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ABSTRACT 

 

The information on salinity threshold levels for food legumes while irrigating by saline water is 

limited and old. In a multi-year study at two sites in the Euphrates Basin, we aimed at (1) 

evaluating the potential of saline water irrigation for Chickpea, Faba bean, and Lentil 

production; and (2) using SALTMED model to determine threshold crop yields based on 

irrigation water salinity in equilibrium with ambient soil solution salinity. To evaluate 15 

accessions each of Lentil and Chickpea, and 11 accessions of Faba bean, three irrigation 

treatments were used with salinity levels of 0.87, 2.50, and 3.78 dS m-1 at Hassake and 0.70, 3.0, 

and 5.0 dS m-1 at Raqqa. Aggregated grain yields showed significant differences (p < 0.05) 

among crop accessions. Calibration and validation of SALTMED model revealed close 

relationship between actual grain yields from the field sites and those predicted by the model. 

The 50% yield reduction (π50 value) in Chickpea, Lentil, and Faba bean occurred at salinity 

levels of 4.2 dS m-1, 4.4 dS m-1, and 5.2 dS m-1, respectively. These results suggest that among 

three food legume crops, Faba bean can withstand relatively high levels of irrigation water 
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salinity followed by Lentil and Chickpea.  

 

KEY WORDS: Irrigation water salinity; food legumes; SALTMED model; crop salt tolerance; 

Mediterranean region. 

 

 

RÉSUMÉ 

 

Les informations sur les niveaux de seuil de salinité pour les légumineuses alimentaires tout en 

irriguant par l'eau saline est limitée et vieux. Dans une étude pluriannuelle sur deux sites dans le 

bassin de l'Euphrate, nous avons cherché à (1) évaluer le potentiel de l'irrigation de l'eau salée 

pour le pois chiche, féverole, et la production de Lentilles; et (2) en utilisant le modèle 

SALTMED pour déterminer les rendements des cultures de seuil basé sur l'irrigation salinité de 

l'eau en équilibre avec la solution du sol ambiante salinité. Pour évaluer 15 adhésions chacun 

des Lentilles et les pois chiches, et 11 accessions de féverole, trois traitements d'irrigation ont 

été utilisés avec des niveaux de salinité de 0,87, 2,50, et 3,78 dS m-1 au Hassake et 0,70, 3,0, et 

5,0 dS m-1 au Raqqa. Les rendements en grains agrégés ont montré des différences significatives 

(p <0,05) chez les accessions de cultures. Calibrage et validation d'un modèle SALTMED révélé 

relation étroite entre les rendements des céréales réelles des sites de terrain et celles prédites par 

le modèle. La réduction de rendement de 50% (π50 valeur) pois chiches, Lentilles et la féverole 

se est produite à des niveaux de 4,2 dS m-1, 4,4 dS m-1, et 5,2 dS m-1, salinité, respectivement. 

Ces résultats suggèrent que parmi les trois cultures de légumineuses alimentaires, la féverole 

peut résister à des niveaux relativement élevés de salinité de l'eau d'irrigation suivis par les 

Lentilles et les pois chiches. 

 

MOTS CLÉS: Irrigation salinité de l'eau; légumineuses alimentaires; SALTMED modèle; 

tolérance au sel des cultures; Région méditerranéenne. 

 

 

INTRODUCTION 

 

Irrigation has played an important role in crop production and agricultural development in dry 

areas of the Mediterranean region. While freshwater in the region is not only a scarce resource 

but also unevenly distributed (Qadir et al., 2007; Food and Agriculture Organisation of the 

United nations (FAO), 2013) due to which a competition for freshwater among different water-
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use sectors is already increasing in the Mediterranean region (Guardiola-Claramonte et al., 

2012). The consequence would be a gradual decrease in freshwater allocation to agriculture. 

Furthermore, there is the uncertain umbrella of global climate variability. Climate predictions 

anticipate not only increase in temperatures, but a pronounced decrease in precipitation in most 

of the Mediterranean region (Intergovernmental Panel on Climate Change (IPCC), 2007; Giorgi 

and Lionello, 2008).  

As supplies of good-quality irrigation water are expected to decrease in dry areas of the 

Mediterranean region, available water supplies need to be used more effectively and efficiently 

(Guardiola-Claramonte et al., 2012), where one of the approaches can be the reuse of marginal-

quality water such as saline drainage water generated by irrigated agriculture or pumped from 

saline aquifers (Tanji and Kielen, 2002; Qadir and Oster, 2004). The same applies to salt-

affected soils, which warrant attention for efficient, inexpensive and environmentally acceptable 

management to improve crop production. Beresford et al. (2001) and Munns (2002) reported 

that half of the irrigation schemes in the world have been subjected to varying levels of 

salinization. 

