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Abstract2

Seabed sediment texture can be mapped by geostatistical prediction from limited3

direct observations such as grab-samples. A geostatistical model can provide local4

estimates of the probability of each texture class so the most probable sediment5

class can be identified at any unsampled location, and the uncertainty of this pre-6

diction can be quantified. In this paper we show, in a case study off the northeast7

coast of England, how swath bathymetry and backscatter can be incorporated into8

a geostatistical linear mixed model (LMM) as fixed effects (covariates).9

Parameters of the LMM were estimated by maximum likelihood which allowed10

us to show that both covariates provided useful information. In a cross-validation,11

each observation was predicted from the rest using the LMMs with (i) no covariates,12

or (ii) bathymetry and backscatter as covariates. The proportion of cases in which13

the most probable class according to the prediction corresponded to the observed14

class was increased (from 58% to 65% of cases) by including the covariates which also15

increased the information content of the predictions, measured by the entropy of the16

class probabilities. A qualitative assessment of the geostatistical results shows that17

the model correctly predicts, for example, the occurrence of coarser sediment over18

discrete glacial sediment landforms, and muddier sediment in relatively quiescent,19
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localized deep water environments. This demonstrates the potential for assimilating20

geophysical data with direct observations by the LMM, and could offer a basis for a21

routine mapping procedure which incorporates these and other ancillary information22

such as manually-interpreted geological and geomorphological maps.23

24

25

1. Introduction26

Mapping benthic habitats is crucial for underpinning decision-making concerning27

management of the seabed. To encourage good practice and to ensure comparabil-28

ity across environmental and political boundaries, many practitioners use the hierar-29

chical European Nature Information System (EUNIS) habitat classification scheme30

(e.g., Connor et al., 2006). The foundation of the EUNIS classification for the seabed31

is the seabed substratum type, because of the influence this has on the occurrence32

and abundance of benthic flora and fauna. Seabed habitats are principally split into33

rock and other hard substrata on the one hand, and sediment habitats on the other.34

Rock habitats have been identified as important for conservation due to their high35

biodiversity (e.g., Evans et al., 2015). However, they only account for a very limited36

area of seabed, which is typically dominated by sediment over large parts of the con-37

tinental shelves. Mapping the distribution of seabed sediment classes can therefore38

serve as a proxy for regional benthic habitats (e.g., Kostylev et al., 2001; Howell,39

2010; McGonigle and Collier, 2014). The distribution of seabed sediments is also40

of immediate interest to any industry (e.g., offshore wind, oil and gas) which seeks41

to install seabed infrastructure, where specific considerations may include sediment42

mobility, constraints on pile design, or pollutant dispersal (International Association43

of Oil & Gas Producers, 2013).44

The acquisition of seabed sediment samples is most commonly achieved by grab45

sampling, and samples are characterized through particle size analysis (PSA) using46

the ‘Wentworth’ textural classification (Wentworth, 1922). When mapping seabed47
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sediment distribution, geologists commonly employ the Folk classification scheme48

(Folk, 1954) as it provides a useful indication of the energy of the seabed envi-49

ronment, but within the EUNIS habitat mapping classification the Folk scheme is50

simplified into only four textural classes which can be identified from the proportions51

of gravel, sand and mud size fractions among the mineral particles of the sediment52

(Long, 2006). The definitions of these classes are shown in Fig. 1 on the ternary53

diagram for gravel, sand and mud.54

Lark et al. (2012) explored the use of geostatistical methods to predict the55

distribution of gravel, sand and mud fractions directly from point observations by56

compositional cokriging. However, this exploits only the spatial dependence of the57

variation of particle size fractions as shown by the data, and does not incorporate58

other types of relevant information. One example is data from swath bathymetry59

surveys. Both the bathymetry, and the associated intensity of the backscatter signal60

from the seabed, are informative about sediment texture (e.g., Goff et al., 2004;61

Fonseca et al., 2009).62

Commonly, bathymetry and backscatter data are used to map the distribution63

of textural classes by expert interpretation. This interpretation is conducted in the64

light of the evolution of the seabed. When extrapolating the sample point data65

according to the geographically continuous acoustic data, the expert interpreter66

may consider, for example, how the interplay of the pre-existing geological substrate67

is modified over multiple climatic and environmental timescales (e.g., glaciation);68

and how the evolving seabed geomorphology is further impacted upon by active69

sedimentary, hydrodynamic, or even biological processes. There are many examples70

of such interpretative studies (e.g., Hughes Clarke et al., 1996; Kostylev et al., 2001;71

Glynn et al., 2015). Expert interpretation, however, is demanding of time. There is72

also an element of subjectivity in the results as they depend on judgements which73

may differ between individuals. Because of this, there has been considerable interest74

in developing quantitative techniques to establish predictive relationships between75
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acoustic data and sediment properties (see review by Brown et al., 2011).76

There are two general quantitative approaches. The first uses physical models of77

the backscattering of an acoustic signal by material on the seabed. At any location78

the sediment properties are found that give the best match between the predicted79

and observed backscatter (e.g., Sternlicht and de Moustier, 2003; Snellen et al.,80

2011). A second approach uses statistical predictive relationships. These may be81

semi-empirical, a predictive function with a physical interpretation is fitted statis-82

tically to observed data on sediment texture and the acoustic signal (e.g., Endler83

et al, 2015). Other statistical methods that have been applied include multivari-84

ate clustering (e.g., Anderston et al, 2002), clustering on multifractal properties of85

the time-dependent backscatter (Haris and Chakraborty, 2014), decision trees (e.g.,86

Dartnell and Gardner, 2004), artificial neural networks (e.g., Marsh and Brown,87

2009) and random forests (e.g., Lucier et al., 2013).88

In a comparative study by Diesing et al. (2014) a range of mapping approaches89

was applied for interpretation of seabed sediments based on acoustic data (swath90

bathymetry, backscatter and derivatives of bathymetry such as rugosity which is91

a measure of high-frequency roughness) along with PSA samples. The approaches92

undertaken included expert interpretation, geostatistics (cokriging), object-based93

image analysis (OBIA) and random forests. In this case, the geostatistical method94

did not incorporate the acoustic data, whereas they were used by the machine learn-95

ing, OBIA and expert interpretation techniques. However, these do not account96

explicitly for the spatial distribution of the observations, nor of the spatial depen-97

dencies among the data (although the more desirable properties of machine-learning98

methods such as random forests depend on the assumption that the observations99

are independent). Diesing et al. (2014) compared their results for prediction using100

acoustic data with the direct application of cokriging, as described by Lark et al.101

