nerc.ac.uk

The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities

Rousset, C.; Vancoppenolle, M.; Madec, G.; Fichefet, T.; Flavoni, S.; Barthélemy, A.; Benshila, R.; Chanut, J.; Levy, C.; Masson, S.; Vivier, F.. 2015 The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities. Geoscientific Model Development, 8 (10). 2991-3005. https://doi.org/10.5194/gmd-8-2991-2015

Before downloading, please read NORA policies.
[img]
Preview
Text (Open Access paper)
gmd-8-2991-2015.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract/Summary

The new 3.6 version of the Louvain-la-Neuve sea ice model (LIM) is presented, as integrated in the most recent stable release of Nucleus for European Modelling of the Ocean (NEMO) (3.6). The release will be used for the next Climate Model Inter-comparison Project (CMIP6). Developments focussed around three axes: improvements of robustness, versatility and sophistication of the code, which involved numerous changes. Robustness was improved by enforcing exact conservation through the inspection of the different processes driving the air–ice–ocean exchanges of heat, mass and salt. Versatility was enhanced by implementing lateral boundary conditions for sea ice and more flexible ice thickness categories. The latter includes a more practical computation of category boundaries, parameterizations to use LIM3.6 with a single ice category and a flux redistributor for coupling with atmospheric models that cannot handle multiple sub-grid fluxes. Sophistication was upgraded by including the effect of ice and snow weight on the sea surface. We illustrate some of the new capabilities of the code in two standard simulations. One is an ORCA2-LIM3 global simulation at a nominal 2° resolution, forced by reference atmospheric climatologies. The other one is a regional simulation at 2 km resolution around the Svalbard Archipelago in the Arctic Ocean, with open boundaries and tides. We show that the LIM3.6 forms a solid and flexible base for future scientific studies and model developments.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.5194/gmd-8-2991-2015
ISSN: 1991-9603
Date made live: 18 Feb 2016 16:58 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/513020

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...