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Niche models for British plants and lichens obtained using an 1 

ensemble approach 2 

 3 

Summary 4 

 5 

Site-occupancy models that predict habitat suitability for plant species in relation to 6 

measurable environmental factors can be useful for conservation planning. Such models can 7 

be derived from large-scale presence-absence datasets on the basis of environmental 8 

observations or, where only floristic data are available, using plant trait values averaged 9 

across a plot. However, the estimated modelled relationship between species presence and 10 

environmental variables depends on the type of statistical model adopted and hence can 11 

introduce additional uncertainty. We used an ensemble-modelling approach to constrain 12 

and quantify the uncertainty due to the choice of statistical model, applying generalised 13 

linear models (GLM), generalised additive models (GAM), and multivariate adaptive 14 

regression splines (MARS). Niche models were derived for over 1000 species of vascular 15 

plants, bryophytes and lichens, representing a large proportion of the British flora and many 16 

species occurring in continental Europe. Each model predicts habitat suitability for a species 17 

in response to climate variables and trait-based scores (evaluated excluding the species 18 

being modelled) for soil pH, fertility, wetness and canopy height. An R package containing 19 

the fitted models for each species is presented which allows the user to predict the habitat 20 

suitability of a given set of conditions for a particular species. Further functions within the 21 

package are included so that these habitat suitability scores can be plotted in relation to 22 

individual explanatory variables. A simple case study shows how the R package (MultiMOVE) 23 

can be used to quickly and efficiently answer questions of scientific interests, specifically 24 

whether climate change will counteract any benefits of sheep-grazing for a particular plant 25 

community. The package itself is freely available via http://doi.org/10.5285/94ae1a5a-2a28-26 

4315-8d4b-35ae964fc3b9.  27 
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1. Introduction 32 

 33 

Biodiversity loss is a pressing global concern, and can be seen as largely driven by declines in 34 

habitat suitability and availability for individual species (Hirzel and Le Lay, 2008). In seeking 35 

to understand habitat suitability for any given species, it is important that two key 36 

components are considered: the spatial distribution of the species (e.g. as in Groom, 2013; 37 

Preston et al., 2013); and the relationship between the species and other influencing factors 38 

(e.g. Geddes and Miller, 2012).  To aid decision making in conservation practice, the current 39 

distribution of a species and likely changes to this under different management, pollutant or 40 

climate pressures should be understood. It is therefore useful to be able to define the 41 

ecological range of a given species in relation to different environmental factors, i.e. its 42 

realised niche, to enable efficient and timely decision making.  43 

 44 

Niche models can be developed from species records when these are sufficiently numerous, 45 

by relating presence or absence to environmental data where these are recorded alongside 46 

occurrence, and/or to proxy variables based on the traits of co-occurring species (Latour, 47 

1993; Smart et al., 2010b). Niche modelling approaches based on correlative analyses 48 

contrast with population dynamics models, which require detailed parameterisation to 49 

represent processes of reproduction and mortality, emigration and immigration (Crone et al 50 

2011). While correlative-based niche models cannot simulate impacts of dynamic population 51 

processes, they provide useful indications of how the availability of favourable niche space 52 

will change (Dormann et al., 2012; de Vries et al., 2013, Thuiller et al., 2008). Ideally, any 53 

model attempting to describe the spatial distribution of a species should be based on a large 54 

number of observation records representing equilibrium conditions, to ensure that the 55 

predictions are robust (Elith et al 2010).  56 

 57 

Many taxa have been the focus of species niche modelling (Elith & Leathwick 2009). It is 58 

particularly useful to predict habitat suitability for plant species, since they deliver 59 

supporting ecosystem services such as primary production, nectar provision for pollinating 60 

insects, genetic variation for crop breeding and cultural significance for wildlife conservation 61 

(Alexander et al., 1997; Costanza et al., 2007; Kremen et al., 2007; UK National Ecosystem 62 

