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Web Appendix A5

Comparison of the SOB and NB GAIs for the Poisson model6

The P/NB GAI can be viewed as an approximation to the P/SOB GAI. In the stopover

model, P/SO1, assuming ϕ to be constant,

λi,j = NSO,i(αi,j + αi,j−1ϕ+ αi,j−2ϕ
2 + · · ·+ αi,0ϕ

j−1), (1)

where NSO,i denotes the site parameter from the stopover model for a given site i, and for

a given occasion, t, αi,t = F (ti,j)− F (ti,j − 1). Comparatively, for the mixture model P/N1

GAI,

λi,j = NG,iαi,j, (2)

where {NG,i} are the site parameters for the mixture model and αi,j = f(ti,j). Since the7

multiplier of NSO,i is greater than that for NG,i, we find that NG,i > NSO,i.8

If we consider the sum of λi,j over j, the coefficients of ϕ in the stopover model will sum9

approximately to unity as they form the area under a density. An approximate geometric10

sum for ϕ (ϕ < 1) remains which will produce 1/(1−ϕ). This suggests that the site estimates11

will differ between the two models by a scaling factor of approximately 1− ϕ.12

We compare model performance for the P/N2 and P/SO2 GAIs for five bivoltine butterfly13

species for data from a sample of 100 UKBMS sites for 2010. Different starting values for14

the parameters could yield different local maxima (Matechou et al., 2014; McLachlan and15
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Peel, 2004), therefore each model was run from five random starting values and a comparison16

made of each model with the highest likelihood value.17

Web Figure 1 demonstrates empirically that the estimates of N differ between the P/SO218

and P/N2 GAIs by a scaling factor of approximately 1− ϕ. The stopover model is generally19

favoured in terms of AIC and overdispersion (Web Table 1). Estimates of µ1 and µ2 are earlier20

for the stopover model than the mixture model. This result could be anticipated since the21

brood means in the stopover model represent the entry of individuals into the population,22

whereas the corresponding parameters in the mixture model consist of both individuals that23

have entered the population and those that have survived from previous weeks. Estimates24

of σ from the mixture model, which relate to the length of the flight period, are greater25

than from the stopover model where σ relates to the length of the emergence period. The26

parameter ϕ from the stopover model provides additional information compared to the P/N227

GAI, but the stopover model takes an average of seven times longer to run.28
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Web Figure 1: Comparison of estimated site parameters, N̂G from the P/N2 GAI and N̂SO

from the P/SO2 GAI. Both axes are displayed on the log scale. The dashed line indicates
the 1-1 line and the red line indicates the line with offset log(1− ϕ̂).
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Web Appendix B38

An hierarchical model approach39

An alternative approach to optimising a concentrated likelihood involves treating the indi-40

vidual site effects as random effects. Using an hierarchical approach, we assume the site41

parameters, Ni, to be independent random variables with a particular distribution function42

f(Ni, θ).43

It is natural in this instance for f(Ni, θ) to be a continuous distribution, where Ni can

take any non-negative value. The gamma distribution is a sensible choice, since the Poisson-

gamma mixture is well known to produce a negative-binomial distribution. Here we explore

the gamma distribution with shape parameter β and rate parameter α. For a given site i

and visit j, λi,j = ai,jNi. If we drop subscripts for simplicity then the likelihood will be

based upon

Pr(Y = y) =

∞∫
0

e−aN(aN)y

y!

αβ

Γ(β)
Nβ−1e−αN dN,

which simplifies to

Pr(Y = y) =

(
y + β − 1

y

)(
a

a+ α

)y (
α

a+ α

)β

.

