCK has a dry101

tendency, but can also experience wet weather conditions during summer. This is of course102

a rough partitioning of China and East Asia region and it could be subdivided into smaller103
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regions. As most of the population is concentrated in the Eastern and Southern parts, and the104

East Asian monsoon has stronger influence over these regions, the main part of our study105

will focus on these two regions (NCK and SC). However, when evaluating the models in106

section 3, we consider the three regions (including WC). While it would also be interesting107

to investigate extremes over Japan, we have chosen to focus our study on the continental108

part of East Asia (i.e. China and Korea).109

2.1.2 Definition of extreme indices110

There are many ways to define extreme weather events (Klein Tank et al., 2009), and usually111

they underline rare occurrence or strong impact and threat.Here we investigate extremes112

related to precipitation i.e. dry or wet events. We define twotypes of indices (Table 2) which113

have large impacts on society:114

– Drought Spell (DS15): A drought spell is defined here as at least 15 consecutive days115

(at the same location) with a precipitation rate below the first percentile (very low rain).116

Thus it represents a threat for water resources, because of long lasting dry condition.117

The unit of this index is a number of days, but it is usually expressed as the ratio of days118

included in a drought spell during each month or season.119

– Daily Extreme Precipitation (PR99): This is the occurrence of daily precipitation ex-120

ceeding the value of the 99th percentile. This type of events can trigger flash flood and is121

typically associated with local conditions, like stationary mesoscale convective systems,122

or tropical cyclone activity.123

Both indices are computed for each grid cell over land only, where where droughts and124

flood affect the water resources and society. Thus we obtain aspatial distribution for both125

indices DS15 and PR99. In the following analysis, we will also consider regional averaging126
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(sections 3 and 4) with the regions defined in section 2.1.1. Even if the computation implies127

the use of daily rainfall, we average and present the resultsfor monthly means. Also note128

that for DS15, the number of occurrences is the number of daysincluded in DS15 events.129

For instance, if a location has 17 consecutive dry days, it will be considered as one drought130

event, but the number of occurrence will be considered as 17.So when talking about the131

frequency of DS15, it underlines the frequency of days included in DS15 events. For PR99132

there is no such ambiguity because one event correspond to one day.133

One may argue that the indices defined above are not that extreme, and can occur several134

times a year. Indeed, we chose indices that can be threatening but with a level of occurrence135

high enough to compute significant statistical analyses. Very extreme events (occurring only136

every few years for example) would need longer timeseries toallow for robust statistical137

analysis, or would be more appropriate for a case-study, which is not the orientation of this138

paper.139

The values of the percentiles used as thresholds for each index is based on the observa-140

tional dataset APHRODITE (Asian Precipitation-Highly-Resolved Observational Data Inte-141

gration Toward Evaluation of water resources, Yatagai et al. (2009, 2012)). It means that we142

first computed the 1st and 99th percentiles of precipitation over East Asia region (i.e. over143

NCK and SC regions, Fig. 1) using this dataset, and then thesevalues were used as thresh-144

olds to compute the DS15 and PR99 indices respectively, in both models and observations.145

2.2 Data146

2.2.1 Observations147

Because we need daily high resolution precipitation observations with a time coverage long148

enough to compute extreme indices and significant statistics, we use the APHRODITE149
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dataset (Yatagai et al., 2009, 2012). This ground-based observational dataset has a spatial150

resolution of 0.5◦ and covers the Asian monsoon area with daily output between 1951 and151

2007. To be consistent with the model output, we only consider 30 years, from 1976 to 2005.152

Another observational precipitation dataset to compare with APHRODITE is also used,153

based on satellite measurements: PERSIANN (PrecipitationEstimation from Remote Sens-154

ing Information using Artificial Neural Network, Sorooshian et al. (2000)). This is a daily155

0.25◦ resolution product, and we use the 1983-2014 period. In the following, APHRODITE156

and PERSIANN datasets will be noted APHRO and PERS respectively.157

To analyze the atmospheric dynamics associated with extreme indices, the NCEP NCAR158

Reanalysis (Kalnay et al., 1996) is used, with a 2.5◦ resolution, during the same period as159

APHRO (1976-2005) for the following variables: wind at 850 hPa (Wind850), atmospheric160

surface temperature (TAS) and pressure at sea level (SLP). The observed sea surface temper-161

ature (SST) is also extracted (1976-2005) from the HadISST dataset (Rayner et al., 2003).162

2.2.2 Models163

Along with the observations, we use two high resolution GCMs: the Hadley Centre Global164

Environment Model version 3 - Global Climate version 2 (HadGEM3-GC2, Williams et al.165

(2015)) developed by the Met Office (UK), and the High Resolution Atmospheric Model166

with a cubed-sphere grid containing 192×192 cells on each of its six faces (HiRAM, Lin167

(2004); Putman and Lin (2007)) developed by the GFDL (USA). HiRAM model setup fol-168

lows that in Chen and Lin (2012). Both models have a similar horizontal resolution of about169

0.5◦ in the atmosphere (HiRAM uses a cubed-sphere grid of 50km horizontal resolution,170

corresponding to approximately 0.5◦ resolution). The main difference is that HadGEM3-171

GC2 includes full coupling with an ORCA025 ocean model, a 0.25◦ version of the NEMO172

