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Summary paragraph outline

Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects
on individual plant physiological functions1–3, but it has remained unclear how these effects scale up75

to influence competition – a key driver of community assembly in terrestrial vegetation4. Here we use
growth data, from more than 3 million trees in more than 140000 plots across the world, to show how
three key functional traits – wood density, specific leaf area and maximum height – consistently influ-
ence competitive interactions. Fast maximum growth of a species was correlated negatively with its
wood density in all biomes and positively with its specific leaf area in most biomes. Low wood density80

was also correlated with a low ability to tolerate competition and a low competitive impact on neigh-
bours (competitive effect), while high specific leaf area was correlated with a low competitive effect.
Thus, traits generate trade-offs between performance with vs. without competition, a fundamental
ingredient in the classical hypothesis that coexistence of plant species is enabled via differentiation
in their successional strategies5. Competition within species was stronger than between species, but85

an increase in trait dissimilarity between species had little influence in weakening competition. No
benefit of dissimilarity was detected for specific leaf area and wood density and only a weak benefit for
maximum height. Our trait-based approach to modelling competition makes generalisation possible
across the forest ecosystems of the globe and their highly diverse species composition.

Main text90

Phenotypic traits are considered fundamental drivers of community assembly and thus species diver-
sity1,6. The effects of traits on individual plant physiologies and functions are increasingly understood,
and have been shown to be underpinned by well-known and globally consistent trade-offs1–3. For in-
stance, traits such as wood density and specific leaf area capture trade-offs between the construction
cost and longevity or strength of wood and leaf tissues2,3. In contrast, we still have limited under-95

standing of how such trait-based trade-offs translate into competitive interactions between species,
particularly for long-lived organisms such as trees. Competition is a key filter through which eco-
logical and evolutionary success is determined4. A long-standing hypothesis is that the intensity of
competition decreases as two species diverge in trait values7 (trait dissimilarity). The few studies8–13

that have explored links between traits and competition have shown that linkages were more complex100

than this, as particular trait values may also confer competitive advantage independently from trait
dissimilarity9,13,14. This distinction is fundamental for species coexistence and the local mixture of
traits. If neighbourhood competition is driven mainly by trait dissimilarity, this will favour a wide
spread of trait values at a local scale. In contrast, if neighbourhood interactions are mainly driven
by the competitive advantage associated with particular trait values, those trait values should be105

strongly selected at the local scale, with coexistence operating at larger spatial or temporal scales6,13.
Empirical investigations have been limited so far to a few particular locations, restricting our ability

3

Accepted manuscript



Traits and trees competition

to find general mechanisms that link traits and competition in the main vegetation types of the world.

Here we quantify the links between traits and competition, measured as the influence of neighbouring
trees on growth of a focal tree. Our framework is novel in two important ways: (i) competition is110

analysed at an unprecedented scale covering all the major forest biomes on Earth (Fig. 1a), and
(ii) the influence of traits on competition is partitioned among four fundamental mechanisms (Fig.
1b,c) as follows. A competitive advantage for trees with some trait values compared to others can
arise through: (1) permitting faster maximum growth in the absence of competition15; (2) exerting
a stronger competitive effect16,17, meaning that competitor species possessing those traits suppress115

more strongly the growth of their neighbours; or (3) permitting a better tolerance of competition (or
competitive ‘response’ in Goldberg16), meaning that growth of species possessing those traits is less
affected by competition from neighbours. Finally, (4) competition can promote trait diversification, if
increasing trait dissimilarity between species reduces interspecific competition compared to intraspe-
cific competition7. Here we show how these four mechanisms are connected to three key traits that120

describe plant strategies worldwide1–3. These traits are wood density (an indicator of a trade-off in
stems between growth and strength), specific leaf area (SLA, an indicator of a trade-off in leaves
between cheap construction cost and leaf longevity), and maximum height (an indicator of a trade-off
between sustained access to light and early reproduction). We analyse basal area growth (annual
increase in the area of the cross section of tree trunk at 1.3 m height) of more than 3 million trees125

from more than 2500 species, across all major forested biomes of the earth (Fig. 1). Species mean
trait values were extracted from local data bases and the global TRY data base18,19 (see Methods).
We analysed how basal area growth of each individual tree was reduced by the abundance of competi-
tors in its local neighbourhood20 (measured as the sum of basal areas of competitors in m2 ha−1),
accounting for traits of both the focal tree and its competitors. This analysis allowed effect sizes to130

be estimated for each of the four mechanisms outlined above (Fig. 1c).

