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Summary (194 words)  26 

 Diatoms are widespread in aquatic ecosystems where they may be limited by the supply of 27 

inorganic carbon. Their carbon dioxide concentrating mechanisms (CCM) involving 28 

transporters and carbonic anhydrases (CAs) are well known, but the contribution of a 29 

biochemical CCM involving C4 metabolism is contentious. 30 

 The CCM(s) present in the marine centric diatom, Thalassiosira pseudonana, was studied 31 

in cells exposed to high or low concentrations of CO2, using a range of approaches. 32 

 At low CO2, cells possessed a CCM based on active uptake of CO2 (70% contribution) and 33 

bicarbonate, while at high CO2, cells were restricted to CO2. CA was highly and rapidly 34 

activated on transfer to low CO2 and played a key role because inhibition of external CA 35 

produced uptake kinetics similar to cells grown at high CO2. The activities of PEP 36 

carboxylase (PEPCase) and the PEP regenerating enzyme, pyruvate phosphate dikinase 37 

(PPDK), were lower in cells grown at low than at high CO2. The ratios of PEPCase and 38 

PPDK to ribulose bisphosphate carboxylase were substantially lower than one even at low 39 

CO2. 40 

 Our data suggest that the kinetic properties of this species results from a biophysical CCM 41 

and not from C4 type metabolism. 42 

 43 

Keywords: Bicarbonate-use, CCM, CO2, diatom, photosynthesis, Thalassiosira pseudonana.  44 

  45 
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Introduction 46 

Diatoms are unicellular microalgae that appeared around 120 to 250 million years ago (Sims 47 

et al., 2006; Sorhannus, 2007) and have since evolved to form a group of 30,000 to 100,000 48 

species (Mann & Vanormelingen, 2013) that are ubiquitous in aquatic and moist habitats. 49 

Like other Chromista, diatoms are thought to be derived from endosymbioses between a 50 

heterotrophic cell, a red alga, and possibly a genetic contribution from a green alga 51 

(Armbrust, 2009; Moustafa et al., 2009; Deschamps & Moreira, 2012). Because of their 52 

complex evolutionary history, the diatom genome comprises genes from algae, plus animals 53 

and bacteria which confers diatoms with features, such as the presence of the urea cycle, 54 

which differentiates them from other photoautotrophs (Allen et al., 2011). This biochemical 55 

diversity could be linked to their ecological success since the dominant oceanic phytoplankton 56 

switched from cyanobacteria and green algae to Chromista, such as diatoms and haptophytes, 57 

(Falkowski et al., 2004) at a time when atmospheric CO2 concentration declined and O2 58 

concentration increased (Katz et al., 2005; Armbrust, 2009; Raven et al., 2012). Today, 59 

diatoms are responsible for up to 40 % of primary production in the Earth’s largest ecosystem, 60 

the ocean (Roberts et al., 2007a) and a large proportion of the export of organic carbon to the 61 

ocean floor (Sarthou et al., 2005).  62 

Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) is universally present in 63 

photosynthetic organisms and catalyses two reactions, a carboxylation of ribulose-1,5-64 

bisphosphate (RuBP) with CO2, and an oxygenation of RuBP with O2 (Bowes et al., 1971; 65 

Gontero & Salvucci, 2014). These two reactions compete and thus the oxygenase reaction is 66 

favoured at low CO2 concentrations, reducing photosynthesis (Badger et al., 1998). The 67 

Michaelis-Menten constant (Km) for CO2 of the form 1D Rubisco of diatoms varies from 20 68 

to 60 µM which is higher than the CO2 concentration in marine ecosystems at equilibrium 69 

with the current atmosphere of 400 ppm (~16 µM depending on temperature; (Badger et al., 70 

1998; Whitney et al., 2011)). To circumvent or reduce carbon limitation of photosynthesis, 71 

some aquatic photosynthetic organisms, including diatoms, possess Carbon dioxide 72 