A number of bioprocesses such as photosynthesis and respiration can be affected under 

saline water irrigation and saline soil conditions, in addition to the effect of salinity on the 

morphology of plant. Salinity may cause nutritional imbalance and affect the biochemical 

processes of the plant such as enzymes, nuclear acids, and hormones. Based on the crop salt 

tolerance, there may be reduction in the effective green surface in the photosynthesis and 

reduction in dry matter production, reflecting negatively at the end on the decrease in economic 

yield (Munns, 1993).  

Food legumes ― Chickpea, Lentil, and Faba bean ― are generally classified as sensitive 

to salinity. At the same level of root zone salinity, the yield of legumes tends to be more 

affected than that of cereals (Katerji et al., 2011). The information on their salinity threshold 

levels and slope of yield decline with salinity is extremely limited (Steppuhn et al., 2005) and 

old (Ayers and Eberhard, 1960). Growing food legumes and evaluating their growth and yield 

response in the Mediterranean region under saline conditions is important because of (1) 

scarcity of freshwater resources to grow food legume crops; (2) increasing areas of irrigated 

land under salt-affected soils and/or irrigated with saline water in the semi-arid and arid areas; 

and (3) increasing demand for food legumes due to increasing meat prices, need to meet human 

requirements for proteins from food legumes, and population growth. 

In this study undertaken in the Euphrates Basin within Syria, we aimed at (1) evaluating 

the potential of saline water irrigation for food legume (Chickpea, Faba bean and Lentil) 

production and characterizing them for salt tolerance; and (2) using SALTMED model to 
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determine salinity level for 50% yield threshold, π50 value, of Chickpea, Faba bean, and Lentil 

based on irrigation water salinity levels in equilibrium with ambient soil solution salinity levels.  

 

 

MATERIALS AND METHODS 

 

Based on the average annual rainfall, the land resources in Syria are divided into the following 

agro-ecological zones: Annual rainfall > 350 mm (Zone 1); annual rainfall > 600 mm (Zone 1a); 

annual rainfall 350-600 mm, but ≥ 300 mm during 2/3 of the years monitored (Zone 1b); annual 

rainfall 250-350 mm, but ≥ 250 mm during 2/3 of the years monitored (Zone 2); annual rainfall 

> 250 mm, and ≥ 250 mm during 1/2 of the years monitored (Zone 3); marginal land, annual 

rainfall 200-250 mm, but ≥ 200 mm during 1/2 of the years monitored (Zone 4) and desert or 

steppe region (Zone 5). 

The study sites were located in two agro-ecological zones in Syria, namely, Zone 3 where 

the study site was nearby Hassake City and Zone 5 where study site was close to Raqqa. In 

these areas, soils are formed over Neogene limestone, marl, gypsum, and conglomerates.  

 

Site characterization: Hassake 

The Hassake study site is located 7 km northwest of Hassake city. The site is surrounded 

by rainfed agriculture system where the main crop is wheat. For site characterization, 

representative soil samples from 3 randomly selected sites were collected from the experimental 

field before planting from 0-20, 20-40, 40-60, 60-80 and 80-100 cm depths (15 samples). These 

soil samples were processed and analysed by standard procedures for texture, calcite (CaCO3), 

organic matter, cation exchange capacity, major nutrients, pH and electrical conductivity (EC) 

of saturated extract, and major cations and anions. 

The experimental soil is deep clay loam to clay, slightly alkaline pH with high percentage 

of calcium carbonate (approximately 32%) and affected slightly by salinity and moderate in 

nutrient availability status (Table I). There is a general decline in the EC, organic matter, and 

nutrient (N, P, and K) concentrations in the soil with the depth.  

 

Table I: ABOUT HERE 

 

Soil surface laser levelling was performed prior to the start of the experiment to improve 

surface irrigation water application efficiency. The EC of groundwater was close to 4 dS m-1 

while the sodium adsorption ratio (SAR) was less than 2 due to the presence of high 
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concentrations of calcium, sulphate, and magnesium. As the groundwater level at the 

experimental site was deep (30 m below soil surface), there was no contribution of groundwater 

to crop evapotranspiration. Long term average climatic data (1995-2009) of the experimental 

station are presented in Table II.  

 

Table II: ABOUT HERE 

 

Site characterization: Raqqa  

The experimental site in Raqqa is located 16 km northeast of Raqqa City. It receives 

freshwater for irrigation from the Euphrates River through an open channel, 12 km from the 

experimental site. The experimental site is located in the stability zone 5 with an average 

rainfall of 218 mm during 1974-1994. The recent rainfall pattern reveals that the amount of 

rainfall has decreased, perceived to be a result of climate change. Climatic data (average of 20 

years) of the experiment site at Raqqa are presented in Table III.  