Across all biomes the strongest driver of individual growth was the total abundance of neighbours,
irrespective of their traits (parameters α0intra and α0inter in Fig. 2). Values were strongly positive, in-
dicating neighbours had competitive rather than facilitative effect. The main effects of traits were that
some trait values led to a competitive advantage compared to others through two main mechanisms.135

First, traits of the focal species had direct influences on its maximum growth – i.e. in the absence
of competition – (parameter m1 in Fig. 2 and Extended Data Table 3). The fastest growing species
had low wood density and high SLA, though the confidence interval intercepted zero in two out of
five biomes for SLA (Fig. 2). This is in agreement with previous studies15,21 of adult trees reporting
a strong link between maximum growth and wood density but a weaker link for SLA. Second, some140

trait values were associated with species having stronger competitive effects, or better tolerance of
competition (Fig. 2; Extended Data Table 3). High wood density was correlated with better tolerance
of competition from neighbours and with a stronger competitive effect upon neighbours, whereas low
SLA was correlated only with a stronger competitive effect. This agrees with studies reporting that
high wood density species are more shade-tolerant15 and have deeper and wider crowns22,23, hence145
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potentially higher light interception (further detail in Supplementary Discussion). The shorter leaf
lifespan associated with high SLA results in lower leaf mass fraction24. The low competitive effect
associated with high SLA species could thus result from a lower light interception but few data are
available on this link24. Maximum height was weakly negatively correlated with tolerance to competi-
tion in three out of five biomes, supporting the idea that sub-canopy trees are more shade-tolerant22.150

We found however no correlation between maximum height and competitive effect. Current height of
an individual has of course an influence on light interception, a key process in competition13. But
maximum height of a species reflects its long-term strategy and would possibly have stronger effects
on long-term population level competition outcomes than it did on short-term basal area growth25.

After separating trait-independent differences between intraspecific vs. interspecific competition, trait155

dissimilarity had little effect on competition between species (Fig. 2). Only dissimilarity in maximum
height between focal and neighbour species led to a weak, but consistent, decrease in competitive
suppression of tree growth (Fig. 2). Mechanisms explaining this effect are poorly understood, but
could possibly result from complementary crown architectures26,27. The average differences in strength
of interspecific vs. intraspecific competition between two species – a key indicator of processes that160

could stabilise coexistence – were thus only weakly related to trait dissimilarity (Extended Data Fig.
3). Trait dissimilarity effects are widely considered to be a key mechanism by which traits affect
competition13, but our analysis shows at global scale that trait dissimilarity effects are weak or absent.
It remains unclear why the trait-independent competitive effects is higher within species than that
between species. Higher loads of shared specialised pathogens28 could plausibly contribute. Other165

traits may show stronger trait dissimilarity effects, but we currently lack the trait data to capture
such effects.

Analyses allowing for different effects among biomes did not show any particular biome behaving
consistently differently from the others (Fig. 2). This lack of context dependence in trait effects may
seem surprising, but reinforces that competition for light is important in most forests, and this may170

explain why we find consistency across such diverse forest types (further details in Supplementary
Discussion).