(Nucleus for European Modelling of the Ocean) model (Barnier et al., 2006), while HiRAM173
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is an Atmospheric Global Climate Model (AGCM) forced by HadISST. Thus, HiRAM is174

forced by the observed variability of the SST, while HadGEM3-GC2 has a variability of its175

own. This will be an interesting point to consider when analyzing the dynamical patterns176

associated with the variability of the extreme indices. Both model runs include all forcings177

such as variations in solar radiation, volcanoes and aerosols.178

Finally, we also include an ensemble mean of 30 models from CMIP5 (detailed in Ta-179

ble 4), which is used as a reference for comparison between low and high resolution GCMs.180

These have typical atmospheric resolutions of 1-3◦. All datasets are summarized in Table 3181

(and Table 4 for CMIP5) along with their notations.182

3 Characteristics of extreme events and their representation in the models183

In the following sections we present the characteristics ofthe extreme indices in the ob-184

servations, and evaluate how they are reproduced in HadGEM3, HiRAM and the CMIP5185

ensemble.186

3.1 Seasonal signal187

We first consider the mean seasonal signal of each extreme index and mean precipitation,188

averaged over the SC and NCK regions (Fig. 2). To compute these signals, annual per-189

centiles are used. It means that the same threshold is used for each month to detect extreme190

events. Thus, the differences between dry and wet months is highlighted. Note that seasonal191

percentiles are considered later, in section 3.2, to analyze spatial patterns.192

In the NCK region (upper row) the mean precipitation signal is similar in APHRO and193

PERS, and is well represented by the models. The shape of PR99signal is also well captured194

by each model, including CMIP5, but with a too strong intensity during summer. The DS15195
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signal is higher in PERS than in APHRO, especially during winter. HG3 follows the APHRO196

signal with good agreement whereas HRC is closer to PERS. Thus, both models have a197

realistic signal for this index, given uncertainties associated with rainfall observations. On198

the other hand, the mean for CMIP5 is too low, and there is a large ensemble dispersion199

(gray shading), it is thus difficult to estimate the quality of the mean solution.200

In the SC region (lower row), the mean precipitation and PR99are less well captured by201

the models: HG3 is too wet compared to APHRO, especially during summer, while HRC202

has a dry bias during this season. However, PERS also has a stronger signal, especially203

during summer. Thus the wet bias of HG3 is still within the range of the observational204

uncertainties. The CMIP5 mean tends to be close to APHRO but the ensemble range is large.205

The differences for DS15 are larger. The APHRO and PERS observations are markedly206

different during winter, PERS being much drier. HG3 has a lowbias for all months compared207

to both observations. In contrast, HRC is close to PERS. The CMIP5 ensemble mean is208

closer to APHRO but again the spread is large.209

It is clear that the models can capture the seasonal signal ofboth extreme indices and210

mean precipitation. Though the models still have wet or dry biases, they are overall within211

the range of observational uncertainties between APHRO andPERS). In contrast, the large212

spread seen for the CMIP5 models for the extreme indices DS15and PR99 makes the en-213

semble solution difficult to interpret.214

3.2 Spatial distribution215

In this section, the spatial pattern is considered for each index. The results are averaged over216

two periods: winter (DJF) in Fig. 3, and summer (JJA) in Fig 4.All indices are expressed as217

a ratio of days (for instance, a ratio of 1 would mean that 100%of the days are considered218
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as extreme events). We also add the mean precipitation signal (left column), this variable219

being expressed in mm.day−1. Boxes representing NCK and SC defined in section 2.1.1 are220

also shown on Fig. 3 and Fig 4. To have a better look at the spatial patterns and reduce the221

seasonal differences of each extreme, we now use seasonal percentiles (defined from the222

distributions for the 30 years of each period, e.g. winter orsummer). Thus, it means that the223

thresholds for summer or winter are different.224

During winter (DJF, Fig. 3): The mean precipitation is mostly confined to the SC region,225

with a clear pattern visible for APHRO and PERS, while the NCKregion experiences drier226

conditions. The models are able to represent correctly the spatial patterns, although HG3227

overestimates the amount of rain over SC compared to the observations. All models tend228

to be too wet in the southern part of the Himalayan region (North India). In mountainous229

regions, orographic effects may be difficult to represent correctly in the models. But the ob-230

servations may also be biased in these regions, because of sparse networks and difficulties in231

catching very local rainfall. The signal of PR99 is very similar to the mean precipitation, and232

models have the same wet biases over the Himalayan region. Inthe observations DS15 has a233

strong level of occurrence over the NCK region. In PERS the area of frequent occurrence of234

DS15 events is larger than in APHRO and encompasses a large fraction of the WC region.235

This highlights again the uncertainties in capturing this index, depending on the observa-236

tional method. Satellite datasets may have more difficulties to catch very light precipitation237

(thus overestimating dry days) and miss short rainfall events (that occurs between two times238

of measurement), but APHRO gauge network is sparse over central and East China, espe-239

cially in mountainous regions. Thus its estimation of rain may be biased due to interpolation240

between stations. HG3 and HRC can both simulate similar spatial distributions compared241

to APHRO. HRC is also drier over SC, but it is consistent with PERS. As for the CMIP5242
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ensemble, it can capture the spatial pattern of this index, but with much lower intensities.243

The impact of orography (the Himalayas) on the circulation may be less easily captured by244

the low resolution models, as illustrated by the strong biasin the CMIP5 ensemble.245

During summer (JJA, Fig. 4):Asia is subject to wetter conditions compared to DJF, as246

shown in the mean precipitation signal. Only the WC region remains drier. There is good247

agreement between the spatial patterns seen in the observations and in the models, but in248