(2012). They found that a pixel by pixel comparison between the outputs resulted102

in agreements of between 68.1% and 73.1% for the cokriging method when compared103
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with the mapped outputs from the other techniques. There was a marked difference104

between this method and those which utilised the acoustic data, with the major105

differences resulting from the less frequently occurring sediment classes.106

In this paper we consider the possibility of combining linear models for the107

relationship between particle size distribution and variables derived from acoustic108

data with the cokriging procedure to account for the remaining unexplained vari-109

ation. This is done by fitting a linear mixed model (LMM) for the (appropriately110

transformed) particle size distribution of sediment with fixed effects (covariates) the111

bathymetry and backscatter from the acoustic survey, and a suitable linear model112

of coregionalization for the residuals. The prediction conditional on this model is113

the empirical best linear unbiased predictor with the mean vector of the dependent114

variables a function of the covariates. We compare this result with the ordinary115

cokriging method in which the mean vector is assumed to be constant.116

2. Methods117

2.1 The statistical model118

2.1.1 Compositional data and their treatment119

Seabed sediment texture classes are defined according to the proportions by mass120

of gravel, sand and mud in the sediment on the logarithmic Wentworth scale (Went-121

worth, 1922). The size classes are exhaustive, and so the proportions of gravel, sand122

and mud necessarily sum to one. This makes the variate a composition (Aitchison,123

1986) which is constrained to a distribution on the two-dimensional simplex, and124

which can be plotted as a ternary diagram.125

The compositional nature of data such as those on sediment particle sizes must126

be accounted for in analysis. The problem is that, because the gravel, sand and mud127

proportions sum to one, they cannot vary jointly like other multivariate data sets,128

and spurious correlations can emerge between variables. The methods to deal with129

this problem that Aitchison (1986) proposed are based on taking ratios between130

compositional variables. Whereas sand and mud proportions cannot vary indepen-131
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dently (if, for example, we know that the mud proportion is 0.7 then we know that132

the sand proportion is less than or equal to 0.3), their respective ratios to the gravel133

proportion are not so constrained. These ratios are generally transformed to loga-134

rithms to make an assumption of a joint normal distribution plausible. These are135

called the additive log-ratios of the compositional variables.136

Lark et al. (2012) used compositional cokriging, as described by Pawlowsky-137

Glahn and Olea (2004), to predict seabed sediment texture by ordinary cokriging138

of the additive log-ratios. The additive log-ratio (ALR) transform can be applied139

to an m-part composition to create m− 1 new variables which are not constrained140

onto a m− 1–dimensional simplex but can be regarded as an unconstrained m− 1–141

dimensional variate.142

In the case of a three-variate compositional random variable Z = {Z1, Z2, Z3} a143

corresponding two-dimensional ALR variate is Y = [Y1, Y2]
T, where144

Y1 = ln
Z1

Z3
,

Y2 = ln
Z2

Z3
. (1)

Note that the selection of a variable from the compositional variate to serve as the de-145

nominator of the log-ratio does not affect the final outcome of analyses (Pawlowsky-146

Glahn and Olea, 2004). The ALR transform can be inverted:147

Z =

{
exp(Y1)

1 + exp(Y1) + exp(Y2)
,

exp(Y2)

1 + exp(Y1) + exp(Y2)
,

1

1 + exp(Y1) + exp(Y2)

}T

, (2)

, where the superscript T indicates the transpose of the matrix.148

2.1.2 The linear mixed model for compositional data149

Lark et al. (2012) used cokriging of the ALR-transform of the particle size150

composition. They sampled the prediction distribution of the ALR-transformed151

variate at the nodes of a prediction grid to estimate the probability at each node152

that each of the EUNIS sediment texture classes occurred. In this paper we extend153

this methodology to include bathymetry and backscatter as predictive covariates.154
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This is done in the linear mixed modelling framework following the methods of155

Marchant and Lark (2007).156

Consider a simple case where a two-dimensional ALR variate, Y, is to be mod-157

elled as a linear function of some covariate X. We have n collocated observations of158

the two ALR variables which we denote by the n×1 vectors y1 and y2, let x denote159

the n× 1 vector of corresponding observations of the covariate, and let 1n denote a160

n× 1 vector of ones. The LMM for Y is161 [
yT
1

yT
2

]
=

[
α1 β1
α2 β2

] [
1Tn
xT

]
+

[
ηT1
ηT2

]
+

[
εT1
εT2

]
. (3)

There are many terms in this equation, and we define and explain them in the162

following paragraphs. First, α1 and β1 are a constant and linear regression coefficient163

for variable Y1, and α2 and β2 are corresponding coefficients for Y2. These are known164

as fixed effects in the LMM. The terms η1 and η2 are spatially correlated random165

effects of mean zero, which we assume conform to a linear model of coregionalization166

(LMCR, Journel and Huijbregts, 1978). Let us denote some element of ηi, where167

i ∈ {1, 2} by ηi(s) where s is a vector with the coordinates of the observation in168

space. Under the LMCR the covariance of any two observations separated spatially169

by a lag vector h: ηi(x), ηi(x+h), is assumed to depend only on the lag vector and170

is given by171

Ki,j(h) =
s∑

k=1

ci,jk ρk(h), (4)

where there are s ≥ 1 independent additive components in the model, the terms ci,jk172

are variances and covariances that constitute a positive-definite covariance matrix173

for any k and ρk(h) is a spatial correlation function. In this study we assume that174

the correlation function is isotropic (it depends on the lag distance, |h|, not the175

direction), and can be described by the function due to Matérn (Stein, 1999):176

ρ(h) =
1

2ν−1Γ(ν)