Concentrating Mechanisms (CCMs) that elevate the CO2 concentration around Rubisco, thus 73 

decreasing the oxygenase reaction and thereby increasing the rate of photosynthesis (Roberts 74 

et al., 2007a). 75 

Several types of CCM are known, based on biophysical or biochemical processes. 76 

Biophysical CCMs involve active transport of CO2 or bicarbonate (HCO3
-), and are present in 77 

many diatoms (Matsuda et al., 2011). For instance, in marine diatoms, the SLC4 HCO3
- 78 
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transporter is present in Phaeodactylum tricornutum (Nakajima et al., 2013), and homologous 79 

encoding genes are also found in Thalassiosira pseudonana (Armbrust et al., 2004). Carbonic 80 

anhydrase (CA) maintains equilibrium between CO2 and HCO3
- by catalysing the reversible 81 

interconversion of CO2 and water into HCO3
- and protons. It plays a role in diatom CCMs 82 

(Hopkinson et al., 2011; Matsuda et al., 2011) and its expression is increased under a low 83 

CO2 concentration in P. tricornutum and T. pseudonana (Harada et al., 2005; Crawfurd et al., 84 

2011; Hopkinson et al., 2013). In P. tricornutum, some CAs are redox-regulated and activated 85 

by reduced thioredoxins, suggesting that they are active during the day and inactive at night 86 

which is consistent with their participation in a CCM (Kikutani et al., 2012). 87 

Biochemical CCMs involving C4-type photosynthesis have been suggested to be 88 

involved in CO2 assimilation in some diatoms (Reinfelder et al., 2000). A functional C4 CCM 89 

requires an additional carboxylation enzyme, typically phosphoenolpyruvate carboxylase 90 

(PEPC), that catalyses the carboxylation of phosphoenolpyruvate (PEP) with HCO3
-, forming 91 

a C4 carbon compound. This compound is then cleaved by one of three decarboxylating 92 

enzymes to produce CO2 in the vicinity of Rubisco (Sage, 2004). Although C4 metabolism in 93 

terrestrial plants is usually associated with Kranz type anatomy (Sage, 2004), some terrestrial 94 

plants, such as Borszczowia aralocaspica, perform C4 type photosynthesis within one cell 95 

(Voznesenskaya et al., 2001). Similarly, in aquatic environments, Hydrilla verticillata, Ottelia 96 

alismoides, Egeria densa, Udotea flabellum and Ulva lynza are believed to perform this type 97 

of photosynthesis without Kranz anatomy (Reiskind & Bowes, 1991; Magnin et al., 1997; 98 

Lara et al., 2002; Xu et al., 2013; Zhang et al., 2014) and so it is feasible that this pathway 99 

may be present in diatoms (Kroth, 2015). 100 

In two diatoms whose genomes are fully sequenced and annotated, T. pseudonana 101 

(Armbrust et al., 2004) and P. tricornutum (Bowler et al., 2008), all the genes required for C4 102 

type photosynthesis are present. Thus, diatoms have the genetic potential to operate a C4 103 

pathway. However this possibility remains controversial (Raven, 2010) as there are a range of 104 

contradictory results for the possession of C4 metabolism in diatoms based on different 105 

approaches such as 14C labelling, use of specific C4 enzyme inhibitors (Reinfelder et al., 106 

2004), proteomic analysis, transcriptomic analysis, enzyme localisation  and RNA silencing 107 

(McGinn & Morel, 2008; Kustka et al., 2014; Tanaka et al., 2014). A recent study (Kustka et 108 

al., 2014), however, reaffirmed the operation of C4 photosynthesis in T. pseudonana grown at 109 

low CO2 and (Samukawa et al., 2014) concluded that the nature of the CO2 delivery system to 110 

the chloroplast needs to be investigated further (Samukawa et al., 2014). 111 
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The aim of this study was therefore to decipher the roles of biophysical and 112 

biochemical CCMs in a model diatom, T. pseudonana, using a range of techniques. We 113 

studied the effect of growth in air (400 ppm CO2) and extremely high, 20 000 ppm, and low, 114 