 

Table III: ABOUT HERE 

 

The soil at the experimental site is clay loam to clay, slightly alkaline with a pH around 

7.7. The soil contains a large percentage of calcium carbonate (approximately 32%) and surface 

soil is slightly affected by salinity and moderate in fertility (Table IV). Except for soil texture, 

which is loam to clay loam at Raqqa, other properties of the study site are similar to those at 

Hassake site, where soil texture is clay loam to clay, i.e. soil texture is relatively finer at 

Hassake site than at Raqqa site. Soil surface laser levelling was performed prior to the start of 

the experiment to improve surface irrigation water application efficiency. The site was provided 

with horizontal drainage system with the drains installed at 1.6-1.9 m depth. As the site was 

equipped with the drainage system, there was no contribution of groundwater to crop 

evapotranspiration. 

 

Table IV: ABOUT HERE 

 

Irrigation treatments  

Three irrigation treatments were used at each site. At Hassake site, the irrigation water 

had average electrolyte concentrations of 0.87, 2.50, and 3.78 dS m-1. The treatment referred to 

as Irrig-1 had different levels of electrical conductivity (EC) ranging from 0.52 to 1.19 dS m-1 

with an overall average of 0.87 dS m-1 (good-quality water). The treatment, denoted as Irrig-3, 
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consisted of pumped groundwater with EC levels ranging from 2.96 to 4.62 dS m-1 at different 

pumping times and had an average EC value of 3.78 dS m-1. The treatment referred to as Irrig-2 

was based on a mix of good-quality water and groundwater from treatments Irrig-1 and Irrig-3 

at the ratio of 1:1. The EC levels in this blended treatment were also variable depending upon 

the water EC variability in Irrig-1 and Irrig-3 treatments. The average EC in Irrig-2 treatment 

was 2.50 dS m-1. Blending in the case of preparing water for treatment Irrig-2 was done in a 

large tank to store water for irrigation of three food legume crops. 

At Raqqa site, the irrigation treatments had more stable EC values than Hassake site. The 

treatments (Irrig-1, Irrig-2, and Irrig-3) had average electrolyte concentrations of 0.70, 3.0, and 

5.0 dS m-1. Blending in the case of treatment Irrig-2 was undertaken in a way similar to that 

followed at Hassake site.  

 

Experimental and statistical procedures  

Experimental design and layout and field management practices used at both the sites 

were the same. The plot size of 14.0 m × 12.5 m (175 m2) was used for experimental layout 

using split plot design with water quality in the main plots in three complete blocks and food 

legume accessions in the sub-plots. There were three separate split-plot experiments, one for 

each of the food legumes with a layout in nearby fields. Lentil accessions were planted in rows 

35 cm long and 4 cm apart while Chickpea accessions were planted in rows at 35 cm row 

spacing and 7 cm apart. In the case of Faba bean, the accessions were planted in rows at 50 cm 

row spacing and 25 cm apart. In each treatment, there were 15 rows each of Lentil and 

Chickpea, and 11 rows of Faba bean. Basin irrigation method, a prevalent method of irrigation 

in the area, was used after laser levelling. At the time of each irrigation application, samples of 

the irrigation water were collected and analysed for pH, EC, major cations and anions, in 

addition to boron and mineral nitrogen. 

Soil samples from the 5 depths, 0-20, 20-40, 40-60, 60-80, 80-100 cm, and each of the 9 

main plots were collected (45 samples) at mid-season and after crop harvest and analysed for 

major nutrients (N, P, and K), pH and EC of saturated extract, major cations and anions in 

addition to percent moisture. The amount of applied irrigation water was calculated from the 

water balance equation including rainfall. Fertilizers were applied before seeding as: N at 10 kg 

ha-1, P2O5 at 50 kg ha-1
, K2O at 20 kg ha-1. 

Fifteen accessions each of Lentil and Chickpea and eleven accessions of Faba bean were 

used in the experiments in Hassake and Raqqa sites. These food legume accessions were 

provided by the International Centre for Agricultural Research in the Dry Areas (ICARDA). 

During the 2009-2010 crop season sowing at Hassake and Raqqa was done on 2 December 2009 
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and 3 December 2009, respectively. In the 2010-2011 season, the crops were sown about a 

month later than the 2009-2010 season with respective sowing dates for Hassake and Raqqa 

sites being 4 January 2011 and 5 January 2011. 