(
2ν

1
2 |h|
φ

)ν
Kν

(
2ν

1
2 |h|
φ

)
, (5)

where φ is a distance parameter, ν is a smoothness parameter and Kν is a modified177
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Bessel function of the second kind of order ν. In this study we consider only one178

spatially correlated component in the LMCR.179

Under this model, and the assumption of a normal distribution, the terms η1180

and η2 are therefore entirely characterized by the variances and covariance c1,11 , c2,21181

and c2,11 and the parameters φ and ν of the Matérn correlation function.182

Each term ε1 and ε2 in Eq. (3) is a zero-mean independently and identically dis-183

tributed random effect, although there may be a non-zero cross-correlation. Under184

the assumption of normality, these terms are entirely characterized by their variances185

and covariance, which we denote by c1,10 , c2,20 and c2,10 . These terms are spatially un-186

correlated, and so represent components of the variation of our variables which are187

either not spatially-dependent, or which are spatially dependent at scales too fine to188

be resolved by the sampling of the variables. This component of the LMM is called189

the ‘nugget’, a term inherited from the origin of geostatistics in mining geology.190

If the parameters of the LMM are known, then we may use them to predict values191

of the variables Y1 and Y2 at unsampled sites where the covariate X is known.192

There are two components to the prediction. The first may be thought of as a193

regression-type prediction, depending on the value of the covariate and the fixed194

effects parameters α1, α2, β1 and β2. The second component is a cokriging-type195

prediction of the random effects η1 and η2, and depends on the parameters of the196

LMCR. The predictions of Y1 and Y2 have unknown errors at any site. The variance197

and covariance of these errors can be computed from the LMM.198

2.1.3 Estimation of model parameters and model selection199

In practice, the parameters of the LMM are unknown and must be estimated200

from data. Under the assumption of normally distributed random effects this can be201

done by maximum likelihood (ML), although this results in biased estimates of the202

parameters of the random effects because the fixed effects coefficients are nuisance203

parameters. An alternative is to use residual maximum likelihood (REML) due to204

Patterson and Thompson (1971) which is ML estimation applied to a projection of205
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the data in which the fixed effects have known zero mean. Once REML estimates of206

the random effects parameters are obtained then the fixed effects parameters can be207

estimated by weighted least squares. Marchant and Lark (2007) describe the use of208

REML to estimate LMCR parameters. REML reduces bias, and so we use it here209

to estimate model parameters to use in prediction.210

One may use ML or REML followed by generalized least squares to estimate211

the random and fixed effects coefficients of any proposed LMM. In many contexts,212

including this study, we need to evaluate the evidence for including particular fixed213

effects. One might ask, for example, whether a model with bathymetry and backscat-214

ter as fixed effects is to be preferred to one with a constant mean as the only fixed215

effect. Equally one might ask whether adding backscatter to a model which includes216

bathymetry is justified by the available data. These decisions are based on the ev-217

idence provided by the maximized likelihood for the fitted models. However, two218

important points must be noted.219

First, a pair of models with different fixed effects (e.g., a model with no covari-220

ates so that the overall mean is the only fixed effect, and a model with acoustic221

backscatter) can be compared on the likelihood, but not on the residual likelihood.222

For purposes of selecting a fixed effects structure we therefore fitted models by ML,223

and then used REML to estimate the parameters of the selected model.224

Second, adding fixed effects to a model cannot result in a reduction in the max-225

imized likelihood (since, at worst, the coefficient of the new fixed effect can go to226

zero, leaving the likelihood unchanged). Usually the likelihood is increased by adding227

new fixed effects. This does not mean that the additional covariates are genuinely228

informative. One standard criterion used to assess whether additional covariates229

in a model are justified in terms of improved predictive value is Akaike’s informa-230

tion criterion (AIC) (Akaike, 1973). If ` is the natural logarithm of the maximized231

likelihood for the fit of a model with P predictors then the AIC is computed as232

A = 2P − 2`. (6)
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One selects from a set of models the one for which AIC is smallest. The criterion233

can therefore be thought of as based on the goodness of fit, with a penalty for model234

complexity. By selecting from a set of models the one with the smallest AIC one235

minimizes the expected information loss through the selection decision (Verbeke and236

Molenberghs, 2000).237

2.1.4 Prediction from the model238

Estimated parameters of the LMM can be used to obtain predictions at unsam-239

pled sites. This prediction is called the empirical best linear unbiased prediction240

(E-BLUP) (Stein, 1999). Along with the E-BLUP one can also obtain its covariance241

matrix, the variances and covariance of the prediction errors. For more details of the242

estimation and prediction procedure, the reader is referred to Marchant and Lark243

(2007). The E-BLUP and its covariance matrix together define the prediction distri-244

bution of the modelled variables at the unsampled site. The prediction distribution245

represents the uncertainty about the actual values of these variables at that site.246

Given the E-BLUP and its covariance matrix at any location, one can simu-247

late values of ALR-transformed gravel, sand and mud content from the prediction248

distribution. Any simulated set of values can be back-transformed to the original249

compositional variate by Eq. (2). One may use this sample to estimate properties250

of the unknown composition at the prediction site, such as the distribution of one of251

its components. This was done by Lark et al. (2012) in the ordinary cokriging case.252

2.2 Geological setting253

The study area is located approximately 11 km off the Northumberland coast in254

northeast England and covers an area of approximately 705 km2 (Fig. 2) with depth255

of water varying between 50 and 110 m. It was chosen because it was expected256

to show variability in seabed geomorphology, bathymetry, and associated seabed257

sediment distribution, providing a suitable environment to test the geostatistical258

modelling. This variability in seabed character is a function of the complex geologi-259

cal history preserved at seabed including the presence of bedrock at or near-seabed,260
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glacial landforms, and mobile sediment bedforms. The high-relief bathymetry also261

allows for distinct hydrodynamic conditions, as where local bathymetric deeps pre-262

serve mud accumulations.263

Streamlined glacial landforms, overlying the bedrock, are prominent at the seabed264

of the study area and reflect ice stream pathways associated with the British ice sheet265

(BIS) over the last glacial cycle (Clark et al., 2012) (see the bathymetry of the area266

in Fig. 3a). While our understanding of the extent, timing and dynamics of the267

glaciation within this sector of the North Sea basin is only recently being improved268

(Graham et al., 2011; Stewart et al., 2013), the survey area lies just offshore of the269

projected flow path of the well-described onshore ‘Tweed ice stream’ (e.g., Everest et270

al., 2005), and south of the impinging Forth ice stream (Stewart et al., 2013). These271

streamlined features are interpreted as subglacial landforms elongated parallel to the272

flow of a palaeo-ice stream (e.g., Stokes and Clark, 2001), and are expected to com-273

prise subglacial till with notable coarse and overconsolidated clay sediment fractions274