Assessment, 2011). Plants also underpin the diversity of other taxa by providing habitat 63 

structure and a diverse range of food substrates. Here we present an ensemble of empirical 64 

niche models for a large number of higher and lower plants in the British flora comprising all 65 

major community dominants and a range of subordinates. 66 

 67 

Previous work developed niche models for a similar group of plant species based on multiple 68 

logistic regression (Smart et al 2010b); hereafter referred to in the more generic framework 69 

of Generalised Linear Models, GLMs. In recent years the diversity of techniques applied to 70 

niche modelling has expanded due, in large part, to the need to overcome issues related to 71 

model constraints and interpretability (Elith & Leathwick 2009). However, different 72 



modelling approaches can result in different representations of the variation in the observed 73 

data, leading to differences in model transferability (Munoz and Felicisimo, 2004; Leathwick 74 

et al., 2006; Smart et al 2010a; Wenger & Olden 2012). This has led to the increase in 75 

popularity of an ensemble approach (eg Araújo and New, 2007; Thuiller et al., 2009) where 76 

the explainable variation and uncertainty relating specifically to model selection are more 77 

robustly conveyed based on output across different model types. The work presented here is 78 

based on the addition of a further two techniques to the GLM approach applied in Smart et 79 

al. 2010b: generalised additive modelling (GAM); and multivariate adaptive regression 80 

splines (MARS). The models produced allow spatial and temporal prediction of change in the 81 

favourability of niche space for each species based on outputs from the three modelling 82 

techniques, conditional upon measured or predicted environmental conditions.  83 

 84 

The models themselves have been bundled into a publicly available R package to allow the 85 

wider community of scientists, land managers and conservation policy makers to query, 86 

scrutinise and exploit the fitted models for scientific and decision making purposes. The 87 

package facilitates understanding and explanation of species’ distributions by allowing clear 88 

inspection of species responses along environmental gradients. By applying projected 89 

changes in input variables, the user can also explore future scenarios of environmental 90 

change (eg. Smart et al 2010a). The aim of this paper is to present a brief overview of the 91 

fitted models before introducing the R package containing all the model fits and a clear 92 

example of how this can be used to provide speedy and efficient answers to policy-relevant 93 

questions.  94 

 95 

2 Methods and Materials 96 

2.1 Data 97 

 98 

Fine-grained data on the presence/absence of plant species were available at a large number 99 

of locations throughout the UK from four studies: the Countryside Survey (CS) (Smart et al. 100 

2003), GB Woodland Survey (Kirby et al., 2005; Corney et al., 2006), the surveys that 101 

provided data for Key Habitat Types (Hornung, 1996) and the National Vegetation 102 

Classification (NVC) (Rodwell, 1991 et seq.). We pooled the data from the four different 103 

surveys, giving a total of 32272 vegetation plots. The NVC surveys represent the largest 104 

source of species data and were designed to sample from the full range of UK plant 105 

assemblages, so they include more records for scarce species than would a random survey. 106 

The NVC design may therefore have resulted in over-sampling under optimal conditions, so 107 

data from surveys with a stratified randomized design (or which at least included an element 108 

of random plot location) were also included in order to try and provide an unbiased 109 

representation of the entire ecological range of a species, importantly including the tails of 110 

the distribution moving away from the optimum.  Information on plot size was unavailable 111 

for NVC quadrats and therefore no standardisation across plot sizes was possible. To 112 

overcome this models were, for species with sufficient data (typically n=30 records), re-fitted 113 



using CS data only (for which the plots are all of a standard size and the location follows a 114 

stratified, random design).   115 

 116 

The plant species modelled exclude the rarest species in our flora and mainly comprise 117 

habitat dominants and a large range of subordinates (sensu Grime 1998). Dominant species 118 

are responsible for the majority of the primary production at a site and strongly underpin 119 

other ecosystem functions (Smith & Knapp 2003; Laughlin 2011). Thus the species modelled 120 

comprise a disproportionately large fraction of the biomass and cover in British habitats. The 121 

list of species modelled includes 97% of the Common Standards Monitoring indicator 122 

species (JNCC, 2004) used to judge conservation value of semi-natural habitats. The 123 

suitability of conditions for rare species’ populations often depends upon the varying cover 124 

and persistence of the more abundant species, so even where not directly modelled, 125 

information about the prospects for rare species can be inferred from modelling the 126 

responses of their more common associates (Smart 2000, Gogol-Prokurat 2011).  Non-native 127 

species were also excluded from analysis as they are more likely to be undergoing increases 128 

in range and colonisation of suitable niche space. As such species are not in equilibrium, the 129 

estimated environmental effects from spatially derived models may be confounded with the 130 

effects of incomplete dispersal (Svenning & Skov, 2004).   131 

 132 

In choosing environmental characteristics to define the niche, we selected a set of variables 133 

representing abiotic and climatic influences. Climate variables included in the models, 134 

chosen due to their relationship with plant physiology and growth (Thuiller et al., 2005), 135 

were long-term (1961-1990) annual average: rainfall; minimum January temperature; and 136 

maximum July temperature (all of which are available from 137 

http://www.metoffice.gov.uk/climatechange/science/monitoring/ukcp09/). Abiotic variables 138 

selected were based on mean values for trait-based indicators. These were: mean un-139 

weighted Ellenberg scores for soil wetness (F), substrate fertility (N) and soil pH (R) for each 140 

vegetation plot. Ellenberg scores are ordinal values that are assigned to each plant species. 141 