Hence, a Poisson-gamma mixture where the Poisson expectation is the scalar product, aN ,44

is a negative-binomial distribution parameterised by r = β and p = a
a+α

.45

Consequently, the likelihood over S sites and T visits for the Poisson-gamma model is

L(α, β,w,µ,σ;y) =
S∏

i=1

T∏
j=1

(
yi,j + β − 1

yi,j

)(
ai,j

ai,j + α

)yi,j ( α

ai,j + α

)β

. (3)

Incorporating the hierarchical aspect into the model increases the number of parameters46

relative to the GAI with a concentrated likelihood, by the addition of parameters for the47

gamma distribution.48
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The density of Ni is given by Bayes theorem as

fNi
(ni|yi,j, ai,j, β, α) ∝ n

yi,j+β−1
i e−ni(ai,j+α),

which is a gamma distribution with shape parameter yi,j + β and rate parameter ai,j + α.

Hence, averaging over j, we can estimate each Ni by

E(Ni) =
yi,. + β

ai,. + α
. (4)

This expression generalises (2) in the main paper, and as α, β → 0, keeping the ratio constant49

results in (2).50

In other scenarios, a discrete distribution for Ni may be more appropriate. For example51

in Royle (2004), the Poisson distribution is mixed with the Binomial distribution.52

Negative-binomial-gamma model53

As for the concentrated likelihood model, the negative-binomial provides an alternative to

the Poisson model. Parameterising the negative-binomial in terms of (r, ai,jN), where ai,jN

is the mean, the negative-binomial-gamma likelihood is

L(α, β,w,µ,σ;y) =
S∏

i=1

T∏
j=1

∞∫
0

Γ(r + yi,j)

yi,j!Γ(r)

(
r

r + ai,jN

)r (
ai,jN

r + ai,jN

)yi,j αβ

Γ(β)
Nβ−1e−αN dN.

(5)

The integral in (5) does not have a simple solution as in the Poisson-gamma case,54

hence evaluation of the likelihood requires numerical integration. In R, we use the standard55

integrate function (with a tolerance of 1e-4). Due to this need for numerical integration,56

fitting the negative-binomial-gamma model is difficult and only limited results have been57

obtained. The negative-binomial-gamma model is also much more time-consuming to fit58

compared to the Poisson-gamma.59
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Comparison with GAI60

We compare model performance for the P/N2 GAI, the analogous hierarchical Poisson-61

gamma model, and the NB/N2 GAI, for five bivoltine species for UKBMS data from 2010.62

Since the focus here was on model comparison, all parameters in ai,j were assumed to be63

constant spatially (w, µ1, µd and σ2). This resulted in four, five and six model parameters64

for the P/N2 GAI, NB/N2 GAI and Poisson-gamma model, respectively.65

The Poisson-gamma model has lower AIC values than the P/N2 GAI for four out of66

the five species, but the NB/N2 GAI consistently has AIC values that are the lowest (Web67

Table 2). Given that the models are applied to large, noisy data sets, there are often large68

differences in AIC as each model describes the data, particularly in terms of overdispersion,69

differently. The Poisson-gamma model is an intermediate option between the two GAIs:70

it allows for variation in {Ni}, whereas the NB/N2 GAI also estimates the appreciable71

additional variation in the raw data with respect to the Poisson.72

Estimates of the four parameters associated with the mixture components show mini-73

mal differences between the three models. The associated standard errors are consistently74

smallest for the P/N2 GAI, and are larger from the NB/N2 GAI and Poisson-gamma model,75

which may be anticipated as a consequence of accounting for overdispersion. Estimates of76

the average abundance, Ĝ, which were estimated by the expression in (7) of the main paper,77

are similar for the different methods, as well as the associated 95% confidence intervals,78

which were estimated via a bootstrapping approach. For the hierarchical Poisson-gamma79

model, Ĝ could also be estimated simply by Ĝ = α̂/β̂. Individually, comparison of the {N̂i}80

from the P/N2 GAI, estimated from (2) of the main paper, and from the Poisson-gamma81

model, derived from (4) of this web appendix, also correspond well (Web Figure 2).82