(Gatliff et al., 1994; Stokes et al., 2011). Following the last glacial maximum, marine275

transgression and flooding of the North Sea brought the re-establishment of marine-276

based erosional and depositional processes. Across the survey we observe series of277

sinuous, sharp-crested waves interpreted as mobile sediment bedforms. These mod-278

ern, frequently sand-dominated features are common in the North Sea, and reflect279

local hydrodynamic conditions and sediment availability (Huntley et al., 1993).280

2.3 Data281

The bathymetry data were acquired in February–March 2012 in accordance with282

specifications of the International Hydrographic Organization (2008) for Order 1a,283

using a Reson 7125 multibeam echosounder aboard the contracted survey vessel MV284

Neptune. All depth soundings acquired by the multibeam have been reduced to285

chart datum using a vertical offshore reference frame (VORF) offset value for the286

centre of the site. The backscatter data were processed with Geocoder software as287

implemented in Caris HIPS & SIPS. The bathymetry and backscatter values are288
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shown in Fig. 3a and 3b respectively.289

The sediment samples were acquired by the RV Cefas Endeavour over March,290

2012 with a 0.1-m2 Hamon grab, concurrent with the geophysical survey. Sample291

locations were pre-determined according to anticipated distribution of broadscale292

habitats based on legacy British Geological Survey (BGS) seabed sediment maps.293

Discrete samples from 75 stations were collected within the region where swath294

bathymetry and backscatter data had been acquired. The samples were collected at295

a variable spacing of approximately 3 km on average, and sub-sampled for PSA. The296

positions of the grab-samples are superimposed on Fig. 3a. Legacy BGS sediment297

samples also exist within the survey area but these were not incorporated due to298

concerns with positional accuracy, as they were acquired prior to the use of satellite299

Global Positioning Systems.300

The bathymetry and backscatter data are accurate to 2-m grid resolution, but for301

the purposes of this study were sub-sampled to a 50-m grid spacing (the resolution of302

the point observations was unchanged but the grid was thinned). This was to reduce303

the processing requirements for mapping. In principle the mapping could be done304

on the full resolution data, but it was decided to use a coarser grid because of the305

relatively sparse distribution of grab-samples. Co-registered bathymetry (metres)306

and backscatter (decibels) values were extracted at each grab sample location to be307

used as input for the geostatistical model.308

2.4 Analysis309

2.4.1 Exploratory data analysis and ALR-transformation310

In section 2.1 the ALR transform was introduced in both general and formal311

terms. As was noted, Pawlowsky-Glahn and Olea (2004) show that the results of312

cokriging from ALR-transformed values of a compositional variate do not depend on313

the initial selection of a component of the composition to serve as the denominator of314

the log ratio. In other words, one might work with the log-ratios of sand to mud and315

gravel to mud, or the ratios of mud to sand and gravel to sand etc. In this study we316
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used the proportion of gravel as the numerator and computed transformed variables317

that we denote ALR-Sand and ALR-Mud. Exploratory statistics showed that some318

of the samples had zero gravel content (Table 1). The ALR transform is not defined319

in this case. As in the previous study by Lark et al. (2012) we imputed non-zero320

values for compositions with zeroes, following the method of Mart́ın-Fernandéz and321

Thió-Henestrosa (2006), and setting zero values to a small value (0.005) less than the322

smallest non-zero value in the data before renormalizing the affected compostion.323

2.4.2 Model fitting and selection324

Because of the skewness of the ALR-transformed variables (Fig. 5) a Box-Cox325

transformation was incorporated into the LMM. Under the Box-Cox transformation326

the modelled variable is z where y is the observed variable (ALR-Mud or sand here),327

and where328

z =
yλ − 1

λ
λ 6= 0,

= ln (y) λ = 0. (7)

Note that if λ = 1 the transformation is just a linear offset. The parameter λ329

is estimated by ML along with the other parameters of the LMM as described in330

section 2.1.331

Linear mixed models of the form of Eq. (3) were first fitted by maximum likeli-332

hood with ALR-Sand and ALR-Mud. In the simplest model there was no covariate333

so, in effect, the first term on the right-hand side of Eq. (3) was reduced to a vector334

with two constants, the overall mean of ALR-Sand and ALR-Mud, respectively. We335

considered a model with acoustic bathymetry as the single covariate, and one with336

acoustic backscatter as the single covariate. We also considered a model with both337

acoustic variables as covariates. We chose between these alternative models on the338

basis of the AIC (Eq. 6) as described in section 2.1.3 above.339

Having selected among the alternative models fitted by ML, we refitted the340

selected model by REML. We also used REML to fit the LMM with overall mean341

the only fixed effects. This is for comparison with a model in which the acoustic342
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data are exploited.343

2.4.3 Cross validation344

Prior to mapping classes with the selected model we undertook two linked vali-345

dation tests. The first is a test of the LMM to ensure that the E-BLUP based on it346

gave plausible predictions of the ALR-transformed PSA data, and that the predic-347

tion distributions gave a valid measure of uncertainty. The second was an evaluation348

of the predictions of sediment texture class obtained from the E-BLUP.349

In the previous study by Lark et al. (2012) we used a witheld subset of the data350

to evaluate the cokriging predictions. In this study the total number of sites available351

was too small to justify this procedure. For purposes of comparison of predictions352

with and without the use of the acoustic data, we used a cross-validation procedure.353

In cross-validation each data point was excluded from the data in turn and the E-354

BLUP and its covariance matrix at the location of the excluded data point were355

computed. Each data value can therefore be compared with its E-BLUP computed356

from the remaining data.357

The first analyses on the cross-validation outputs are to validate the fitted model.358

Each value of ALR-Sand and ALR-Mud in the data set was compared with the cross-359

validation prediction. If the observed value of ALR-Sand at location s is denoted360

by ysand(s) and the E-BLUP is Ỹsand(s), then the squared prediction error is361

{
ysand(s)− Ỹsand(s)

}2
(8)

and the standardized squared prediction error is362 {
ysand(s)− Ỹsand(s)

}2
σ2sand(s)