Our global study supports the hypothesis that trait values favouring high tolerance of competition
or high competitive effects also render species slow growing in the absence of competition across all
forested biomes (Fig. 3). This trait-based trade-off is a key ingredient in the classical model of175

successional coexistence in forests, where fast-growing species are more abundant in early successional
stages where competitors are absent or rare, and are later replaced by slow-growing species in late
successional stages where competitors become more abundant5. Human or natural disturbances are
conspicuous in all the forests analysed, hence successional dynamics are likely to be present in all
these sites (see Supplementary Methods). This trade-off was strongest for wood density, with high180

wood density associated with slow potential growth rate but high tolerance to competition and strong
competitive effect (Fig. 3). A similar pattern was present, though less clear, for SLA. High SLA was
correlated with low competitive effect but fast maximum growth (confidence intervals not spanning
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zero in three biomes, Fig. 2 and 3). Given that long-term outcomes of competition at the population
level may be more influenced by tolerance of competition than by competitive effect16, SLA might be185

less influential in succession.

Coordination between trait values conferring strong competitive effect and trait values conferring
high tolerance of competition has been widely expected9,16, but rarely documented16,29. Only wood
density showed such coordination, as it was correlated with both competitive effect and tolerance of
competition in the same direction (Fig. 2).190

The globally consistent links that we report here between traits and competition have considerable
promise for predicting species interactions governing forest communities across different forest biomes
and continents of the globe. Our analysis demonstrates that trait dissimilarity is not the major
determinant of local-scale competitive impacts on tree growth, at least for these three traits. In
contrast, the trait-based trade-off in performance with vs. without competition, reported here, could195

promote coexistence of species with diverse traits, provided disturbances create a mosaic of successional
stages. A challenge for the future is to move beyond growth to analyse all key demographic rates and
life history stages, to analyse how traits influence competitive outcomes at the population level and
control stable coexistence.

Supplementary Information is available in the online version of the paper.200
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Figure 1: Assessing competitive interactions at global scale. a, Precipitation-temperature space
occupied by each data set (NFI – national forest inventories data, LPP – large permanent plots data).
For data with multiple plots, the range of climatic condition is represented by an ellipse covering 98%
of the plots. Biomes are: 1 - tundra; 2 - taiga; 3 - mediterranean; 4 - temperate forest; 5 - temperate
rainforest; 6 - desert; 7 - tropical seasonal forest; 8 - tropical rainforest (as defined by Ricklefs30).
b, Sampled patches vary in the abundance of competitors from species c around individuals of focal
species f . c, We modelled how trait values of the focal tree (tf ), and the abundance (measured
as the sum of their basal areas) and traits values of competitor species (tc) influenced basal area
growth of the focal tree. Species maximum growth (red) was influenced by trait of the focal tree
(m0 + m1 tf , with m0 maximum growth independent of the trait). Reduction in growth per unit basal
area of competitors (−αc,f , black) was modelled as the sum of growth reduction independent of the
trait (blue) by conspecific (α0 intra) and heterospecific (α0 inter) competitors, the effect of competitor
traits (tc) on their competitive effect (αe), the effect of the focal tree’s traits (tf ) on its tolerance
of competition (αt), and the effect of trait dissimilarity between the focal tree and its competitors
(|tc − tf |) on competition (αd). The parameters m0, m1, α0 intra, α0 inter, αe, αt and αd are fitted from
data using a maximum likelihood method.
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Model and analysis

To examine the link between competition and traits we used a neighbourhood modelling framework1–5

to model the growth of a focal tree of species f as a product of its maximum growth (determined by5

its traits and size) together with reductions due to competition from individuals growing in the local
neighbourhood (see definition below). Specifically, we assumed a relationship of the form

Gi,f,p,s,t = Gmax f,p,s D
γf

i,f,p,s,t exp





Ni
∑

c=1

−αc,f Bi,c,p,s



 , (1)

where:

• Gi,f,p,s,t and Di,f,p,s,t are the annual basal area growth and diameter at breast height of individual
i from species f , plot or quadrat (see below) p, data set s, and census t,10

• Gmax f,p,s is the maximum basal area growth for species f on plot or quadrat p in data set s,
i.e. in absence of competition,

• γf determines the rate at which growth changes with size for species f , modelled with a normally
distributed random effect of species εγ,f [as γf = γ0 + εγ,f where εγ,f ∼ N (0, σγ) – a normal
distribution of mean 0 and standard deviation σγ ]15