CMIP5 the signal is too weak. In the observations, PR99 showsa clear band over East249

Asia, from SC to the eastern part of NCK and Japan. The signal is stronger in PERS than250

in APHRO. It shows that satellite observations tend to estimate larger heavy rainfall events,251

and lower light rainfall (as described in the previous section). Thus, there is a range of uncer-252

tainties between ground data and satellite data. The shape of the signal is captured by HG3253

and HRC, but compared to observations the signal extends toofar north. The high resolu-254

tion models capture the signal more accurately than the CMIP5 ensemble, especially over255

the Himalayan region. For DS15 only a weak signal is seen in observations over the western256

part of China for the PERS dataset. HG3 does reproduce this pattern well, but HRC and257

CMIP5 both have a large dry bias over this region. When looking at the distribution (pdf) of258

precipitation (result not shown), HRC can reproduce similar light precipitation compared to259

the observations. Thus the differences observed for DS15 come more from the long lasting260

condition (15 consecutive days) used for this index. HRC mayproduce more easily consec-261

utive dry days (with rain below the threshold used to detect light rain), and raining days may262

be grouped at the beginning or end of the period, while in the observations raining days are263

scattered during the whole period. We point out here a limitation in the definition of this264

index, because of its sensitivity to single rainfall events. However, in the regions of concern265
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(NCK and SC), results are more consistent between the observations and models, thus it266

won’t affect our analysis below.267

All models can capture the mean precipitation and extreme patterns during each season, but268

CMIP5 has more difficulties to represent correctly the intensity and the spatial distribution269

of extreme indices. HRC also exhibits a dry bias over WC during summer. If we focus on270

the two sub-regions of interest (SC and NCK) the two high resolution models have a more271

accurate representation of DS15 during DJF and of PR99 during JJA, compared to CMIP5.272

The differences between APHRO and PERS illustrate how the estimation of extreme events273

can drastically change according to the measurement methods used (satellites or ground274

stations). Thus the bias identified in the models should be considered carefully and results275

from HRC and HG3 are overall within the range of the observational uncertainties.276

To summarize the results of the previous sections (3.1 and 3.2), we use a Taylor diagram277

(Taylor, 2001) to represent the scores of models (Fig. 5) in comparison with APHRO. We use278

only one observational dataset here, but we have to keep in mind that differences exist with279

PERS, thus the reference used for Taylor diagram could be different with another dataset.280

In the figures, normalized standard deviation (NSTD) represents the agreement in the mag-281

nitude of the spatial variation of the signals, while the correlation indicates the agreement282

between spatial patterns. NCK and SC are shown in the left andright panels respectively.283

Colors are used to identify different variables. Given the strong seasonal variation of each284

index, we consider the mean scores during DJF and JJA and we only show the results for285

each index when they have the highest level of occurrence (DJF for DS15 and JJA for PR99).286

Mean precipitation is shown for both seasons.287

Both models can capture more easily the signal in NCK (left plot). HG3 has especially288

good skills in correctly simulating the spatial distribution of precipitation and each of the289
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indices over this area, with correlation above 0.8. It can also capture the magnitude of spatial290

variation with good quality (all NSTD are very close to 1), except for mean precipitation291

during winter. HRC also has good performance in simulating spatial patterns but with a292

lower correlation for PR99. CMIP5 has similar skills for mean precipitation, but extreme293

indices have too low NSTD.294

In the SC region (right plot), the models have lower skills incapturing the signals. HG3295

has a too large magnitude of spatial variations except for DS15. HRC has better scores in296

terms of magnitude of spatial variations but with lower correlations. CMIP5 still has good297

results for mean precipitation, but the score for DS15 and PR99 are too low, both in terms298

of NSTD and correlations.299

As illustrated in Figs. 3 to 5, both high resolution models exhibit better skill in simu-300

lating good spatial patterns (correlation) than the magnitude of the signal (NSTD), and are301

better in NCK than in SC. The results in the high resolution models HG3 and HRC are302

significantly improved compared to the low resolution CMIP5ensemble. Increasing the res-303

olution of the models is not enough to solve all the problems for estimating extreme events,304

but the higher resolution models used in this study have an improved ability to reproduce305

heavy rainfall intensity closer to that in the observations. Moreover, they have the advantage306

of giving a unique solution that is more easily interpreted.Indeed, when using an ensemble307

such as CMIP5, the mean solution should always be associatedwith the ensemble uncer-308

tainties (i.e. the spread of the ensemble), that may be largeand lead to complex analysis309

when using cross-variable analysis such as we will perform in section 4. This problem is310

avoided when using a single model solution, even if this solution presents some bias. The311

biases observed in HG3 and HRC may be due directly to the parameterization and convec-312

tion schemes, or due to errors in simulating the dynamics. Weexplore this point later in313

section 4, by investigating how the large scale dynamics is linked to each extreme index sig-314
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nal. But we also have to keep in mind that large differences can exist between APHRO and315

PERS observations, especially when looking at extreme indices, thus the biases identified in316

the models should be considered carefully and results from HRC and HG3 are in the range317

of the observational uncertainties.318

3.3 Interannual variability of extreme indices319

Here we investigate the variability of each extreme index inNCK and SC. We compute the320