They were originally designed to reflect habitat preferences in central Europe (Ellenberg et 142 

al. 1991), but have subsequently been adapted for use with British higher and lower plant 143 

species (Hill et al., 1999, 2004, 2007). Mean Ellenberg scores provide a quantitative proxy for 144 

the abiotic characteristics of a particular plot (Diekmann, 2003). Similarly, we used species-145 

specific scores for typical canopy height following the ordinal categorisation of Grime et al. 146 

(1988) to derive a mean cover-weighted canopy height trait score. This provides a measure 147 

of the successional status of the vegetation, which also reflects management intensity or the 148 

frequency and severity of biomass removal.  149 

 150 

Using trait scores allowed for models to be constructed with floristic and climate data only, 151 

without the additional need for coincident soil measurements which are rarely available. 152 

Consistent with Smart et al (2010b), if the species being modelled was recorded in a plot its 153 

trait values were removed prior to calculating the trait-based explanatory variables for the 154 



plot, to avoid circularity in the model. Where measurements or model estimates of soil 155 

variables are available, translation functions can be used to predict the mean Ellenberg 156 

scores required to solve the niche models alongside climate and cover-weighted canopy 157 

height (Rowe et al., 2011a; Smart et al., 2010b; Rowe et al., 2014b). Mean Ellenberg scores 158 

were not weighted by observed species cover, since little information is gained when doing 159 

so relative to the noise in the cover estimates (Valentin et al 2012; Kafer & Witte 2004). 160 

Canopy height values were cover-weighted, however, to convey the influence of canopy 161 

extent as well as height on shade at ground level.  162 

 163 

2.2 Models 164 

 165 

All surveys recorded the presence or absence of individual species within individual plots, 166 

and models with a binomial distribution for the response variable were fitted to this data 167 

using three modelling techniques – GLMs (McCullagh et al., 1989), GAMs (Hastie and 168 

Tibshirani, 1990) and MARS (Friedman, 1991). Previously, GLMs were fitted to the same 169 

vegetation data by Smart et al (2010b) and are useful for modelling simple linear or 170 

polynomial responses. However, GLMs cannot fit more complex surfaces which may 171 

characterise species’ niches. GAMs are a much more flexible class of models, allowing the 172 

relationship between the response and any individual predictor to have a smoothly varying 173 

form. However, estimating such complex relationships is more difficult, so if the response is 174 

in fact simple the models may have predictive power for new data (Smart et al., 2010a). The 175 

MARS models are similar to GAMs but instead of fitting smoothed terms they fit “hinges” 176 

(Friedman, 1991). They are similarly more flexible than GLMs, but their use of piecewise 177 

linearity accommodates different types of responses to GAMs. An ensemble of all three 178 

models was fitted for each species.  179 

 180 

For each species the full model contained all seven covariates (long term averages for 181 

maximum July temperature, minimum January temperature and annual rainfall, canopy 182 

height and Ellenberg F, N and R scores) and all of the 21 possible two-way interactions. This 183 

is in contrast to Thuiller et al. (2003) who considered only additive effects without 184 

interaction. Correlation across all combinations of variables was assessed and evidence of 185 

some relationships was found: out of the 21 pairwise correlations, 5 were either greater 186 

than 0.5 or less than -0.5 and the largest correlation (between Ellenberg N and Ellenberg R) 187 

was 0.75. However, due to the modelling techniques chosen and the implementation of a 188 

suitable model selection routine for each species modelled individually, this was not 189 

considered a problem. For the GLM models stepwise backwards selection based on 190 

minimum AIC was used to define the final set of covariates and two-way interactions to be 191 

considered for each species. Main effects were only considered for removal if all interactions 192 

containing these variables had already been removed. The variables and interactions that 193 

were used within the GAM models were those chosen in the final selected GLM models, 194 

because it was found to be computationally infeasible to perform a separate model selection 195 



procedure for the GAMS. Within the MARS framework model selection is performed 196 

automatically as part of the model fitting process using forward selection, i.e. starting from a 197 

null model and adding in those terms that lead to the greatest improvement in fit.  198 