• αc,f is the per unit basal area effect of individuals from species c on growth of an individual in
species f ,

• Bi,c,p,s = 0.25 π
∑

j ̸=i wj D2

j,c,p,s,t is the sum of basal area of all individuals competitor trees j

of the species c within the local neighbourhood of the tree i in plot p, data set s and census t,
where wj is a constant based on neighboorhood size for tree j depending on the data set (see20

below). Note that Bi,c,p,s include all trees of species c in the local neighbourhood excepted the
tree i, and

• Ni is the number of competitor species in the local neighbourhood of focal tree i.

Values of αc,f > 0 indicate competition, whereas αc,f < 0 indicates facilitation.
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Log-transformation of equ. 1 leads to a linearised model of the form25

log Gi,f,p,s,t = log Gmax f,p,s + γf log Di,f,p,s,t +
Ni
∑

c=1

−αc,f Bi,c,p,s. (2)

To include the effects of traits on the parameters of the growth model we build on previous studies
that explored the role of traits for tree performances and tree competition2,4,5. We modelled the effect
of traits, one trait at a time. The effect of a focal species’ trait value, tf , on its maximum growth was
included as:

log Gmax f,p,s = m0 + m1 tf + m2 MAT + m3 MAP + εGmax,f + εGmax,p + εGmax,s. (3)

Here m0 is the average maximum growth, m1 gives the effect of the focal species trait, m2 and m330

the effects of mean annual temperature MAT and sum of annual precipitation MAP respectively,
and εGmax,f , εGmax,p, εGmax,s are normally distributed random effects for species f , plot or quadrat
p (see below), and data set s [where εGmax,f

∼ N (0, σGmax,f
); εGmax,p ∼ N (0, σGmax,p) and εGmax,s ∼

N (0, σGmax,s)].

Previous studies have proposed various decompositions of the competition parameter into key trait-35

based processes1, and here we extended the approach of the most recent study5. As presented in Fig.
1, competitive interactions were modelled using an equation of the form2:

αc,f = α0,f,intra C + α0,f,inter (1 − C) − αt tf + αe tc + αd |tc − tf | (4)

where:

• α0,f,intra and α0,f,inter are respectively intra and interspecific trait independent compe-
tition for the focal species f , modelled with a normally distributed random effect of species f40

and each with normally distributed random effect of data set s [as α0,f = α0 + εα0,f + εα0,s,
where εα0,f ∼ N (0, σα0,f ) and εα0,s ∼ N (0, σα0,s)]. C is a binary variable taking the value one
for f = c (conspecific) and zero for f ̸= c (heterospecific),

• αt is the tolerance of competition by the focal species, i.e. change in competition tolerance
due to traits tf of the focal tree with a normally distributed random effect of data set s included45

[εαt,s ∼ N (0, σαt)],
1Different approaches have been proposed to model α from traits. In one of the first studies Uriarte et al.2 modelled

α as α = α0 + αd|tf − tc|. Then Kunstler et al.4 used two different models: α = α0 + αd|tf − tc| or α = α0 + αh(tf − tc).
Finally, Lasky et al.5 developed a single model including multiple processes as α = α0 + αttf + αh(tf − tc) + αd|tf − tc|.
In our study, we extended this last model. We considered that it was clearer to split αh(tf − tc) into αttf + αetc, which
is equivalent to the hierarchical distance if αt = −αe (thus avoiding replication of tf effect through both αh and αt).
We also included two α0, one for intra and one for interspecific competition.

2For fitting the model the equation of αc,f was developed with species basal area in term of community weighted
mean of the trait, see Supplementary Methods for more details.
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• αe is the competitive effect, i.e. change in competition effect due to traits tc of the competitor
tree with a normally distributed random effect of data set s included [εαi,s ∼ N (0, σαi

)], and
• αd is the effect of trait dissimilarity, i.e. change in competition due to absolute distance

between traits |tc − tf | with a normally distributed random effect of data set s included [εαd,s ∼50

N (0, σαd
)].