30-year mean and the monthly variability (each month of eachyear is averaged individ-321

ually) of occurrences of DS15 (PR99) during DJF (JJA). The variability is approximated322

by 2 standard deviations (1 standard deviation above and below the mean). We also com-323

pute the interannual variability of the seasonal means (each season of each year is averaged324

individually). Results are summarized in table 5.325

The monthly variability of DS15 is overall about twice the mean in SC, and of the same326

order as the mean in NCK. It illustrates how large the variability of extreme events can be.327

The models can reproduce this signal, though the mean and variability are too low in HG3328

in SC, and too high in HRC. These biases correspond to the wet and dry biases mentioned329

in the previous sections. For PR99, both monthly and interannual variabilities are lower, all330

values being close to 0.02. The models have good skill at reproducing mean and variability331

signals for each region.332

The interannual variability is estimated here to be about the same order as the monthly333

variability. However, this is due to our approximation of the variability as being equal to 2334

standard deviations. When looking at the monthly signal, high and low peaks in PR99 or335

DS15 can be observed (in both the observations and models). It means that specific months336

can coincide with a large number of extreme events, but thesepeaks are too rare to impact337
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the monthly standard deviation of the total signal. The interannual variations are also char-338

acterized by some peaks, but with lower amplitude. Both models have overall good skills in339

capturing the main characteristics of the signal.340

A specific point to consider is the tropical cyclone (TC) activity during summer. De-341

pending on the ability of models to simulate TCs, it could lead to a bias in the extreme342

indices during JJA, especially for PR99 in SC. However, an investigation of the occurrence343

of TCs is beyond the scope of this work, thus we consider TCs asa part of the uncertainties344

associated with the results.345

The variability of extremes is significant compared to the mean signal. Thus it raises the346

question of what can impact the occurrence of extreme eventsand what can lead to specific347

months (or years) being prone to extreme weather conditions? It is especially important to348

understand the conditions associated with these extremes in the current climate to anticipate349

how this variability could be affected in a changing climate.350

4 Dynamical control of the variability of extreme events351

We saw in the previous section that the variability of extreme indices can have a signifi-352

cant impact. It is thus important to understand what controls this variability. Because these353

indices are related to precipitation, an initial assumption would be a control by the mois-354

ture content in the atmosphere. However the atmospheric circulation may also play a role,355

by advecting humid air masses from the ocean or dry air from the continent for instance.356

We will attempt here to identify the main control patterns inseveral dynamical atmospheric357

variables, using a composite and correlation approach.358

We first compute the correlation between each index (DS15 andPR99) and different359

monsoon indices that describe the monsoon circulation (e.g. Jhun and Lee (2003), Wang360
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et al. (2008) or Wang and Chen (2014)). As we study indices during two seasons, there are361

two seasonal monsoon signals to investigate: the winter monsoon and the summer monsoon.362

We selected three different indices, all computed from the wind field, that cover different363

aspects of the monsoon circulation. These indices are basedon the papers cited above and364

defined as follows (brackets indicate regions of averaging):365

– East Asia Summer Jet:366

EASJ =U200(30◦−50◦N,110◦−140◦E).367

This index represents the strength of the 200 hPa Jet (zonal wind speed component),368

which weakens and moves northward during the onset of the East Asia summer mon-369

soon.370

– West North Pacific Summer Monsoon:371

WNPSM =U850(5◦−15◦N,100◦−130◦E)−U850(20◦−30◦N,110◦−140◦E).372

This index illustrates the zonal wind shear at 850 hPa that develops in the North West373

Pacific region during the summer monsoon.374

– East Asia Winter Monsoon:375

EAWM = U200(27.5◦−37.5◦N,110◦−170◦E)−U200(50◦−60◦N,80◦−140◦E).376

This index is linked to the thermal and pressure contrast between the Siberian region377

and the North West Pacific. It is a good indicator of the wintermonsoon signal. Note378

that it is defined with 300 hPa zonal winds in Jhun and Lee (2003) but here, due to data379

availability, we use the 200 hPa wind, which is still consistent.380

The three monsoon indices are illustrated in Fig. 6 for NCEP reanalysis (black line),381

HG3 (red line) and HRC (blue line). Though each index has beendefined for a specific382

season (see definition above) we plot the signal through the whole year to have a clear383

view of the variations between winter and summer. The EASJ iswell simulated by HG3,384
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especially during summer time. HRC can reproduce the shape of the seasonal variation, but385

it has a low bias of 5 to 10 m.s−1. The wind shear in the North West Pacific (illustrated386

by WNPSM) is not as well reproduced by the models. HG3 has a good transition period387

between April and July, and it can simulate the break during June-July, but the index is too388

high during late summer. In contrast, in HRC the transition is too strong, and it reaches389

a maximum in June. After that, the index value decreases and is closer to NCEP during390

late summer. Finally, the observed seasonal variation of EAWM is well simulated in both391

models, but HG3 has a small positive bias during winter (5 m.s−1) and HRC has a low bias392

throughout the year (5 to 10 m.s−1). Both models simulate correctly the transition break393

between April and June, but with the same bias mentioned previously. The biases seen in394

the EASJ and EAWM indices for HRC indicate that subtropical East Asia jet in this model395

is too weak. This may explain the dry tendency in the model. Indeed, as shown by Li and396

Zhang (2008), a weak jet is related to weak precipitation over the East Asia region. The397

correlation between extreme indices and monsoon indices are summarized in Table 6. Bold398

font is used to highlight the correlation coefficients larger than 0.17 (corresponding to the399