The computation times for the P/N2 GAI are lower than for the hierarchical Poisson-83

gamma model and NB/N2 GAI. Computation times for the NB/N2 GAI are longer than for84

the Poisson case due to the iterative concentrated likelihood approach. The differences in85

computation time for the hierarchical model compared to the GAIs would be more significant86

for the negative-binomial-gamma models, which are not straightforward to fit. We conclude87

7



that the GAI is preferable to the hierarchical model as it is simpler and more efficient, whilst88

producing similar results, and the negative-binomial GAI performs best.89

8
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ŵ

µ̂
1

µ̂
d

σ̂
α̂

β̂

b
)

H
ol
ly

B
lu
e

4.
61

-2
11
3

42
38

21
.7

(1
4.
3,

33
.2
)

0
.3
1

(0
.0
2
3
)
7
.4
0

(0
.1
6
2
)
1
1
.5
0

(0
.1
9
7
)
2
.3
7

(0
.0
7
1
)
0
.2
8

(0
.0
1
9
)
0
.0
1
4

(0
.0
0
1
)

S
m
al
l
B
lu
e

0.
80

-1
66
4

33
40

61
.7

(4
7.
6,

78
.7
)

0
.6
8

(0
.0
4
9
)
5
.2
2

(0
.0
7
1
)

8
.1
3

(0
.1
3
6
)
1
.3
2

(0
.0
3
8
)
0
.2
9

(0
.0
2
4
)
0
.0
0
3

(5
e-
0
4
)

W
al
l
B
ro
w
n

1.
25

-2
17
5

43
62

28
.4

(2
3.
3,

32
.9
)

0
.3
6

(0
.0
2
7
)
7
.4
4

(0
.1
5
3
)
1
0
.6
8

(0
.1
7
5
)
2
.0
5

(0
.0
5
3
)
0
.2
9

(0
.0
1
9
)
0
.0
1
1

(0
.0
0
1
)

S
m
al
l
W

h
it
e

4.
44

-3
43
1

68
74

73
.9

(6
0.
6,

88
.2
)

0
.1
1

(0
.0
0
9
)
8
.1
0

(0
.1
7
9
)
1
0
.8
8

(0
.1
9
5
)
2
.6
2

(0
.0
6
0
)
0
.4
6

(0
.0
2
3
)
0
.0
0
6

(4
e-
0
4
)

C
om

m
on

B
lu
e

1.
96

-3
97
9

79
69

19
2.
7

(1
37
.2
,
23
3.
3
)
0
.2
3

(0
.0
1
9
)
6
.4
3

(0
.1
1
2
)

9
.0
2

(0
.1
2
8
)
1
.7
9

(0
.0
3
8
)
0
.2
5

(0
.0
1
1
)
0
.0
0
1

(1
e-
0
4
)

S
p
ec
ie
s

T
im

e
L
og
(L

)
A
IC

Ĝ
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Web Figure 2: Comparison of estimated site parameters, N̂G, from the P/N2 GAI and N̂H

from the hierarchical Poisson-gamma model. Both axes are displayed on the log scale and
the dashed line indicates the 1-1 line.
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Web Appendix C90

Efficiency of the concentrated likelihood approach91

We compare the performance of optimising a full versus a concentrated likelihood for sim-92

ulated data for Poisson, negative-binomial and zero-inflated Poisson GAI, for both mixture93

and stopover models. Data were simulated from the relevant fitted model, based on a single94

year for S = 50 sites and T = 26 visits, where for illustration the parameter values used95

were based upon reasonable values that might be applicable for data for a real species. For96

the negative-binomial and zero-inflated Poisson cases, we set r = 0.75 and ψ = 0.75, respec-97

tively. For the stopover models, we set ϕ = 0.5. We assume a univoltine species where the98

counts arise from a Normal distribution with µ = 10 and σ = 2.5, and Ni for each site was99

drawn from a Poisson distribution with an expectation of 150.100

For the simplest P/N1 GAI, the concentrated likelihood has just two parameters to101

estimate, and for the full likelihood, with the addition of a parameter for each site, there are102