Statistical analysis, for each crop, was performed on each site (Hassake and Raqqa) and 

combined over the sites using the split plot design on the grain yield where the same accessions 

and experimental layout and similar field management practices were used. The combined 

analysis of variance of data over the sites and years was carried out to evaluate the interaction of 

salinity levels, accessions and salinity × accession interaction with site and years within the site 

using the blocking structure for the split-plot design. The multiple comparison test based on 

Bonferroni adjustment was used to compare the accessions for their mean productivity values. 

 

SALTMED model for crop threshold levels for salinity 

SALTMED model was used to calibrate the relative yield of the food legume crops 

obtained from the field with the model predicted values. This was followed by validating the 

model calibration. The model calibration was undertaken from the data generated from the field 

site in Raqqa in 2009-2010. It was validated from the data generated from the same site in 2010-

2011. The model was run in the predictive mode with the anticipated yield loss of food legume 

crops when exposed to incremental increase in irrigation water salinity beyond the irrigation 

water salinity used in the experiment. The model was run to predict yields of the crops exposed 

to irrigation water salinity as high as 19 dS m-1. 

As initially developed, SALTMED model included the following key processes: 

evapotranspiration, plant water uptake, water and solute transport under different irrigation 

systems, drainage and the relationship between crop yield and water use, and relationship 

between salinity and crop yield and yield components (Ragab, 2002; Ragab et al., 2005a; Ragab 

et al., 2005b). Later improvements in the model have added several important features as 

reported in Hirich et al. (2012) and Silva et al. (2013).The model can be used for a variety of 

irrigation systems, soil types, soil stratifications, crops and trees, water management strategies 

(blending or cyclic), leaching requirements, and water quality. The model is based on 

established water and solute transport, evapotranspiration and crop water uptake equations 

(Oster et al., 2012).  
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RESULTS AND DISCUSSION 

 

Response of food legumes to irrigation water quality 

 

Lentil  

Analysis of variance of Lentil grain yield for the experimental sites, Raqqa and Hassake, years 

2009-2011 and three irrigation water salinity levels revealed significant differences (p < 0.05) 

among Lentil accessions (Table V). There was no significant (p < 0.05) interaction between 

accessions and salinity levels, nor were any higher order interactions significant. Averaged over 

all the salinity levels, Lentil accession 10712 produced highest grain yield (1680 kg ha-1), 

closely followed by accession 7947 (1670 kg ha-1), accession 10707 (1670 kg ha-1), and 

accession 10691(1650 kg ha-1). These accessions remained statistically at par using a multiple 

comparison test (Table V). The accession 10712's performance was significantly superior to that 

of the accession 6037 (1220 kg ha-1). Among the Lentil accessions, accession 10707 had the 

highest average grain yield (2050 kg ha-1) when irrigated with good-quality water under Irrig-1 

treatment where irrigation water salinity was less than 1 dS m-1 at both the experimental sites. 

This accession was followed by accession 10712, which yielded Lentil grain at 1880 kg ha-1. In 

the case of treatment with blended water (Irrig-2), the same accession (10707) performed better 

for grain yield (1840 kg ha-1) than other accessions. At the highest irrigation water salinity 

(Irrig-3), accession 10712 took over with grain yield of 1500 kg ha-1. It is interesting to note that 

most accessions followed the same pattern as was found in the drought tolerance studies 

undertaken at ICARDA's research station nearby Aleppo. This may be due to the effect of water 

stress in the first phase of salt stress, which has also been documented by several studies 

evaluating crops and their same accessions for salt and drought tolerance (Fortmeier and 

Schubert, 1995).  

 

Table V: ABOUT HERE 

 

The overall Lentil response to irrigation treatment revealed a yield decreasing trend with 

increasing salinity levels in irrigation water. The average yield for all Lentil accessions was in 

the order: 1590 kg ha-1 (Irrig-1) > 1550 kg ha-1 (Irrig-2) > 1250 kg ha-1 (Irrig-3). The average 

soil profile (1 m deep) salinity for three irrigation levels at the Hassake site cultivated with 

Lentil accessions was 3.84 dS m-1. It was 2.28 dS m-1 at the Raqqa site for the same soil depth. 

The lower salinity level at the Raqqa site was due to the leaching of soluble salts from the soil 

profile and their subsequent removal through the drainage system installed at the site.  
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Chickpea  

Significant (p < 0.05) accession differences were found for Chickpea yield. The average 

values for Chickpea grain yield suggest Chickpea accession ICL588 as the most promising 

accession with the ability to withstand high levels of salts in the irrigation water. This accession 

produced highest average grain yield (2159 kg ha-1), closely followed by accession FLIP03-

145C (2020 kg ha-1); both accessions remained statistically at par (Table V). The accession 

ICL588 also produced the highest average grain yield (2440 kg ha-1) when irrigated with good-

quality water under Irrig-1 treatment where irrigation water salinity was less than 1 dS m-1 at 

both the experimental sites. The same accession produced the highest yield in Irrig-2 treatment 

(2260 kg ha-1). In the case of Irrig-3 treatment, this accession was again among the highest grain 

yield producing Chickpea accessions. ICL588 has also emerged as one of the top accessions in 

case of drought tolerance by producing significantly higher grain yield under water stressed 

conditions, again demonstrating the crucial effect of water stress in the first phase of salt stress. 