90% confidence level when considering each month as independent).400

In addition, we also compute the correlation between the monthly anomalies of the ex-401

treme indices (averaged over NCK and SC) and the monthly anomalies of the sea surface402

temperature (SST) and four atmospheric fields: wind intensity (i.e. absolute wind speed) at403

850 hPa (Wind850), wind intensity at 200 hPa (Wind200), sea level pressure (SLP) and at-404

mospheric surface temperature (TAS). These correlations give a first approximation of how405

the large scale dynamics is linked to the monthly variability of extreme indices (averaged406

over each region). For each extreme index, we also selected the months with a level of occur-407

rence larger than 1 standard deviation (deviation from the mean) and the composites of the408

dynamical variables are computed using these specific months. Fig. 7 and 8 display respec-409
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tively the composites of DS15 and PR99. In these figures, the regions where the confidence410

level is higher than 90% (based on the correlation) are displayed. The full patterns are also411

analysed but not shown.412

The composites and correlations are also computed for the interannual variability, using413

seasonal anomalies instead of monthly anomalies (Table 7, Fig. 9 and 10).414

4.1 Monthly variability415

We first investigate the monthly variability (Table 6, Figs.7 and 8).416

DS15 (Fig. 7) is mostly characterized by large positive anomalies of TAS over the northern417

part of the continent. This anomaly is visible in the observations and both models. Corre-418

sponding to the near surface high temperature anomaly, low pressure anomaly occurs in the419

high latitude Northeast Asia. The westerly (wind850) is likely strengthened from Siberia to420

the North-East Asia region corresponding to the pressure and temperature anomaly pattern.421

The downstream northwesterly anomaly furthermore is related to an increase of the dry air422

transport and drought over NCK (Fig. 7, left column). On the other hand, associated with423

the drought over SC, the increase of the lower-troposphericnorth-westerlies is also marked424

near the border between the high and low pressure anomaly; these circulation and pressure425

anomalies occur relatively southward over the coastal region of East Asia and also favour the426

southward dry air transport. Besides, the enhanced upper-tropospheric westerly is likely also427

related to the land-sea pressure contrast. Overall, composite of DS15 are mainly character-428

ized by strong positive anomalies of TAS and winds over the continent; and both models can429

reproduce the patterns. A speculation is that in a warming climate the polar regions warm430

faster, and the consequently induced a series changes of theatmospheric condition which431

favour more extreme DS15 during winter of East Asia. We also find that the signal on SST432
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is less clear, with only a negative anomaly over the equatorial Pacific and positive anomaly433

over the North-Eastern Pacific, which is a typical La-Niña pattern. It is mostly visible in434

APHRO and HRC (that use the same SST forcing), but not in HG3. The correlation between435

DS15 and the winter monsoon index EAWM (Table 6) are non-significant. It indicates that436

using this index is not enough to link the monsoon circulation to the occurrence of extreme437

dry events.438

The composites for PR99 (Fig. 8) show clear patterns over theoceanic region. In APHRO,439

large positive anomalies of SST over North-East Pacific and India Ocean and East Pacific440

(for SC) indicate an increase in moisture sources. These positive SST anomalies are also441

visible in the models but with less confidence. Along with theSST anomaly, a clear positive442

SLP pattern (for NCK) also covers most of the North Pacific. Itcorresponds to a strength-443

ening of the Pacific High. As a consequence, wind850 is strengthened along the coast of444

East Asia, corresponding to an enhanced summer monsoon circulation (and an increase of445

the moisture transport from the southern ocean to East Asia). We also note a significant neg-446

ative wind850 anomaly in HRC over the Bay of Bengal Peninsula. In this model, the SLP447

patterns over East Asia are larger, which suggests a stronger response of the atmospheric448

circulation. Thus, the increase of southerlies along the coast of East Asia is even stronger,449

but the westerlies from the Indian Ocean are reduced. The correlations between PR99 and450

both summer monsoon indices are weak (Table 6) and sometimesin contradiction between451

observations and models. Given the complexity of the composite patterns, using monsoon452

indices based on averaging over large region is not enough tocatch the signal. In this case,453

a spatial (composite) analysis is more appropriate.454

The variability of PR99 is mostly associated to ocean SST andSLP anomalies, i.e. mois-455

ture sources and transport. Once again, this supports the idea that in a warming climate,456
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conditions triggering extreme precipitation over East Asia could become more frequent (be-457

cause of the warmer SST). But the transport (wind850) has also a significant role, as illus-458

trated by the composites, and could enhance or reduce the effect of the SST, depending on459

how the atmospheric circulation would react to global warming.460

The previous results illustrate the different anomaly patterns associated with DS15 and461