 199 

All models were fitted in the R statistical environment (R Development Core Team, 2009) 200 

using the mgcv (Wood, 2006), earth (Milborrow, 2014) and leaps (Lumley, 2009) packages. 201 

Nomenclature follows Stace (2010) for vascular plants, the Atlas of British and Irish 202 

Bryophytes (Blockeel et al. 2014) and the British Lichen Society Taxon Dictionary (2015; 203 

http://www.britishlichensociety.org.uk/resources/lichen-taxon-database).    204 

 205 

2.3 Model Checking 206 

 207 

Model performance was assessed by comparing the observed presence absence data (0 or 208 

1) to predicted values using AUC (Fielding and Bell, 1997), where predicted values in this 209 

case were defined as the estimated probability of presence for each of the three model 210 

approaches (GLM, GAM, MARS). Values of AUC close to one indicate good levels of 211 

predictive performance whereas a model with predictive power that is no better than 212 

chance will return an AUC of 0.5. The AUC values should be interpreted with caution 213 

because they effectively treat the cost associated with a false positive as being identical to 214 

the cost associated with a false negative, and this may not always be appropriate. Other 215 

measures are possible, though the low frequency of presences for the majority of species at 216 

observed sites makes measures like false omission rate and negative predictive value 217 

unhelpful. 218 

 219 

Since an adequate independent test data set was not available, a cross-validation approach 220 

is required to investigate the out-of-sample performance of the fitted models. However, 221 

computational costs for checking all species models would be prohibitive, so the full set of 222 

models was compared and examined using within-sample AUC diagnostics as described 223 

above. Out of sample performance was assessed on a much smaller set of 30 species, listed 224 

in Table 1. This set was designed to represent a range of distributions and taxa, and explicitly 225 

included a number of species which show evidence of a non-linear relationship between 226 

abiotic conditions and prevalence. For each of the 30 selected species, the observed data 227 

were subset at random into two components: 75% of the data for training, 25% for testing. 228 

Each of the three models were then built on the 75% dataset and AUC values were 229 

calculated based on the remaining, independent 25% of the data. We repeated this process 230 

10 times for each species.  231 

 232 

The predicted values across the range of the training data were also mapped across GB in 233 

order to provide an indication of the spatial extent of each species according to the models. 234 

This enabled us to check against expert knowledge and previously produced maps, such as 235 



those in Preston et al., 2013 and those readily available on the BSBI and BRC websites, how 236 

well the fitted models did in characterising the range and extent of species occurrence.  237 

3. Results 238 

 239 

Within-sample AUC values for each of the fitted models across the three methods built using 240 

all data and only CS data respectively are shown as histograms in Figure 1. For the majority 241 

of species the overall performance of all methods in fitting the observed data appears to be 242 

very good with AUC values in excess of 0.8. AUC values for models built using CS data only 243 

were generally slightly lower (Figure 1, Table 1), but still showed good performance with a 244 

high percentage of AUC value in excess of 0.8 across all models (Table 1). The lower AUC 245 

values resulting from the CS models is likely to be due to the smaller proportion of absences 246 

in the CS dataset than in the NVC dataset.  247 

 248 



 249 
Figure 1: Histograms of AUC values for GLM (a, b), MARS (c, d) and GAM (e, f) models built using all survey data 250 

(a, c, e) and CS data only (b, d, f). AUC values > 0.8 coloured green; AUC values > 0.5 and < 0.8 coloured blue; 251 

AUC values < 0.5 coloured red.  252 

  253 

Differences between methods were relatively small for many species, but there were 254 

examples where the MARS and GAMS approaches clearly provided a substantially better fit 255 

to the data (at least in terms of AUC) than the GLM approach. Across the full set of species 256 

modelled using all data, only 1% had the highest AUC value for the GLM models compared 257 

with 17% for the MARS and 82% for the GAMs (Table 1). For the models built using CS data 258 

these percentages equate to 12%, 14 % and 73% respectively, though far fewer species 259 

models were fitted using the CS data only due to the availability of sufficient data records 260 

(Table 1).  261 



Table 1: Number of species models fitted using each method and data source together with a summary of AUC 262 

statistics across each model type showing the proportion of cases where each model type was the “best” 263 

(highest AUC) 264 

 265 

  