52 parameters to estimate. The negative-binomial and zero-inflated Poisson mixture models103

each required one additional parameter to be estimated. Similarly where the stopover model104

formulation was used, an additional parameter, ϕ, was estimated.105

The concentrated likelihoods were maximised using the optim function in the R software106

package (R Core Team, 2015) with the default Nelder-Mead algorithm, as were all of the107

GAI analyses in this paper. The full likelihoods were maximised using the BFGS algorithm,108

since the Nelder-Mead algorithm did not always optimise. Iterative likelihood optimisation109

for the negative-binomial and zero-inflated Poisson cases was performed until the difference110

in the current and previous log-likelihood value was < 0.001.111

Based on the average time taken to fit each model to one simulated dataset, using a112

concentrated likelihood approach showed very large reductions in computation time (Web113

Table 3). In particular for the Poisson case, fitting the full parameter model took over 100114

times longer than fitting the concentrated likelihood model for both the mixture and stopover115

models. Despite requiring iterative likelihood optimisation, the concentrated approach was116

11



also faster than optimising the full likelihood in the zero-inflated Poisson and negative-117

binomial cases. The zero-inflated Poisson and negative-binomial mixture models always118

each converged within 3 and 5 iterations through steps (ii)-(iv) of Section 2.3, respectively,119

whereas for the stopover model formulation the zero-inflated Poisson model took a maximum120

of 23 iterations, and hence took the longest time to fit. In all cases the stopover model took121

longer than the mixture model to fit, which would be anticipated given the greater complexity122

of the model, which also has an additional parameter to estimate.123

Web Table 3: Average computation times (in seconds) from 20 simulated datasets, fitting the
full and concentrated likelihood approach for the mixture and stopover models. The mean
and maximum number of iterations are given for the ZIP and NB iterative concentrated
likelihood approach.

Computation time No. of iterations
Model Full Concentrated Mean Max
P/N1 8.6 0.1 - -
ZIP/N1 18.3 0.7 3 3
NB/N1 20.3 0.7 4 5
P/SO1 66.9 0.6 - -
ZIP/SO1 101.5 9.8 11 23
NB/SO1 93.9 5.2 6 7
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Web Appendix D124

Supplementary tables and figures125
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Web Figure 3: Relative abundance indices for the GAM approach (black solid) and P/C
GAI (blue dashed) for Speckled Wood.
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Web Figure 4: AIC values from the P/N2 (blue), ZIP/N2 (green) and NB/N2 (black) GAIs.
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Web Figure 5: Dispersion values (residual deviance/degrees of freedom) from the P/N2

(blue), and NB/N2 (black) GAIs.
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Web Figure 6: Comparison of indices with bootstrapped intervals derived from the GAM
(red) and NB/N2 GAI (black).
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Web Table 4: Latin names of the sample of butterfly species considered.
Species Latin name
Common Blue Polyommatus icarus
Dark Green Fritillary Argynnis aglaja
Holly Blue Celastrina argiolus
Small Blue Cupido minimus
Small White Pieris rapae
Speckled Wood Pararge aegeria
Wall Brown Lasiommata megera
White Admiral Limenitis camilla

Web Table 5: Parameter estimates (and asymptotic standard errors) for the best (in terms
of AIC) multi-year P/N2 GAI for Wall Brown.

Parameter Estimate Std. error
Logit of w
Intercept -0.899 0.002
Slope for north -0.027 0.002
Slope for year 0.229 0.002
Slope for year.north -0.123 0.002
Log of µ1

Intercept 2.135 0.001
Slope for north 0.056 0.002
Slope for year -0.088 0.002
Slope for year.north 0.016 0.002
Log of µd

Intercept 2.463 0.003
Slope for north -0.002 0.003
Slope for year 0.037 0.009
Slope for year.north -0.006 0.011
Log of σ
Intercept 0.613 0.010
Slope for year 0.020 0.010
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