, (9)

where σ2sand(s) is the prediction error variance of ALR-Sand at location s. This363

is an element of the covariance matrix of the E-BLUP, referred to above. Since364

the prediction error variance is the expected squared error of the prediction, the365

expected value of the standardized squared prediction error is 1.0. The median of366

the standardized squared prediction errors is a diagnostic statistic for the LMM.367
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If the parameters of the random effects are correct, and the prediction errors are368

normal, then the expected median is 0.455.369

The second set of analyses were to evaluate the predictions of sediment texture370

class. We are interested in mapping the four broad sediment texture classes of the371

EUNIS habitat classification, ‘Coarse’, ‘Mixed’, ‘Mud and Sandy Mud’, ‘Sand and372

Muddy Sand’, shown on the ternary diagram in Fig. 1. These classes underpin373

marine habitat mapping (Long, 2006). Lark et al. (2012) showed how this could374

be done with the ordinary cokriging predictions of ALR-transformed particle size375

data by sampling from the prediction distribution at prediction sites. This is done376

by using a random number generator to generate a random pair of values for ALR-377

Sand and ALR-Mud with means equal to the corresponding E-BLUP and covariance378

matrix equal to the E-BLUP error covariance matrix. The pair of simulated values379

is then back-transformed to the simplex space of the sand-mud-gravel composition380

and the corresponding texture class is identified. By repeating this many times one381

may estimate the probability of each class. This was done for each cross-validation382

site. If a total of N samples is drawn from the probability distribution for location383

s, and ni(s) of the samples correspond to class i, then the estimated probability that384

the ith class occurs at location s is385

p̂i(s) =
ni(s)

N
. (10)

At site s the best prediction of the texture class, in the sense of the prediction386

most likely to be correct, is the class for which the estimated probability, p̂i(s),387

is largest. We evaluated these predictions over all sites. Over all sites the known388

class may be compared with the most probable class (the class to which most of389

the samples from the prediction distribution belong) in an error matrix. Various390

measures of the success of the prediction can be computed from this matrix (Lark,391

1995). The first is the overall purity of the mapped legend classes, estimated by392

the proportion of cross-validation sites in which the observed class is also the most393

probable class. For each class, one may compute a separate purity, estimated by394
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the proportion of those cross-validation sites at which the class of interest is the395

most probable where this class is the one actually observed. One may also compute396

the representation of each class. The representation of a class is estimated by the397

proportion of those cross-validation sites where that class is observed at which it is398

the most probable class according to the sample from the prediction distribution.399

The overall purity of the prediction should be compared with two benchmark400

values. One is the proportion of all sites in the most frequent class (since that is401

the overall purity of a notional map in which all sites are allocated to the most402

frequent class). The second is the probability of correctly identifying the class at403

a site by a random guess where the probability of guessing class i is equal to the404

overall proportion of the area of interest in class i. We estimated the probability405

of guessing each class from the proportion of the sample data in that class. Let π̂i406

be the proportion of the sample in the ith out of I classes. The estimate of the407

probability of correctly identifying the class by a random guess is then408

I∑
i=1

π̂i
2. (11)

The overall purity, class purity and class representations are based only on the409

most-probable mapped class at each validation location. This is the best predic-410

tion at a site, but the output of the procedure presented in this paper also gives411

an indication of how confident we can be in the prediction because probabilities are412

computed for all classes. Consider two locations at which the probabilities for the413

four sediment classes are, respectively, {0.5, 0.2.0.25, 0.05} and {0.8, 0.1.0.05, 0.05}.414

In both cases the first class is the most probable, but we are more certain about415

the allocation in the second case. In the context of this study we are interested in416

whether the confidence in the predicted texture class, as measured by the class prob-417

abilities, is improved by including bathymetry and backscatter in the LMM. Two418

such sets of probabilities can be compared by computing their respective entropies.419

If πi is the probability of the ith out of m classes at some location, then the entropy420
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of the set of probabilities over all classes is:421

E = −
m∑
i=1

Ei, (12)

where422

Ei = πi log πi, πi > 0

= 0. πi = 0

If natural logarithms are used then the entropy is measured in nats. The en-423

tropy for the two example sets of probabilities given above are 1.16 and 0.71 nats424

respectively. The entropy is larger for the more uniform ensemble of probabilities425

where the uncertainty is larger. We call the entropy of the set of probabilities, com-426

puted from the E-BLUP prediction distribution at a site, the prediction entropy at427

that site. As a measure of the uncertainty of the predictions with and without the428

bathymetry and backscatter data, we computed the mean prediction entropy for429

each method over the cross-validation points. We also computed the entropy for the430

overall proportions of all the classes. The comparison between this class entropy431

and the mean prediction entropy is a measure of how much additional information432

the E-BLUP provides.433

Note that the mean entropy of a set of class predictions is computed without434

reference to whether the most-probable class is the observed class at these sites. It is435

therefore a measure of the ‘internal’ confidence of the prediction, i.e., the extent to436

which the computed class probabilities indicate one very likely class at that site, or437

several classes with similar probabilities. In general one might expect map purities438

and representations to be improved by the inclusion of a covariate in the LMM which439

reduces the mean entropy, but in principle these two sets of statistics could show440

opposing trends. It is therefore necessary to compute both sets of statistics for a441

full evaluation of a predictive model and to compare them both between models.442

2.4.4 Mapping443

The prediction distribution from the E-BLUP was evaluated at each node of444

17



the bathymetry/backscatter 50-m grid using the LMM with no covariates and the445

LMM with covariates selected from bathymetry and backscatter according to AIC,446

as described in the previous section. By numerical integration, the probability of447

each EUNIS sediment class was evaluated at each node. On this basis the most448

probable class could be identified and mapped, as could the probability of any one449

class. The entropy of the set of probabilities at each node was evaluated using450

Eq. 12.451

3. Results452

3.1 Exploratory statistics453

Table 1 shows summary statistics of the data from PSA expressed as percent-454

ages. Fig. 4 shows the ALR-transformed sand and mud data (with gravel as the455

denominator) expressed as quartiles (divisions of the range of values which partition456

the data into four equal-sized subsets). The figure shows the spatial dependence of457

the PSA data; neighbouring observations tend to be more similar with respect to458

both variables than observations which are further apart in space. This is encour-459

aging because such spatial dependence is captured by the LMM and provides the460

basis for the spatial prediction. In Fig. 5 the histograms of the ALR-Sand and mud461

contents are shown, and scatter plots of these two variables and of the bathymetry462

and backscatter values at the grab-sample locations. Note that both ALR-Sand463

and ALR-Mud have skew distributions, despite the log-transformations. This is the464

rationale for the inclusion of the Box-Cox transformation in the further analysis465