All Veg data CS only 

GLM MARS GAM GLM MARS GAM 

Number of Species Models 1017 1178 1017 387 388 387 

% Maximum AUC 0.85 17.23 81.92 12.37 14.18 73.45 

% AUC values > 0.8 99.31 94.74 99.80 80.62 72.42 91.47 

% AUC values > 0.9 85.84 73.43 95.87 37.47 31.44 57.62 

 266 

 267 

Spatial predictions assessed against the corresponding maps published in Preston et al. 2013 268 

and the individual species distribution maps on the BSBI website, showed that the models 269 

broadly captured the spatial drivers dictating the distribution of individual species. 270 

Altitudinal, coastal and latitudinal preferences were clearly captured adequately by the 271 

niche models. Some examples of predicted distributions for four species are shown in Figure 272 

2. Clematis vitalba is shown to be a species of calcareous soils, with maximum habitat-273 

suitability on the chalk hills of southern England. Epilobium montanum is a species with a 274 

wide range in terms of altitude, precipitation and soil. Lemna trisulca is shown to be a 275 

species of wet lowland sites, and Selaginella selaginoides is restricted to wet mountains. 276 



 277 
Figure 2: Probability distribution maps produced using the average fitted probability across the three modelling 278 

approaches based on preciting the full GB extend of input data (i.e the environmental values from the training 279 

datasets) for 4 species: a) Clematis vitalba; b) Epilobium montanum; c) Lemna trisulca; d) Selaginella 280 

selaginoides. White squares represent areas missing from the training data set and hence no prediction could 281 

be made there.  282 

 283 

  284 



AUC values obtained from the cross validation exercise showed that within-sample 285 

predictive performance was matched by out-of-sample performance (Table 2). In only two 286 

cases out of a total of 90 (3 models for each of 30 species) did the AUC value drop from 287 

above 0.8 using within-sample prediction to less than 0.8 using the cross-validation. These 288 

were both MARS models for Senecio erucifolius and Teesdalia nudicaulis.  Given the range of 289 

species tested, both rare and abundant species, we conclude that our models provide a 290 

useful way of assessing the favourability of species to environmental conditions.  291 

 292 

Table 2: Model fit diagnostics (in the form of AUC statistics) for all three modelling approaches and an estimate 293 

based on the average of the fitted values across these models from a subset of models for 30 test species. 294 