PR99 variability. The first is driven by continental temperature and pressure, while the sec-462

ond is more related to ocean temperature and pressure. In both cases, the low level monsoon463

circulation is enhanced. There is good agreement between observations and models, though464

some differences in patterns and confidence levels exist. However, the monsoon indices do465

not have a correlation with extreme indices. This suggests that these types of indices are not466

easily linked to the variability of extreme events, at leastnot in the way we have defined467

them.468

Another point is that tropical cyclones may play a role in thevariability in PR99. Be-469

cause in our analysis we didn’t separate the contribution from TCs, this may impact the470

results of our correlations and lead to patterns that are less clear. Nevertheless, a clear signal471

is identified in the large scale circulation. This means thatthe TCs are not the only factor re-472

sponsible for extreme precipitation variability in East Asia and that the monsoon circulation473

also plays a significant role in modulating these extremes.474

4.2 Control of the Interannual Variability475

We now focus on the interannual variability controls (Table7, Fig. 9 and 10). Though this476

variability is lower in terms of magnitude, it can still significantly enhance or reduce extreme477

event occurrences from one year to another.478
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The composites for DS15 (Fig. 9) are less clear compared to ones based on the monthly479

variability (Fig. 7). The confidence levels are overall below 90% making these results less480

significant. It is still possible to identify positive patterns of TAS and wind850 over continent481

in the models, especially for HRC (bottom panel). The HRC model shows a strong control482

of the continental temperature for DS15 in SC, which may explain its tendency to be drier483

than observed in SC (section 3). Correlations with the winter monsoon indices are also non-484

significant (Table 7).485

Because we used only 30 years of data, and computed interannual variability based on486

seasonal means, a clear signal may be less easy to detect. Using longer periods would be487

more suitable for such an analysis.488

PR99 composites (Fig. 10) exhibit strong and confident patterns of positive SST over the489

Pacific, in the observations and models. It is a clear indication that the ocean temperature490

(and the source of moisture) is the main driver of PR99 interannual variability. In addition,491

HRC shows similar patterns of SLP and wind850 (compared to monthly variability), i.e.492

the strength of the Pacific High. Once again, the atmosphericresponse is stronger in this493

model than in the observations. This illustrates the importance of air-sea interaction and494

the sensitivity to SST forcing. Correlations with the summer monsoon indices tend to be495

negative (Table 7), especially for WNPSM. But given the composite analysis, it is clear that496

the wind patterns should be considered carefully, and that the monsoon indices may not be497

appropriate to provide a clear view of the real mechanisms.498

In terms of interannual variability, it is difficult to have aclear conclusion about DS15 vari-499

ability control. On the other hand, PR99 variability is clearly linked to ocean temperatures,500

with significant relationships found in both observations and models. A warmer SST is, not501

surprisingly, expected to favour PR99 events over East Asia. But in contrast to the monthly502
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variability, the monsoon circulation does not exhibit a strong signal in terms on the inter-503

annual variations. This illustrates the different mechanisms that can impact extreme events,504

depending on the timescales.505

5 Summary and Discussion506

In this paper we investigate two types of extreme weather events related to precipitation:507

drought spells (DS15) and daily heavy rainfall (PR99). We focus our analysis on continental508

East Asia, a region heavily populated and thus threatened bysuch weather events. We sepa-509

rate the East Asia region in two main sub-regions: North China and Korea (NCK) and South510

China (SC). The objective is to investigate the possible large scale atmospheric conditions511

that can impact the variability of these extremes.512

Two high resolution models are analyzed, one is an AGCM (HiRAM, HRC) and one is513

fully coupled to an ocean model (HadGEM3-GC2, HG3), and we first validate their perfor-514

mance (in comparison with two observational datasets: APHRODITE and PERSIANN) in515

section 3. An ensemble of models from the CMIP5 is also used for comparison. Both high516

resolution models exhibit good skills at representing extreme events over East Asia and are517

more accurate than the CMIP5 ensemble (comprised of lower resolution models) in repro-518

ducing spatial patterns. They can also capture the seasonaland interannual signals of each519

extreme index. Dry and wet bias are identified in SC region forHRC and HG3 respectively.520

This behaviour is a common problem in many models, as shown bythe scattering of the521

CMIP5 ensemble over SC. Models typically have more difficulties to realistically represent522

the observed signal over this region and it makes the analysis more sensitive. We also point523

out that, depending on the observational method (satelliteor ground station), the estimation524
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of precipitation is different. Overall, the both high resolution models have results within the525

range of observation uncertainties.526

The dynamical impact of the atmospheric circulation on the variability of extremes is then527

investigated. Both monthly and interannual variabilitiesare considered, using only the sea-528

sons with the highest occurrence of each extreme (DJF for DS15 and JJA for PR99). In order529

to assess the relationship between extremes and atmospheric large scale circulation, spa-530

tial correlations and composite analyses are used with several dynamical fields (Wind850,531

Wind200, TAS, SLP) and SST.532

The monthly variability of extremes, which is also the larger in terms of intensity, has a533

clear positive correlation with the local wind intensity, meaning that a local modulation of534

the monsoon circulation directly impacts the occurrence ofextremes. TAS over the northern535

part of the continent also has a positive impact on DS15. The models can reproduce these536

signals and thus support the conclusion made from observational results. This shows that537

the variability of extremes in East Asia is strongly influenced by local winds, but also by538

thermal and pressure land-sea contrast. A significant correlation with SST is also found in539

the observations for PR99, indicating that the ocean state (and, by extension, the moisture540

source) can significantly affect the short-term variability of these extreme events. However,541

models results for SST are less clear and may reflect the difficulty in correctly representing542

the strength of air-sea interactions in the models (either fully coupled or forced by prescribed543

SST).544

When looking at the interannual variability (section 4.2),the large scale conditions have545

less significant impact on DS15. The only clear and significant control is found in HRC for546