(Eq. 7). ALR-Mud and ALR-Sand are strongly correlated. Because this correlation466

appears after the ALR transform we can be confident that it is not a spurious corre-467

lation due to compositional effects (Pawlowsky-Glahn and Olea, 2004). It appears468

that, in this particular setting, the sandy and muddy sediments have comparable469

spatial distributions relative to gravel. This can also be seen in Fig. 4, the spatial470

distribution of the quartiles of ALR-Mud and ALR-Sand are very similar.471

The bathymetry and backscatter values also show a strong correlation, which472
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can also be seen in Figs. 2 and 3, the backscatter is smallest from deeper locations.473

This correlation is of interest because it is possible that one of these variables could474

be regarded as a proxy for the other, and that adding both to the LMM is therefore475

not justified. This is tested by the use of AIC for model selection.476

In Fig. 6 are shown scatter-plots of the ALR-transformed sand and mud content477

against both backscatter and bathymetry. The correlation coefficients are also shown478

on each plot. Note that there is a moderate to strong correlation between both ALR-479

Mud and ALR-Sand and backscatter, and a moderate correlation in both cases with480

bathymetry. This is encouraging because it suggests that either or both covariates481

may provide useful information for statistical prediction of the sediment data as482

fixed effects in the LMM. Note that there is more scatter in these plots where the483

backscatter is small (deeper sites). This potentially introduces some kurtosis (heavy484

tails) into the distribution of the random component of the LMM, which is another485

advantage of including the Box-Cox transformation.486

3.2 Model-fitting487

Table 2 presents the statistics of the LMMs. Note that the AIC is smallest for488

the model with bathymetry and backscatter both included as fixed effects. This is489

interesting because it shows that both covariates together provided more information490

about sediment composition than did either covariate separately, despite their strong491

correlation. Because the Box-Cox transformation differs between the models, we492

may not compare their variance components directly. However, it is interesting to493

note that in the model with no covariates, the correlated variances and covariances494

in the model (cS,S1 , cM,M1 and cS,M1 ) are all notably larger than the corresponding495

nugget variances and covariances (cS,S0 , cM,M0 and cS,M0 ). However, in the model with496

bathymetry and backscatter included as covariates, the position is reversed, and497

the nugget components of variance are the largest. This indicates that much of498

the long-range spatial variability that the relatively sparse grab-sampling resolves is499

accounted for by the covariates.500
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One may also compute the correlation between the coregionalized random com-501

ponents for ALR-Sand and ALR-Mud in the LMM. In this case there are two compo-502

nents, one of which is the nugget and the other the spatially correlated component.503

In the case of the model with no covariates this ‘structural correlation’ is 0.98 for504

the nugget component and 0.96 for the spatially correlated component of the model,505

showing that these particle size components are similarly strongly correlated at506

both fine and coarse spatial scales. By contrast, the nugget and spatially correlated507

structural correlations for the random terms, in the model with bathymetry and508

backscatter included as covariates, are 0.96 and 0.75 respectively. This shows that509

the fine-scale variability in ALR mud and sand not accounted for by the covariates510

remain strongly correlated, but that the coarser-scale variation is somewhat less511

strongly correlated. In other words, the covariates account for coarse-scale sources512

of variation which affect both mud and sand content of the sediment similarly, and513

the patterns of coarse-scale variation which remains unaccounted for by these covari-514

ates are similar for the two variables, but rather less similar than the corresponding515

fine-scale variation.516

Figure 7 shows the histograms of the cross-validation error for both variables517

under both LMM. In all cases, the errors have a symmetrical distribution which518

resembles a normal distribution. Table 3 shows the cross-validation results for Box-519

Cox transformed ALR-Sand and mud content. The mean square error for both520

ALR-Sand and ALR-Mud (Eq. 8) is notably reduced by including bathymetry and521

backscatter as covariates. Note that in all cases the mean standardized squared522

prediction error (Eq. 9) is close to one. Recall from section 2.4.3 that this statistic523

measures how well the prediction distribution of the E-BLUP characterizes its un-524

certainty. The mean standardized squared prediction error should be close to one,525

this is effectively a check on the model-fitting procedure. More sensitive as a test of526

the fitted LMM are the median values, expected to be close to 0.455 for normally-527

distributed prediction errors. In all cases the values fall within the 95% confidence528
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interval for the sample median with a sample of his size, [0.22, 0.64], suggesting that529

the model is reliable. In both cases, the median values are somewhat closer to the530

expected value for the model with both covariates included. One possible reason for531

this is that the covariates account for outlying values in the data, either marginal532

outliers (particularly large or small values) or spatial outliers (values that appear533

unusual in spatial context).534

Tables 4a and 4b show the results from computing probabilities for each EUNIS535

sediment class from the cross-validation distributions. The first part of each table536

shows the comparison between the most-probable class and the observed class, and537

the associated representations and purities. The overall proportion of validation sites538

where the most probable class, inferred from the E-BLUP distribution corresponds to539

the observed class is 0.58 when the only fixed effect is a constant, and is increased to540

0.65 by inclusion of bathymetry and backscatter as fixed effects. These proportions541

may be compared with 0.47 (the proportion of sites in the most common class) and542

0.31 (the probability of correctly allocating the class by guesswork; Eq.11). Note543

that all class purities are improved by including bathymetry and backscatter (apart544

from class ‘Mixed’ which is unaffected) and the representation of all classes apart545

from Sand and Muddy Sand is also improved. The overall class entropy is 1.27 nats.546