 295 

Species Name 

Within Sample AUC Out of sample AUC 

Models built using all survey 
data 

Models built using CS data only Cross Validation 

MARS GAM GLM MARS GAM GLM MARS GAM GLM 

Agrostis capillaris 0.881 NA NA 0.858 0.818 0.707 0.872 0.852 0.749 

Campylopus flexuosus 0.894 0.911 0.905 NA NA NA 0.891 0.906 0.904 

Campylopus introflexus 0.867 0.965 0.948 NA NA NA 0.831 0.952 0.937 

Campylopus pyriformis 0.881 0.918 0.903 NA NA NA 0.896 0.922 0.91 

Carex caryophyllea 0.949 NA NA 0.915 0.948 0.951 0.95 0.963 0.943 

Carex limosa 0.995 0.997 0.991 NA NA NA 0.924 0.98 0.99 

Carex viridula subsp. oedocarpa 0.947 NA NA 0.916 0.944 0.893 0.935 0.949 0.923 

Cochlearia pyrenaica 0.811 0.989 0.978 NA NA NA 0.9 0.978 0.972 

Conopodium majus 0.914 NA NA 0.808 0.862 0.787 0.91 0.911 0.85 

Cynosurus cristatus 0.899 NA NA 0.87 0.882 0.865 0.897 0.932 0.894 

Dryas octopetala 0.995 0.999 0.992 NA NA NA 0.969 0.99 0.991 

Helianthemum nummularium 0.964 0.977 0.97 0.893 0.901 0.947 0.964 0.976 0.963 

Juncus articulatus 0.928 0.955 0.911 0.893 0.773 0.734 0.912 0.936 0.898 

Lolium perenne 0.951 NA NA 0.942 0.947 0.91 0.939 0.944 0.932 

Neottia ovata 0.852 0.937 0.871 NA NA NA 0.875 0.937 0.872 

Plantago major 0.892 NA NA 0.861 0.869 0.822 0.872 0.879 0.859 

Plantago media 0.954 0.973 0.963 0.827 0.944 0.948 0.944 0.971 0.959 

Polytrichastrum alpinum 0.96 0.979 0.974 NA NA NA 0.957 0.976 0.974 

Ranunculus repens 0.889 NA NA 0.847 0.879 0.801 0.873 0.899 0.851 

Sanguisorba officinalis 0.933 0.974 0.901 NA NA NA 0.925 0.942 0.9 

Senecio erucifolius 0.816 0.946 0.897 0.838 0.941 0.909 0.765 0.924 0.892 

Sphagnum cuspidatum 0.941 0.976 0.972 NA NA NA 0.938 0.971 0.969 

Sphagnum denticulatum s.l. 0.944 0.95 0.93 NA NA NA 0.833 0.917 0.926 

Sphagnum fimbriatum 0.95 0.969 0.919 NA NA NA 0.919 0.956 0.914 

Sphagnum squarrosum 0.967 0.934 0.901 NA NA NA 0.957 0.916 0.894 

Teesdalia nudicaulis 0.968 0.993 0.982 NA NA NA 0.458 0.932 0.971 

Trifolium repens 0.909 NA NA 0.894 0.906 0.861 0.901 0.917 0.876 

Vaccinium myrtillus 0.956 NA NA 0.944 0.95 0.941 0.952 0.962 0.951 

Viola hirta 0.922 NA NA 0.377 0.936 0.951 0.925 0.955 0.937 

Viola riviniana 0.893 0.925 0.875 NA NA NA 0.901 0.934 0.878 

 296 

4. Model exposition and example application 297 



Any user, applied scientist or policy maker may wish to explore each of the fitted models in 298 

detail.  For example, the models may be used to investigate relationships and make 299 

predictions under different scenarios. However, there are too many individual models to 300 

describe in sufficient detail. In order to provide full functionally and interrogation of all 301 

models, they were packaged into a user friendly R library created specifically for this 302 

purpose - MultiMOVE. As well as containing the actual model fits themselves, the 303 

MultiMOVE package created by the authors consists of four key functions to access and 304 

query the fitted niche models. These functions enable predictions to be made, covariate 305 

relationship to be plotted, raw probabilities to be converted to a rescaled habitat suitability 306 

score and the final model formula to be exposed. Here we describe this R package and 307 

provide an example of its use in a scenario exploration for a single species. 308 

As an example of using the fitted models and the MultiMOVE package to explore 309 

relationships and answer scientific questions of interest relating to a species’ niche, we 310 

consider the question posed by Geddes and Miller (2012): will climate change counteract 311 

the benefits of sheep-grazing in conserving a rare alpine dwarf-herb community? We focus 312 

on Festuca ovina agg., one of the key species in the study.  313 

 314 

4.1 Making predictions 315 

 316 

The prediction function allows the user to access the fitted ensemble of niche models and to 317 

make predictions for a given species with specified environmental data located within the 318 

modelled covariate space. The MM_pred function takes a data frame of the environmental 319 

covariates and returns an aligned data frame with model predictions of species occurrence 320 

probabilities. Upper and lower confidence limits for the predictions are also returned, 321 

though as the models did not account for any residual spatial autocorrelation, extreme 322 

caution is advised when using these.  323 

 324 

Running the MM_pred function on Festuca ovina agg. (BRC number 920821) across the 325 

whole of the training data set and mapping the estimated probabilities allows visualisation 326 

of the predicted species range. This is useful not only for prediction, but also as a check to 327 

see if the models have adequately captured the distributional range and preferences for a 328 

given species before further investigation or use of the model. The predicted distribution 329 

map for Festuca ovina agg. (Figure 3) shows good agreement with the online atlas map.  330 

 331 



 332 
 333 

Figure 3: Predicted distribution map of Festuca ovina agg. using fitted probabilities from the MM_pred 334 

command on the full training data set. Colour scale: Yellow = 0.1<probability occurrence<0.25; Orange = 335 

0.25<probability occurrence<0.5; Red= 0.5<probability occurrence<1. White areas represent either returned 336 

probabilities of 0 or areas entirely absent from the training data.   337 

 338 

4.2 Visualising covariate effects 339 

 340 

The MM_plot command feature enables the user to observe the marginal or joint effects of 341 

covariates on the species response. When viewing the marginal or joint effects of specified 342 

covariates all other covariates are held at their median values. Either one or two covariates 343 

can be specified at a time to visualise their effect on species’ occurrence probabilities.  344 

 345 

Geddes and Miller, 2012 were specifically interested in the effects of grazing and climate. In 346 

the MultiMOVE models these variables are represented by cover-weighted canopy height 347 

and maximum July temperature respectively. Therefore, to answer the question as to 348 

whether climate change would counteract any advantages grazing would have, we can use 349 

the MultiMOVE package to visualise the joint effects of canopy height and July temperature 350 

and draw our inference from that. Running the MultiMOVE commands in R as follows,  351 