SLP and TAS, but it may be linked to the fact that this model is forced by prescribed SST,547
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so that the atmospheric response is more pronounced. On the other hand, PR99 variability548

is linked to a positive SST influence, in both the observationand models.549

We also use monsoon indices (EASJ, WNPSM and EAWM, see definition in section550

4) and compute correlations with each extreme index to compare with the spatial analysis551

results. Using this method does not provide convincing conclusions, and sometimes the552

results from the models are in contradiction with those fromthe observations.553

With our analysis, we showed that extremes in East Asia are strongly related to the554

temperature over the continent and the monsoon circulationin terms of monthly variability,555

and to the ocean temperature in terms of interannual variability.556

A common assumption for future projections of the climate isthat an increase in atmo-557

spheric moisture could favour an increased frequency of extreme events. However, here we558

show that the changes in large scale circulation could also have a significant impact in con-559

trolling these events, especially because the continentaltemperature is expected to increase560

faster in a warming world and would lead to an increase in the land-sea contrast. There are561

also some indications that the northern part of Siberia would have a strong impact on ex-562

tremes in Asia. Because this region is very sensitive to any change in global temperature, it563

raises the question as to what extent it could affect the occurrence of extremes over tropical564

regions in future projections. The changes in dynamics and their impact on extremes should565

be investigated with high resolution models in future work.566
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Fig. 1 1998-2013 climatology of precipitation (shading, in mm.day−1) from TRMM observations (Huffman

et al., 2007) over East Asia. Black countours highlight precipitation above 4 mm.day−1 and are plotted every

2 mm.day−1. The black rectangles refer to the 2 regions defined in the Table 1: North China-Korea (NCK)

and South China (SC).
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Fig. 2 Seasonal signal of mean precipitation and of each extreme index (from left to right: Mean Precipita-

tion, DS15 and PR99), averaged over North China-Korea (top row) and South China (bottom row) regions

(defined in Fig. 1). Results are displayed for observation (APHRO: black line and PERSIANN: black dashhed

line), HG3 (red line) and HMC (blue line). CMIP5 ensemble mean is represented by black circle symbols,

and the grey shading indicates 1 ensemble standard deviationaround the mean. All values are expressed as

a ratio of days (thus a value of 0.3 means that 30% of the days during a month are considered as extreme),

except the mean precipitation that are in mm.day−1.
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Fig. 3 Mean precipitation and extreme indices during DJF, for (top to bottom row): observation (APHRO),

observation (PERSIANN), HG3, HRC and CMIP5 ensemble mean. Black boxes indicate NCK and SC as

defined in Fig. 1. Units are in mm.day−1 for mean precipitation, and ratio of days for all other variables.

Black outlines highlight mean precipitation every 6 mm.day−1, DS15 every 0.25 and PR99 every 0.05.
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Fig. 4 Same as Fig. 3 but for JJA.
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Fig. 5 Taylor diagrams of mean precipitation and extreme indices for North China-Korea (left) and South

China (right). Colors indicate the different variables: mean precipitation (gray), DS15 (yellow) and PR99

(green). HG3 (and HRC) model results are represented by the shaded circles with (and without) contours,

whereas the CMIP results are represented by the empty circles(ie not shaded but with contours). Two periods

are separated: DJF (symbols with stars inside) and JJA (symbols without stars inside). The reference point

corresponds to APHRODITE observation (Obs) and is indicated at 1 standard deviation and correlation.

Fig. 6 Monsoon index in NCEP reanalysis (black), HG3 (red) and HRC (blue) averaged during historical

period (1976-2005). Indices are, from left to right: EASJ, WNPSM and EAWM (see definition in the text,

section 4). All values are in m.s−1.
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Fig. 7 Composite of each dynamics field for months with strong DS15 occurrence, in North China-Korea

(left) and South China (right). Composite are displayed fromtop to bottom row for: APHRO (and NCEP

reanalysis for dynamical field), HG3 and HRC. Dynamical variables are represented with: red and blue vec-

tors (positive and negative anomalies of wind850), black andgray vectors (positive and negative anomalies

of wind200), full and dashed black contours (positive and negative anomalies of SLP), full and dashed green

contours (positive and negative anomalies of TAS), and colorshading (SST). All results are above 90% con-

fidence level (see text).
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Fig. 8 Same as Fig. 7 but for PR99.
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Fig. 9 Same as Fig. 7 but based on interannual variability.
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Fig. 10 Same as Fig. 9 but for PR99.
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Table 1 Definition of the China regions (Fig. 1).

Notation Full name Location

NCK North China-Korea 105E-130E, 35N-45N

SC South China 105E-125E, 20N-35N

WC West China 75E-105E, 30N-45N

Table 2 Description of extreme indices (see section 2.1.2).

Notation Full name Description

PR99 Daily Extreme 99 This is the occurrence (frequency) of daily precipitation exceeding

the value of the 99th percentile.

DS15 Drought Spell 15 A drought spell is defined here as at least 15 consecutive days with a precipitation

rate bellow the first percentile (very low rain).

We then sum all the days considered as being part of a drought spell.

567
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Table 3 Summary of the data used.

Notation Full name Period used Atmospheric forcing and SST.

HG3 HadGEM3-GC2 Historical Historical: 1971-2000 Run with historical forcing.

Williams et al. (2015) Coupled with ORCA025 (Barnier et al., 2006).

Resolution (atmosphere): 0.5◦

HRC HiRAM Historical Historical: 1979-2008 Run with historical forcing.

Lin (2004); Putman and Lin (2007) Forced by HadISST (Rayner etal., 2003)

Resolution: 50km grid (0.5◦)

CMIP5 Phase 5 of the Coupled Model Historical: 1976-2005 Ensemble run with historical forcing.

Intercomparison Project See Table 4.