This is reduced to 1.13 by using the E-BLUP with no covariates, and to 0.96 by the547

inclusion of bathymetry and backscatter as covariates.548

3.3 Mapping549

Figure 8 shows the class of maximum probability according to the E-BLUP550

with (8a) the constant the only fixed effect and (8b) bathymetry and backscatter551

included as fixed effects. Given the relatively sparse sampling it is not surprising552

that the map based only on the sample data is more generalized than the map553

incorporating the backscatter and bathymetry. In particular, the Mixed class is554

more restricted in its distribution across the area. Both maps reveal the effect of555

broad-scale bathymetry (Fig. 2) on the distribution of seabed sediment. Coarser556
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sediment fractions (including ‘coarse’ and ‘mixed’) are typically associated with the557

bathymetric platforms within the area, and the bathymetric deep in the southeast of558

the study area shows a clear association with mud at seabed. These broad patterns559

can be seen in the map in Fig. 8a, which is based on the LMM where the only fixed560

effect is a constant and bathymetry is not used for prediction. They are, of course,561

more apparent in the map in Fig. 8b, based on the LMM which incorporates the562

acoustic data.563

Sediment class predictions based on the acoustic data also suggest clearer affini-564

ties between smaller-scale seabed geomorphology and sediment distribution (Fig.565

8b). This result is consistent with our understanding of the geology of the region566

e.g., glacially streamlined landforms (NW-SE oriented) are more likely to comprise567

coarse sediments (e.g., Colgan et al., 2005). This level of detail is not captured by568

the map presented in Fig. 8a where the acoustic data are not fixed effects in the569

LMM. Fig. 8c shows some of the predictions from the model with acoustic data570

at larger scale. This shows the coarser texture of sediment on glacially streamlined571

landforms (NW-SE orientation) captured by the model prediction where the features572

are sufficiently large (e.g., between ‘Mixed’ vs. ‘Sand’ classes). Note that there are573

significant variations of landform in Fig. 8c within the area where ‘Mud’ is the most574

probable class.575

Figure 9 shows the probability of the most probable class. Again, the spatial576

pattern is more general in Fig. 9a with no covariates, and the distribution of sample577

points dominates the pattern. Note, in both maps, the areas with greater uncertainty578

in two large areas where ‘Coarse’ is the most probable class and one in the west of579

the region where Mud and Sandy Mud is most probable. Not surprisingly, there580

is greater uncertainty at or near the boundaries between adjacent sediment classes.581

The vertical striping in Fig. (9b) reveals the persistence of artefacts in the acoustic582

data through to the modelled outputs. Here the striping artefact mimics the survey583

track lines, where the outer beams of the acoustic backscatter data are not entirely584
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normalized with those from adjacent lines. This emphasizes the requirement for high585

quality data acquisition and processing protocols when employing these methods.586

As discussed previously, the information in the local prediction distribution of the587

transformed compositional variables can be presented in terms of the most probable588

class, and its probability (as in Figs. 8 and 9) but it is also possible to show the589

probability of occurrence of particular sediment texture classes. For example, Fig.590

10 shows the probability of occurrence of texture class ‘Coarse’. The two maps show591

broadly similar spatial patterns, with finer spatial resolution where the acoustic592

covariates are included.593

As discussed in section 2.4.3., the degree of uncertainty in any local prediction594

distribution, with respect to the probability of the sediment texture classes, is sum-595

marized by the classification entropy which is large when the probabilities of each596

of the set of classes are similar (so uncertainty is greatest). Over 80% of the region597

the entropy is smaller when the covariates are used (Fig. 11), i.e., the uncertainty598

about the classes is reduced by incorporating the acoustic information.599

4. Discussion and Conclusions600

Our results show that the predictive accuracy of geostatistical mapping of sedi-601

ment texture classes can be improved by incorporation of bathymetry and backscat-602

ter data. This can be achieved by treating these variables as covariates in the LMM.603

The prediction is improved as judged from the cross validation error matrices and604

associated summary statistics, and also by the prediction entropy which shows that605

the uncertainty is, on average, reduced by the additional information. In contrast606

to the predictions from the model with a constant mean as the only fixed effect,607

model predictions incorporating the acoustic data captured finer detail in the distri-608

bution of sediments. These patterns are geologically plausible, reflecting the effects609

of several environmental processes which act upon the seabed at varying spatial and610

temporal scales (e.g., sedimentation of finer sediments in lower energy deeps; seabed611

exposure of coarser sediment associated with glacial landforms).612
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We have demonstrated the value of the LMM and E-BLUP for predicting sed-613

iment texture properties from grab samples and bathymetry and backscatter data614

in one study area. Further studies are needed to evaluate the method over a wider615

range of conditions. It is known from previous studies, cited above, that sediment616

properties are correlated with bathymetry and acoustic backscatter. Furthermore,617

since sediment properties depend on processes that operate at different spatial scales618

it is very likely that they will generally show spatial dependence. Given these two619

considerations it is reasonable to expect that the LMM will be found to be a generally620

useful model for this purpose.621

This approach retains the advantages of the ordinary cokriging approach pre-622

sented by Lark et al. (2012), whilst allowing the additional information in the623

covariates to be exploited. The advantages are that the linear mixed modelling is624

a robust and reproducible process, with internal model validation (through cross-625

validation on the prediction distributions). It is an objective process, not requiring626

expert interpretation, which may make it rather more rapid and less costly than con-627

ventional geological mapping. Finally, unlike data mining methods (such as machine628

learning), the LMM is a formal statistical model. The prediction distributions that629

are produced from it allow probabilistic assessments to be made of the uncertain630

allocations of locations to sediment classes, and can also be interrogated directly631

to provide estimates of the actual sand, mud and gravel content where this is re-632

quired. The covariates, being more densely sampled than the direct observations of633

sediment, allow more accurate predictions to be made at sites across the study area.634

Conventional geological mapping of sediments is laborious and requires experi-635

enced staff. However, process-based interpretation of observations provides a sound636

basis for mapping. In circumstances where an existing sediment map has been pro-637

duced by geological interpretation, and new data become available (e.g., sediment638

data and bathymetry and backscatter), then the LMM could be used to update the639

map by incorporating its units as a fixed effect. In this case the different mapped640
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units become (categorical) fixed effects in the LMM, along with the continuous co-641

variates (bathymetry and backscatter).642

While, as noted above, the LMM is a formal probabilistic model unlike data643

mining methods, the latter can be particularly useful for dealing with non-linear644

relationships between target variables and predictors. It would therefore be useful645

to compare the LMM with data mining methods, and expert interpretation, in a646

range of settings. Such comparative studies have been rare to date, but the one647

by Diesing et al. (2014) demonstrates their potential value. It would be useful to648

carry out such studies in a range of conditions to compare the LMM with expert649

intepretation and data mining methods with respect to both statistical measures of650

prediction quality and the time and cost requirements of the methods.651

It was notable that incorporating the covariates into the predictive models had652

the largest effect on the spatially correlated residual variance; i.e., the covariates653

largely explained the broader-scale patterns of variation in sediment composition.654