Estimating separate α0 for intra and interspecific competition allowed us to account for trait-
independent differences in interactions with conspecifics and heterospecifics. We also explored a
simpler version of the model where trait-independent competitive effects were pooled (i.e. there was
a single value for α0), as most previous studies have generally not made this distinction, using the55

following equation:

αc,f = α0,f − αt tf + αe tc + αd |tc − tf | (5)

In this alternative model any differences between intra and interspecific competition do enter into
trait dissimilarity effects, with a trait dissimilarity of zero attached to them. This may lead to an
overestimation of the trait dissimilarity effect. Results for this model are presented in Supplementary
Results.60

Eqs. 2-4 were then fitted to empirical estimates of growth based on change in diameter between census
t and t + 1 (respectively at year yt and yt+1), given by

Gi,f,p,s,t = 0.25π
(

D2

i,f,p,s,t+1 − D2

i,f,p,s,t

)

/(yt+1 − yt). (6)

To estimate standardised coefficients (one type of standardised effect size)6, response and explanatory
variables were standardized (divided by their standard deviations) prior to analysis. Trait and diameter
were also centred to facilitate convergence. The models were fitted using the lmer routine in the lme465

package7 in the R statistical environment8. We fitted two versions of each model. In the first version
parameters m0, m1, α0, αt, αi, αd were estimated as constant across all biomes. In the second version,
we allowed different fixed estimates of these parameters for each biome. This enabled us to explore
variation among biomes. Because some biomes had few observations, we merged those with biomes
with similar climates. Tundra was merged with taiga, tropical rainforest and tropical seasonal forest70

were merged into tropical forest, and deserts were not included in this final analysis as too few plots
were available. To evaluate whether our results were robust to the random effect structure we also
explored a model with a random effect attached to parameters both for the data set and for a local
ecoregion using the Köppen-Geiger ecoregion9 (see Supplementary Results).
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Estimating the effect of traits on the differences between intra and interspecific75

competition

The differences between inter and intraspecific competition has long been considered crucial to com-
munity assembly as it is key in controlling species coexistence10,11. Our estimated growth model
allowed us to predict inter and intraspecific competition from trait-independent and trait-dependent
processes. The competitive effect of species j on species i can be defined in the tree basal area growth80

model (see equ. 2) as the reduction of growth of species i by one unit of basal area of competitors of
the species j, and is given by 1

e
−αij

– with αij defined by equ. 4. High competitive effects translate
into strong growth reduction. Then we can compare the strength of inter vs. intraspecific competition
between two species i and j using the following expression:

√

eαij eαji

eαjj eαii
(7)

Which can be expressed in function the estimated parameters of eqn. 4 as:85

√

eαij eαji

eαjj eαii
= e(α0,inter−α0,intra+αd|tj−ti|) (8)

In summary, the strength of inter vs. intraspecific competition is only influenced by the difference
between α0,intra vs. α0,inter and by trait dissimilarity via αd (see Figure 3. in Extended Data for
the results). This approach shares similarities with a method developed by Chesson12, and recently
applied with population growth models in annual plants communities13,14 – estimating ρ as a similar
ratio. It is however important to note that in the population growth model the ratio of inter vs.90

intraspecific competition is directly related to stabilising processes controlling species coexistence,
whereas the tree basal growth model presented here cannot be used in itself to estimate coexistence.

Data

Growth data

Our main objective was to collate data sets spanning the dominant forest biomes of the world. Data95

sets were included if they (i) allowed both growth of individual trees and the local abundance of
competitors to be estimated, and (ii) had good (>40%) coverage for at least one of the traits of
interest (SLA, wood density, and maximum height).