The overall Chickpea response to irrigation treatment revealed a yield decreasing trend 

with increasing salinity levels in irrigation water. The average yield for all Chickpea accessions 

was in the order: 1750 kg ha-1 (Irrig-1) > 1600 kg ha-1 (Irrig-2) > 1430 kg ha-1 (Irrig-3). Based 

on three irrigation levels, the average salinity of the 1 m soil depth at the Hassake site under 

Chickpea accessions was 3.86 dS m-1. However, the average salinity for the same soil depth at 

the Raqqa site (2.34 dS m-1) was lower than the Hassake site. The effective leaching of soluble 

salts from the soil profile and removal through the drainage system at the Raqqa site contributed 

to lower levels of soil profile salinity. 

 

Faba bean  

For Faba bean too, the accession differences were statistically significant (p < 0.05). On 

the average, Faba bean accessions produced more grain than Chickpea and Lentil accessions. 

Among the Faba bean accessions, accession ILB1266 Aguadolce had the highest average grain 

yield (3790 kg ha-1) when irrigated with good-quality water under Irrig-1 treatment where 

irrigation water salinity was less than 1 dS m-1 at both the experimental sites. This accession 

was followed by accession ILB 1814 Syrian local, which yielded Faba bean grain at 3570 kg ha-

1. In the case of treatment with blended water (Irrig-2), the same accession (ILB 1814 Syrian 

local) performed better for grain yield (3420 kg ha-1) closely followed by the accession ILB1266 

Aguadolce, which produced grain at 3180 kg ha-1. Both accessions performed better than other 

Faba bean accessions at the highest irrigation water salinity (Irrig-3) treatment where accessions 

ILB1266 Aguadolce and ILB 1814 Syrian local produced grain yield at 2730 and 2580 kg ha-1, 
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respectively. In terms of aggregated grain yield from both sites and three irrigation salinity 

levels, Faba bean accession ILB1266 Aguadolce produced highest grain yield (3230 kg ha-1) 

followed by ILB1814 Syrian local (3190 kg ha-1); both remained statistically at par using the 

multiple comparison test based on Bonferroni adjustment (Table V). 

The overall Faba bean response to irrigation treatment revealed a yield decreasing trend 

with increasing salinity levels in irrigation water. The average yield for all Faba bean accessions 

was in the order: 2700 kg ha-1 (Irrig-1) > 2560 kg ha-1 (Irrig-2) > 2300 kg ha-1 (Irrig-3). The 

average soil profile (1 m depth) salinity for three irrigation levels at the Hassake site under Faba 

bean accessions was 3.62 dS m-1, while it was 2.94 dS m-1 at the Raqqa site for the same soil 

depth. The lower salinity level at the Raqqa site was due to the leaching of soluble salts from the 

1 m soil depth and subsequent removal of the leached salts through the horizontal drainage 

system with the drains install at 1.6-1.9 m below the soil surface. 

 

Estimation of crop threshold levels using SALTMED  

Using the SALTMED model, π50 values for three food legumes (Faba bean, Chickpea 

and Lentil) were calibrated and validated using field data from 2009-2010 and 2010-2011 

seasons, respectively. For the model calibration, the values of π50 used for the food legume 

crops at three growth stages (initial, middle, and late) are given in Table VI. 

 

Table VI: ABOUT HERE 

 

Lentil  

Based on the average of 15 accessions for the 2009-2010 data from Raqqa site, yields of 

Lentil from the field data for Irrig-2 and Irrig-3 relative to that of Irrig-1 were 0.717 and 0.417, 

respectively. As predicted by the SALTMED model during the model calibration process, the 

corresponding relative yields for Irrig-2 and Irrig-3 treatments were very close, i.e. 0.695 and 

0.438, respectively. The difference between the average measured results from the field site and 

model calibrated results for Irrig-2 and Irrig-3 treatments was 2.99% and -4.99%, respectively 

(Table VII). Based on the measured average relative yield of Lentil accessions and model 

calibrated results for Lentil for the 2009-2010 season data, the linear regression equation for 

field obtained relative yield and model predicted relative yield was y = 0.963x + 0.0259 (R² = 

0.996).  