In the models with covariates included the nugget variance, i.e., the variance not655

resolved by sampling, was larger than the correlated variance. The fine-scale varia-656

tion in the ALR-mud and ALR-sand were strongly correlated, suggesting that they657

reflect common processes that these covariates did not capture. As a result, the658

final map gives a good impression of the general trends in sediment composition,659

but predicted variations over short distances are less certain.660

The structure of the LMM lends itself to the incorporation of additional infor-661

mation. For example, geomorphological interpretation of bathymetry, or continuous662

predictors based on the bathymetric surface (rugosity, slope etc.) might be incor-663

porated as covariates. Hydrodynamic model outputs (e.g., current speeds and wave664

orbital velocity) might similarly be incorporated as predictors, and the log-ratio665

testing procedure used here can be applied to evaluate the evidence for particular666

sources of information before a particular model is used for prediction. Finally, one667

possible way to reduce the residual variance of the model at the finest scales might be668
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through physical modelling of the characteristics of the backscatter (e.g., Sternlicht669

and de Moustier, 2003).670

In conclusion, the LMM was shown to be an effective method to incorporate671

backscatter and bathymetry information into the prediction of sediment texture672

classes. There is scope to use this approach to incorporate a wider range of pre-673

dictors, including outputs from physical models or other variables derived from674

bathymetry. It could also be used to incorporate conventional geological maps of675

the seabed as a way to update these with new data. There is scope for further work676

to develop this method (particularly for upscaling predictions) and to compare it677

with other approaches.678
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Table 1 Summary statistics of particle size class data.

Sand Mud Gravel
Percent by mass

Mean 72.93 14.22 12.85
Median 75.23 13.66 9.43
Standard deviation 12.91 7.86 12.97
First quartile 64.02 8.3 1.07
Third quartile 79.36 20.84 21.68
Minimum 42.58 1.13 0.00
Maximum 98.76 31.9 45.11
Minimum non-zero 42.58 1.13 0.018
value
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Table 3 Cross-validation results for (Box-Cox transformed) ALR-Sand and ALR-

Mud.

Fixed effects Mean square Standardized squared
error prediction error

Mean Median
Sand Mud Sand Mud Sand Mud

Constant only 0.76 0.09 1.03 1.04 0.38 0.33

Constant + acoustic bathymetry 0.44 0.02 1.05 1.05 0.46 0.35
+ acoustic backscatter
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Table 4a Cross-validation results for prediction of sediment texture classes; constant

the only fixed effect.

Distribution of observations

Most probable class

Observed Coarse Mixed Mud & Sand &
Class Sandy Mud Muddy Sand Representation

Coarse 8 0 1 3 0.66
Mixed 4 22 3 7 0.61
Mud &
Sandy Mud 1 4 8 3 0.50
Sand &
Muddy Sand 3 3 0 7 0.54

Purity 0.50 0.76 0.66 0.35

Proportion of validation sites
in most-probable class 0.58

Expected proportion correct
by random allocation 0.31

Proportion in commonest class
(Mixed) 0.47

Class entropy 1.27

Mean prediction entropy 1.13
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Table 4b Cross-validation results for prediction of sediment texture classes; acoustic

bathymetry and backscatter as fixed effects.

Distribution of observations

Most probable class

Observed Coarse Mixed Mud & Sand &
Class Sandy Mud Muddy Sand Representation

Coarse 9 2 0 1 0.75
Mixed 5 25 2 4 0.69
Mud &
Sandy Mud 0 1 10 5 0.63
Sand &
Muddy Sand 2 5 0 6 0.46

Purity 0.56 0.76 0.83 0.38

Proportion of validation sites
in most-probable class 0.65

Expected proportion correct
by random allocation 0.31

Proportion in commonest class
(Mixed) 0.47

Class entropy 1.27

Mean prediction entropy 0.96
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Figure Captions

Figure 1. EUNIS sediment texture classes defined on the ternary diagram for silt,

mud and sand.

Figure 2. High-resolution swath bathymetry of the study area with grab sample

locations indicated. The location of the study area off the northeast coast

of England is shown in inset. Acoustic and ground-truthing data provided

courtesy of Defra.

Figure 3. Acoustic backscatter data expressed in decibels (dB) with grab sample

locations indicated. Acoustic and ground-truthing data provided courtesy of

Defra.

Figure 4. Post-plot of ALR-transformed sand and mud content. The data are

divided into four sets defined by the quartiles of the distribution, so ‘Q1’

indicates observations smaller than the first quartile, i.e., the smallest 25% of

all data.

Figure 5. Histograms of ALR-transformed sand and mud content (top), scatter

plots of ALR-transformed sand and mud content and acoustic bathymetry and

backscatter with correlation coefficients (R) (bottom).

Figure 6. Scatterplots of ALR-transformed sand and mud content against acoustic

backscatter (top) and bathymetry (bottom). Correlation coefficients (R) are

also shown.

Figure 7. Histograms of cross-validation kriging errors for Box-Cox transformed

values of ALR-Sand and ALR-Mud using model with constant mean the only

fixed effect (top) or the selected model with both acoustic bathymetry and

backscatter as fixed effects (bottom).

Figure 8. Class of maximum probability according to E-BLUP distribution with

(a) constant only fixed effect, (b) bathymetry and backscatter as fixed effects,

38



(c) a section of the map obtained using bathymetry and backscatter in shown

at larger scale. The rectangle on (b) indicates the area of (c). Sediment class

predictions are overlain on shaded-relief backscatter.

Figure 9. Probability of class of maximum probability according to E-BLUP distri-

bution with (a) constant only fixed effect, and (b) bathymetry and backscatter

as fixed effects.

Figure 10. Probability of class ‘Coarse’ according to E-BLUP distribution with (a)

constant only fixed effect, and (b) bathymetry and backscatter as fixed effects.

Values are overlain on shaded-relief bathymetry to demonstrate association

between geomorphology and seabed sediment distribution.

Figure 11. Entropy of class prediction probabilities according to E-BLUP distri-

bution with (a) constant only fixed effect and (b) bathymetry and backscatter

as fixed effects.
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