 352 

>  MM_plot(input_data, BRC=920821, view_term=c("cov4"), display = "raw") ; and 353 

>  MM_plot(input_data, BRC=920821, view_term=c("mju","cov4"), display = "raw"), 354 

 355 

returns plots of the fitted marginal effects of canopy height (our proxy for grazing) and a plot 356 

of the fitted joint effects between canopy height and July temperature for Festuca ovina 357 

agg.  358 

 359 



 360 

 361 

 362 
Figure 4: Output from the MM_plot command run on Festuca ovina agg. The figure on the left shows the 363 

marginal effect of cover weighted canopy height on the occurrence of Festuca ovina agg. with each of the 364 

model predictions plotted. The plot on the right shows the joint effect of canopy height and maximum July 365 

temperature plotted using the average fitted values across the models. 366 

 367 

Fitted models within MultiMOVE show that Festuca ovina agg. favours lower canopy heights 368 

and hence that grazing has positive benefits for this species (Figure 4).  The interaction 369 

between canopy height and temperature indicates that when canopy height is low, if 370 

maximum July temperature rises to above 19oC, the likelihood of occurrence decreases. Our 371 

conclusion therefore would be that there is evidence to suggest that the potential effects of 372 

climate change (increasing July temperature) could potentially counteract the benefits of 373 

grazing for Festuca ovina agg. This is in keeping with the results from the Geddes and Miller, 374 

2012 study.  375 

 376 

4.3 Converting raw probabilities into habitat suitability scores 377 

 378 

MultiMOVE also contains a function (HS_convert) to transform the fitted probabilities, the 379 

values of which are dependent on the tolerance or niche breadth of the species and its 380 

prevalence, into a habitat suitability score on a standardised scale which is then directly 381 

comparable between species. There are two options for doing this within the function: 382 

based on the cumulative distribution of fitted probabilities to the training data; and based 383 

on the prevalence of the species within the training data. 384 

  385 

In the first case, the cumulative distribution of probabilities fitted to the training data set is 386 

obtained for all model types across all species. Rescaled probabilities are then estimated to 387 



be the percentile of the cumulative distribution corresponding to the un-scaled raw 388 

occurrence probability. The rescaled “habitat suitability” scores therefore provide an 389 

indication of how extreme the raw occurrence probability is across the full sample in the 390 

training data i.e. does the un-scaled occurrence probability correspond the edges of a 391 

species’ range.   392 

 393 

Using the species prevalence to re-scale the fitted occurrence probabilities follows the 394 

approach and formula suggested by Real et al., 2006. The rescaling in this case ensures that 395 

a habitat suitability score of 0.5 corresponds to what would be obtained by taking an 396 

average of the prevalence across the whole training data set and hence corresponds to 397 

equal favourabilty everywhere.  398 

 399 

4.4 Obtaining the fitted model 400 

 401 

The final function contained within the MultiMOVE package, extract_MM_model, enables 402 

the user to extract the fitted model for a given species, in particular to see which covariates 403 

were included in the final model after model selection.  404 

 405 

5. Discussion 406 

 407 

Species niche models encapsulate the relationships that drive the spatial distribution of 408 

individual species and have many potential uses in assessing the effects of environmental 409 

change on habitat suitability for individual species, the consequences this has for 410 

biodiversity value and the provision of ecosystem services. However, despite considerable 411 

efforts in constructing such distribution models, the application of such models in 412 

developing policy and management recommendations has been patchy (Guisan et al., 2013). 413 

This can often be due to the complex nature and time involved in re-running models under 414 

different scenarios. The large number of models developed and user friendly R package 415 

described here make it highly relevant for assessing the likely impact of management and 416 

policy decisions and for facilitating efficient and responsive outcomes for conservation 417 

management.  418 

 419 

The assessment of the model fits showed good performance based on within sample AUC 420 

across all species and out of sample AUC for a subset of test species. AUC statistics 421 

suggested that use of an ensemble approach was beneficial as no one model type was 422 

optimal across all species. Greater model flexibility requires more data to estimate 423 

accurately, so there can be cases with limited data where the more free-form models 424 

underperform while a linear (or log-linear) model can adequately capture a pattern of 425 

responses (as shown in Smart et al., 2010a). This suggests that there are benefits in using 426 

multiple modelling techniques (Araújo & New, 2007).  427 



It is important to note that potential residual spatial autocorrelation was not accounted for 428 

within any of our models. This should not introduce systematic bias into our parameter 429 

estimates (and, therefore, predictions), but it is likely to mean that we substantially 430 

underestimate the uncertainty associated with the outputs from our models. This can lead 431 

to overfitting, especially with the more complex models, compounding the need for caution. 432 