 

Table VII: ABOUT HERE 
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During the model validation process for the field data for the next season (2010-2011) 

from the same site using calibrated π50, the relative yields of Lentil from the field data for Irrig-

2 and Irrig-3 treatments were 0.834 and 0.262, respectively. The corresponding relative yields 

for Irrig-2 and Irrig-3 treatments as predicted by the SALTMED model were 0.622 and 0.323, 

respectively. In terms of using SALTMED model to determine 50% threshold yield of Lentil 

(π50 value) based on salinity levels in irrigation water in equilibrium with ambient soil solution 

salinity levels, the 50% yield reduction occurred at salinity of 4.4 dS m-1 during the model 

validation process based on 2010-2011 data for Lentil (Figure 1).  

 

Figure 1: ABOUT HERE 

 

As predicted and validated by SALTMED model, yield potential of Lentil increased with 

decreasing levels of irrigation water salinity. For example, yield potential of Lentil was 100% at 

irrigation water salinity of 0.8 dS m-1; 75% at 2.7 dS m-1; and 25% at 7.7 dS m-1 (Table VIII).  

 

Table VIII: ABOUT HERE 

 

Chickpea  

The relative yields of Chickpea from the field data for Irrig-2 and Irrig-3 treatments were 

0.606 and 0.449, respectively. These relative yields were based on the average of 15 accessions 

for the 2009-2010 data from Raqqa site. As predicted by the SALTMED model during the 

model calibration process, the corresponding relative yields for Irrig-2 and Irrig-3 treatments 

were very close, i.e. 0.673 and 0.409, respectively. The percentage of error between the average 

measured results from the field site and model calibrated results for Irrig-2 and Irrig-3 

treatments was -10.96 and 8.79, respectively (Table VI). Based on the measured average 

relative yield of Chickpea accessions and model calibrated results for Chickpea for the 2009-

2010 season data, the linear regression equation for field obtained relative yield and model 

predicted relative yield was y = 1.03x - 0.0083 (R² = 0.968).  

 

During the model validation process for the field data for the next season (2010-2011) from the 

same site, the relative yields of Chickpea from the field data for Irrig-2 and Irrig-3 treatments 

were 0.650 and 0.465, respectively. The corresponding relative yields for Irrig-2 and Irrig-3 

treatments as predicted by the SALTMED model were 0.728 and 0.425, respectively. In terms 

of using SALTMED model to determine 50% threshold yield of Chickpea (π50 value) based on 

salinity levels in irrigation water in equilibrium with ambient soil solution salinity levels, the 
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50% yield reduction occurred at salinity of 4.2 dS m-1 during the model validation process 

(Figure 2). As predicted and validated by SALTMED model, 100% yield potential of Chickpea 

was at irrigation water salinity of 0.7 dS m-1; 75% at 2.6 dS m-1; and 25% at 7.2 dS m-1 (Table 

VIII). 

 

Figure 2: ABOUT HERE 

 

Faba bean  

The relative yields of Faba bean from the field data for Irrig-2 and Irrig-3 treatments were 

0.737 and 0.535, respectively. These relative yields were based on the average of 11 accessions 

for the 2009-2010 data from Raqqa. As predicted by the SALTMED model during the model 

calibration process, the corresponding relative yields for Irrig-2 and Irrig-3 treatments were very 

close, i.e. 0.781 and 0.526, respectively. The percentage of error between the average measured 

results from the field site and model calibrated results for Irrig-2 and Irrig-3 treatments was -

5.84 and 1.61, respectively (Table VI). Based on the measured average relative yield of Faba 

bean accessions and model calibrated results for Chickpea for the 2009-2010 season data, the 

linear regression equation for field obtained relative yield and model predicted relative yield 

was y = 1.01x + 0.0041 (R² = 0.986).  

 

During the model validation process for the field data for the next season (2010-2011) from the 

same site, the relative yields of Faba bean from the field data for Irrig-2 and Irrig-3 treatments 

were 0.740 and 0.590, respectively. The corresponding relative yields for Irrig-2 and Irrig-3 

treatments as predicted by the SALTMED model were 0.801 and 0.546, respectively. In the 

process of determining 50% threshold yield of Faba bean (π50 value) based on salinity levels in 

irrigation water in equilibrium with ambient soil solution salinity levels, the 50% yield 

reduction as predicted by SALTMED model occurred at salinity of 5.2 dS m-1 during the model 

validation process (Figure 3). As predicted and validated by SALTMED model, 100% yield 

potential of Faba bean was at irrigation water salinity of 0.9 dS m-1; 75% at 3.2 dS m-1; and 25% 

at 9.7 dS m-1 (Table VII). These results are in line with those of Katerji et al. (2011) who 

reported that soil salinity levels equal to or higher than 6.5 dS m-1 affected Faba bean growth, 

reduced number of grains, and grain yield.  