APHRO APHRODITE Asia Monsoon Historical: 1976-2005 Ground station observation.

Yatagai et al. (2009, 2012) Resolution: 0.5◦ over land only

PERS PERSIANN Historical: 1983-2014 Satellite observation.

Sorooshian et al. (2000) Resolution: 0.25◦

NCEP NCEP-NCAR Reanalysis Historical: 1976-2005 Atmospheric reanalysis.

Kalnay et al. (1996) Resolution: 2.5◦
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Table 4 30 CMIP5 models used for this study. The resolution is given ingrid points (latitude× longitude).

Model Name Institute Country Resolution

ACCESS1-0 Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia 144 x 192

and Bureau of Meteorology

ACCESS1-3 Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia 144 x 192

and Bureau of Meteorology

BCC-CSM1-1 Beijing Climate Center (BCC), and China Meteorological Administration China 64 x 128

BCC-CSM1-1-M Beijing Climate Center (BCC), and China Meteorological Administration China 160 x 320

BNU-ESM Beijing Normal University (BNU) - Earth System Model China 64 x 128

CanESM2 Canadian Centre for Climate Modelling and Analysis (CCCma) Canada 64 x 128

CCSM4 National Center for Atmospheric Research (NCAR) USA 192 x 288

CESM1-BGC National Science Foundation, Department of Energy, USA 192 x 288

National Center for Atmospheric Research (NCAR)

CMCC-CESM Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC) Italy 48 x 96

CMCC-CM Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC) Italy 240 x 480

CMCC-CMS Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC) Italy 96 x 192

CNRM-CM5 Centre National de Recherches Mét́eorologiques (CNRM), and Centre Européen de France 128 x 256

Recherches et de Formation Avancée en Calcul Scientifique

CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organization (CSIRO) Australia 96 x 192

Marine and Atmospheric Research (Melbourne) in collaboration with the

Queensland Climate Change Centre of Excellence (QCCCE) (Brisbane)

EC-EARTH EC-EARTH consortium (11 countries) 160 x 320

FGOALS-g2 Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP), China 60 x 128

and Tsinghua University (THU)

GFDL-CM3 Geophysical Fluid Dynamics Laboratory (GFDL) USA 90 x 144

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory (GFDL) USA 90 x 144

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory (GFDL) USA 90 x 144

HadGEM2-CC Met Office Hadley Centre UK 145 x 192

INM-CM4 Institute for Numerical Mathematics Russia 120 x 180

IPSL-CM5A-LR Institut Pierre-Simon Laplace France 96 x 96

IPSL-CM5A-MR Institut Pierre-Simon Laplace France 143 x 144

IPSL-CM5B-LR Institut Pierre-Simon Laplace France 96 x 96

MIROC5 Atmosphere and Ocean Research Institute (The University ofTokyo), Japan 128 x 256

National Institute for Environmental Studies, and

Japan Agency for Marine-Earth Science and Technology

MIROC5-ESM Japan Agency for Marine-Earth Science and Technology, Japan 64 x 128

Atmosphere and Ocean Research Institute (The University ofTokyo),

and National Institute for Environmental Studies

MIROC5-ESM-CHEM Japan Agency for Marine-Earth Science and Technology, Japan 64 x 128

Atmosphere and Ocean Research Institute (The University ofTokyo),

and National Institute for Environmental Studies

MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M) Germany 96 x 192

MPI-ESM-MR Max Planck Institute for Meteorology (MPI-M) Germany 96 x 192

MRI-CGCM3 Meteorological Research Institute Japan 160 x 320

NorESM1-M Norwegian Climate Centre Norway 96 x 144
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Table 5 Mean and the associated monthly (first number within brackets)and interannual (second number

within brackets) variabilities of each index. Variabilityis defined by two standard deviations. All values are

expressed as a ratio of days.

DS15 PR99

APHRO
NCK

SC

0.22 (0.26 / 0.10)

0.08 (0.20 / 0.09)

0.01 (0.02 / 0.01)

0.03 (0.02 / 0.02)

HG3
NCK

SC

0.15 (0.16 / 0.12)

0.01 (0.04 / 0.03)

0.02 (0.02 / 0.02)

0.05 (0.02 / 0.02)

HRC
NCK

SC

0.32 (0.28 / 0.16)

0.21 (0.36 / 0.22)

0.03 (0.02 / 0.02)

0.04 (0.02 / 0.02)

Table 6 Correlation coefficients between monsoon index (section 4) anomalies and each extreme index

anomalies, computed from monthly data, for the APHRO observations (AP) and models (HG3 and HRC).

EASJ-JJA WNPSM-JJA EAWM-DJF

AP HG3 HRC AP HG3 HRC AP HG3 HRC

DS15-DJF
NCK

SC

0.07 0.01 0.03

0.14 0.23 0.12

PR99-JJA
NCK

SC

0.05 0.12 -0.10

-0.12 0.12 -0.20

-0.11 -0.02 -0.30

-0.36 0.25 -0.09

Table 7 Same as Table 6 but correlations are computed from seasonal data.

EASJ-JJA WNPSM-JJA EAWM-DJF

AP HG HR AP HG HR AP HG HR

DS15-DJF
NCK

SC

-0.02 -0.06 -0.06

0.10 0.17 -0.02

PR99-JJA
NCK

SC

0.08 0.12 0.10

-0.32 0.13 0.29

-0.20 0.05 -0.37

-0.46 -0.40 -0.20
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