On our small subset of species, we investigated any potential evidence of this by using the 433 

pairwise distance sampling technique of Hijmans (2012) to reduce the impact of spatial 434 

effects on cross-validated AUC measures. The results suggest that our methods still perform 435 

quite well despite the above limitation. It is possible that the methods considered here could 436 

be extended to explicitly account for residual spatial autocorrelation and recent software 437 

developments (such as the R-INLA package; http://www.r-inla.org/) mean that it is now 438 

computationally feasible to apply such extensions to relatively large datasets. However, the 439 

large number of species across which each model is run means that the inclusion of these 440 

additional models will inevitably require a substantial amount of computational effort. Due 441 

to the complex nature of spatial statistical models and the large number of sites and species 442 

in our data set, fitting and optimising simpler models, as done here, is a sensible first step.   443 

 444 

The MultiMOVE package exploits the extensive datasets describing the occurrence of a large 445 

number of vascular plant and bryophyte species across GB to build a picture of how 446 

individual species favour different environments. Some care should be taken in interpreting 447 

the outputs, since the fitted models will reflect any bias in the training data. A key advantage 448 

of the current work has been the use of standardized quadrat data with which to train the 449 

models, primarily from the Countryside Survey and the NVC, rather than opportunistic 450 

presence-only data. This should greatly reduce the influence of gross spatial heterogeneities 451 

in recording effort that often arise in opportunistic datasets. As always, the development of 452 

niche models depends heavily on reliable data on which to train the models. For niche 453 

models and their outputs to be representative of conditions and niche preferences across 454 

Britain, the training data itself should be unbiased and representative of this same 455 

population. As such, the fitted models do not apply to environments not included in the 456 

training data - those outside of GB for example - and MultiMOVE accounts for this by 457 

warning when predictions are attempted using input data outside the covariate space 458 

observed in the training data.  459 

 460 

The MultiMOVE package allows exploration of the impact of environmental change on plant 461 

species and assemblages across terrestrial ecosystems in Britain, by making use of the large 462 

datasets that are available and an ensemble approach to modelling niches.  Site managers 463 

can quickly assess current suitability for individual species, using freely available climate data 464 

(http://www.metoffice.gov.uk/climatechange/science/monitoring/ukcp09/) and a list of 465 

currently-present species. This makes use of the fact that the species that are present give a 466 

considerable amount of information about site conditions. The package also allows the 467 

effects of environmental change to be expressed in terms of likely changes in species 468 



composition and derived biodiversity indicators (Rowe et al., 2014a). Observed 469 

environmental changes can be interpreted in terms of how they are likely to have affected 470 

habitat suitability for species. Cautious ecological judgement is needed. The models are built 471 

on spatial patterns. When used to project change through time the assumption of space for 472 

time substitution is strong and likely to be highly questionable especially when confronting 473 

past patterns with potentially novel environments (Williams & Jackson 2007). In addition the 474 

uncertainty around the relationship between abiotic conditions and the Ellenberg values, 475 

whose means are used to convey these conditions, is propagated through the application of 476 

MultiMOVE. The impact of this uncertainty is likely to be especially critical when scenario 477 

testing since any lagged changes are not simulated. Changes in habitat suitability can 478 

however be driven by the outputs of dynamic models of climate or biogeochemical 479 

processes (Rowe et al. 2011b). The opportunity to explore the ecological responses of the 480 

UK flora that MultiMOVE provides gives it a large number of potential applications.     481 

 482 

Access 483 

 484 

MultiMOVE was built using R 3.1.2 and depends on the following R packages: mgcv, fields, 485 

leaps, earth, stringr, gsubfn, randomForest and nnet. In some circumstances, when not 486 

automatically installed by MultiMOVE itself, these may need to be installed prior to installing 487 

MultiMOVE.  The package binary - MultiMOVE_2.0.1.zip – is available via eidc.ceh.ac.uk (doi:  488 

http://doi.org/10.5285/94ae1a5a-2a28-4315-8d4b-35ae964fc3b9).  489 

 490 

Supplementary Information 491 

 492 

A manual for the latest version of the package (v2.0.1) is available in the supplementary 493 

material. Please note that this latest version of the MultiMOVE package contains an 494 

additional two methods to describe a species’ niche: Random Forests; and Neural Networks.   495 
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