 

Figure 3: ABOUT HERE 
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CONCLUSIONS 

 

Combined analysis of grain yields for both experimental sites and three irrigation water salinity 

levels revealed significant differences among accessions of each food legume crop. There was 

no significant interaction with the salinity over its experimented range at any of the locations. 

This genetic diversity provides the opportunity to select a specific food legume accession that 

can withstand ambient level of salts in irrigation water. Genetic diversity among food legume 

crops has also been reported in earlier studies (Ayers and Eberhard, 1960; Maas and Grattan, 

1999; Katerji et al., 2005). In addition, most accessions followed the same pattern for grain 

yield production as was found in the drought tolerance studies concurrently undertaken during 

these years at ICARDA's research station nearby Aleppo. This may be due to the effect of water 

stress in the first phase of salt stress, which has also been documented by several other studies 

evaluating crops and their accessions for salt and drought tolerance (Fortmeier and Schubert, 

1995; Katerji et al., 2011). 

Calibration and validation of SALTMED model revealed close relationship between 

actual grain yields from the field sites and those predicted by the model. Based on salinity levels 

in irrigation waters, yield potential of Lentil was 100% at irrigation water salinity of 0.8 dS m-1; 

75% at 2.7 dS m-1; 50% at 4.4 dS m-1; and 25% at 7.7 dS m-1. As predicted and validated by the 

model, 100% yield potential of Chickpea was at irrigation water salinity of 0.7 dS m-1; 75% at 

2.6 dS m-1; 50% at 4.2 dS m-1; and 25% at 7.2 dS m-1. For Faba bean, 100% yield potential was 

at irrigation water salinity of 0.9 dS m-1; 75% at 3.2 dS m-1; 50% at 5.2 dS m-1; and 25% at 9.7 

dS m-1. The yield potential of food legume crops as predicted by SALTMED model reveals that 

Faba bean can withstand relatively high levels of irrigation water salinity. These results are 

expected to help extensions workers and farmers in making informed decisions in selecting 

appropriate food legume crop and crop accessions based on salinity level of the water available 

as an irrigation source. 
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Table I. Soil properties of the experimental site at Hassake before sowing of crops (Pre-experiment soil before 2009-2010 cropping season) 

Depth pH ECe OM CaCO3 Total N P K Sand Silt Clay Texture 

cm 
 

dS m-1 % % % mg kg-1 mg kg-1 % 
 

0-20 7.7 3.32 1.22 32.2 0.093 12.37 405 30.0 36.7 33.3 Clay loam 

20-40 7.7 3.38 0.82 31.6 0.077 3.42 274 28.7 26.0 45.3 Clay 

40-60 7.8 3.22 0.31 32.2 0.060 2.80 140 26.7 24.7 48.7 Clay 

60-80 7.7 2.86 0.25 33.4 0.050 2.89 126 24.0 24.7 51.3 Clay 

80-100 7.7 2.54 0.13 31.9 0.050 2.91 126 23.3 23.3 53.3 Clay 

 

 

Table II. Average climatic data of the experiment site at Hassake (The letters J to D stand for January through December in order) 

Total or Mean D N O S A J J M A M F J Month 

272 43 17 10 1 0 0 1 20 47 41 39 53 Rainfall (mm) 

20.7 11 15 22 28 34 32 31 26 18 13 9.2 8.6 Temperature (ºC) 

60 70 62 50 55 53 48 45 56 67 70 64 78 Humidity (%) 

1714 28 60 114 195 289 324 297 160 105 78 36 28 Evaporation (mm) 

2.2 1.7 2.1 1.9 2.9 2.6 2.7 2.5 2.5 2.5 2.2 2 2 Wind speed (m s-1) 

9.1 5.6 6.9 9.1 10 13 13 13 11 8.7 7 6.4 5.1 Sunshine (h) 
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Table III. Average climatic data of the experiment site at Raqqa (The letters J to D stand for January through December in order) 

Total or Mean D N O S A J J M A M F J Month 

218 29 18 22 3 0 0 4 15 17 36 39 35 Rainfall (mm) 

18.6 8.0 12.8 19.9 25.6 29.5 30.1 28.2 23.8 17.4 12.5 8.8 6.5 Temperature (ºC) 

55.5 79 65 52 44 41 38 34 44 55 63 72 79 Humidity (%) 

1990 34 60 121 207 295 366 327 233 153 109 50 34 Evaporation (mm) 