The data sets collated fell into two broad categories: (1) national forest inventories (NFI), in which
trees above a given diameter were sampled in a network of small plots (often on a regular grid)100

covering the country (references for NFI data used15–24); (2) large permanent plots (LPP) ranging
in size from 0.5-50ha, in which the x-y coordinates of all trees above a given diameter were recorded
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(references for LPP data used25–32 ). LPP were mostly located in tropical regions. The minimum
diameter of recorded trees varied among sites from 1-12cm. To allow comparison between data sets,
we restricted our analysis to trees greater than 10cm. Moreover, we excluded from the analysis any105

plots with harvesting during the growth measurement period, that were identified as plantations, or
that overlapped a forest edge. Finally, we randomly selected only two consecutive census dates per
plot or quadrat to avoid having to account for repeated measurements (less than a third of the data
had repeated measurements). Because human and natural disturbances are present in all these forests
(see Supplementary Methods), they probably all experience successional dynamics (as indicated by the110

forest age distribution available in some of these sites in Supplementary Methods). See Supplementary
Methods and Extended Data Table 1 for more details on individual data sets.

Basal area growth was estimated from diameter measurements recorded between the two censuses.
For the French NFI, these data were obtained from short tree cores. For all other data sets, diameter
at breast height (D) of each individual was recorded at multiple census dates. We excluded trees (i)115

with extreme positive or negative diameter growth measurements, following criteria developed at the
BCI site26 (see the R package CTFS R), (ii) that were palms or tree ferns, or (iii) that were measured
at different heights in two consecutive censuses.

For each individual tree, we estimated the local abundance of competitor species as the sum of basal
area for all individuals > 10cm diameter within a specified neighbourhood. For LPPs, we defined the120

neighbourhood as being a circle with 15m radius. This value was selected based on previous studies
showing the maximum radius of interaction to lie in the range 10-20m2,33. To avoid edge effects,
we also excluded trees less than 15m from the edge of a plot. To account for variation of abiotic
conditions within the LPPs, we divided plots into regularly spaced 20x20m quadrats and included a
random quadrat effect in the model (see above).125

For NFI data coordinates of individual trees within plots were generally not available, thus neighbour-
hoods were defined based on plot size. In the NFI from the United States, four sub-plots of 7.35m
located within 20m of one another were measured. We grouped these sub-plots to give a single estimate
of the local competitor abundance. Thus, the neighbourhoods used in the competition analysis ranged
in size from 10-25 m radius, with most plots 10-15 m radius. We included variation in neighbourhood130

size in the constant wj to compute competitor basal area in m2/ha.

We extracted mean annual temperature (MAT) and mean annual sum of precipitation (MAP) from
the worldclim data base34, using the plot latitude and longitude. MAT and MAP data were then used
to classify plots into biomes, using the diagram provided by Ricklefs35 (after Whittaker).

Traits135

Data on species functional traits were extracted from existing sources. We focused on wood density,
species specific leaf area (SLA) and maximum height, because these traits have previously been related
to competitive interactions and are available for large numbers of species2–5,36 (see Extended Data
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Table 2 for trait coverage). Where available we used data collected locally (references for the local
trait data used in this analysis27,36–39); otherwise we sourced data from the TRY trait data base40140

(references for the data extracted from the TRY database used in this analysis36,41–110). Local data
were available for most tropical sites and species (see Supplementary Methods). Several of the NFI
data sets also provided tree height measurements, from which we computed a species’ maximum
height as the 99% quantile of observed values (for France, US, Spain, Switzerland). For Sweden we
used the estimate from the French data set and for Canada we used the estimate from the US data set.145

Otherwise, we extracted height measurements from the TRY database. We were not able to account
for trait variability within species.

For each focal tree, our approach required us to also account for the traits of all competitors present
in the neighbourhood. Most of our plots had good coverage of competitors, but inevitably there were
some trees where trait data were lacking. In these cases we estimated trait data as follows. If possible,150

we used the genus mean, and if no genus data was available, we used the mean of the species present
in the country. However, we restricted our analysis to plots where (i) the percentage of basal area
contributed by trees with no species level trait data was less than 10%, and (ii) the percentage of basal
area of trees with neither species nor genus level trait data was less than 5%.
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