3.3 2.3 1.7 2.0 2.8 4.4 5.4 4.8 3.6 3.6 3.3 2.8 2.6 Wind speed (m s-1) 

8.5 4.9 7.0 8.4 10.5 11.5 12.2 12.0 10.4 8.0 6.9 5.9 4.6 Sunshine (h) 

 

 

Table IV. Soil properties of the experimental site at Raqqa before sowing of crops (Pre-experiment soil before 2009-2010 cropping season) 

Depth pH ECe OM CaCO3 Total N P K Sand Silt Clay Texture 

cm 
 

dS m-1 % % % mg kg-1 mg kg-1 % 
 

0-20 7.6 3.48 1.73 23.8 0.1 14.1 436.0 42.7 32.0 25.3 Loam 

20-40 7.9 1.78 0.66 29.2 0.1 4.3 233.1 36.7 29.3 34.0 Clay loam 

40-60 7.9 2.09 0.38 28.3 0.1 4.2 169.2 37.3 26.0 36.7 Clay loam 

60-80 7.8 2.47 0.07 33.2 0.0 5.1 112.8 36.0 26.7 37.3 Clay loam 
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Table V. Mean grain yields (kg ha-1) of 15 accessions of Lentil, 15 accessions of Chickpea, and 11 accessions of Faba bean under three irrigation water 

quality treatments applied at the experimental sites in Hassake and Raqqa, years 2009-2011 

Lentil Chickpea Faba bean 

Accession Yield Accession Yield Accession Yield 

590 1464 abcd ILC3182 1871 defg DT/B7/9028/2005/06 2162 ab 

6002 1416 abcd FLIP03-145C 2023 g DT/B7/9013/2005/06 2665 bc 

6037 1215 abc CPI 060546 836 a DT/B7/9043/2005/06 2483 ab 

7947 1673 cd ILC 5948 1714 bcdefg DT/B7/9035/2005/06 2391 ab 

6994 1638 bcd FLIP03-2C 1127 ab DT/B7/9005/2005/06 2657 bc 

7201 1141 a FLIP03-46C 1781 cdefg DT/B7/9020/2005/06 2494 ab 

7537 1313 abcd FLIP87-59C 1416 abcdef DT/B7/9008/2005/06 2041 a 

7670 1654 bcd ILC216 1328 abcd ILB1270 Reina Blanca 2449 ab 

7979 1211 ab FLIP87-8C 1301 abcd DT/B7/9009/2005/06 1991 a 

8068 1496 abcd ILC588 2159 g ILB1814 (Syrian local) 3190 c 

10072 1275 abcd ILC 1283 1273 abc ILB1266 (Aguadolce) 3231 c 

10135 1458 abcd FLIP04-19C 1383 abcde   

10691 1652 bcd ILC3279 1726 cdefg   

10707 1669 bcd ILC1302 1997 fg   

10712 1676 d ILC10722 1947 efg   

SE ±82 SE ±106 SE ± 107 

Means with different letters under the columns yield for each food legume crop are statistically different at 5% level of significance.  

 



 

Table VI. Calibrated π50 values (dS m-1) for three food legume crops (Lentil, Chickpea, and 

Faba bean) for the 2009-2010 crop season 

Crop stage Lentil Chickpea Faba bean 

Initial 5.75 5.50 7.00 

Mid 6.75 6.50 8.00 

Late 7.75 7.50 9.00 

 

 

Table VII. Percentage of error between the average measured results from the field site and 

model calibrated results 

Water salinity Lentil Chickpea Faba bean 

dS m-1 % % % 

0.7 0.00 0.00 0.00 

3.0 2.99 -10.96 -5.84 

5.0 -4.99 8.79 1.61 

 

 

Table VIII. As predicted and validated by SALTMED model, yield potential (%) of food 

legume crops at specified levels of irrigation water salinity expressed as dS m-1 

Crop Yield potential (%) at specified salinity (dS m-1) 

25% 50% 75% 100% 

Lentil 7.7 4.4 2.7 0.8 

Chickpea 7.2 4.2 2.6 0.7 

Faba bean 9.7 5.2 3.2 0.9 
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Figure 1. As predicted and validated by SALTMED model, decrease in relative grain yield of Lentil as 

affected by the incremental increase in irrigation water salinity up to 10 dS m-1 

 

 

 

Figure 2. As predicted and validated by SALTMED model, decrease in relative grain yield of Chickpea as 

affected by the incremental increase in irrigation water salinity up to 10 dS m-1 
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Figure 3. As predicted and validated by SALTMED model, decrease in relative grain yield of Faba bean 

as affected by the incremental increase in irrigation water salinity up to 10 dS m-1 
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