50 ppm CO2, on growth rate, photosynthetic kinetics, the activity of CA and the enzymes 115 

involved in C4-type metabolism. 116 

 117 

Materials and methods 118 

Strain, media and culture condition 119 

Thalassiosira pseudonana Hasle & Heim., strain CCAP 1085/12 (equivalent to CCMP1335, 120 

the strain whose genome has been sequenced), was grown in F/2+Si medium, pH 8, in 121 

artificial sea water (mM: 380 NaCl, 3 KCl, 4.39 CaCl2, 1.71 NaHCO3, 20.8 MgSO4, 0.88 122 

NaNO3, 0.036 NaH2PO4, 0.11 Na2SiO3), trace elements (µM: 12.3 Na2EDTA, 11.7 FeCl3, 123 

40.1 CuSO4, 0.077 ZnSO4, 0.042 CoCl2, 0.91 MnCl2, 0.013 Na2Mo4,) and vitamins (nM: 0.37 124 

B12 (cyanocobalamin), 300 B1 (thiamine-HCl) and 2.05 B8 (biotin)). 125 

Cultures were maintained in a growth cabinet (Innova 4230, New Brunswick Scientific) 126 

at 16°C with continuous illumination at 50 µmol photon m-2 s-1 photosynthetically active 127 

radiation (PAR, spectral band 400 to 700 nm) measured with a 2π sensor (Q201, Macam 128 

Photometric, Livingstone, UK) and were constantly shaken at 90 rpm. The cultures were aerated 129 

with one of three gas mixtures (50, 400 or 20 000 ppm) at a gas flow rate of 130 mL min-1 using 130 

mass-flow regulators (El-Flow, Bronkhorst High-Tech B.T, Nijverheidsstraat, Netherlands) 131 

that mixed air, 2% CO2 in air, and air that had been passed through soda lime, to remove CO2 132 

(Intersurgical, Wokingham, UK). Dissolved CO2 concentrations calculated using equations in 133 

(Weiss, 1974) were 2, 16 and 800 µM. Concentrations of CO2 and other components of the 134 

carbonate system were calculated from pH, alkalinity, temperature and salinity using the 135 

dissociation constants in Goyet & Poisson (Goyet & Poisson, 1989). During growth 136 

experiments, pH was checked daily using a combination pH electrode and meter (Eutech pH 137 

2700, Eutech Instruments, Landsmeer, Netherlands), optical density (OD) was measured at 600 138 

nm using a Perkin Elmer Lambda 25 UV/VIS spectrophotometer (Waltham, MA, USA) and 139 

number of cells was counted by microscopy using a Neubauer chamber. Growth rates were 140 

calculated as:  141 

݁ݐܽݎ	݄ݐݓݎܩ ൌ ቀ୪୬
ሺ௬ಳሻି୪୬	ሺ௬ಲሻ

௫ಳି	௫ಲ
ቁ  (Eqn 1) 142 
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Where: 143 

ln(yB) and ln(yA) correspond to the natural logarithm of OD at 600 nm or cell density 144 

(cell mL-1) measured at the start and end of the exponential phase and xB and xA correspond to 145 

the time (day) of these two points. 146 

Kinetics of O2 evolution 147 

Rates of net photosynthesis were measured as oxygen evolution in an electrode chamber 148 

thermostatted at 16°C (Oxygraph, Hansatech Instruments, Norfolk, UK) using O2 View 149 

software. The chamber was illuminated with a tungsten lamp with a hot-mirror cut-off filter at 150 

750-1100 nm (HMC-1033, UQG Cambridge, UK) to minimise heat input to the chamber. The 151 

cells received 200 µmol m-2 s-1 PAR which preliminary experiments had shown to be 152 

saturating but not photo-inhibiting. Cultures from the exponential phase were centrifuged at 153 

3720 g for 10 min at 16°C (Beckman Coulter Allegra® X-15R Centrifuge; rotor: 4750A) and 154 

the pellet was rinsed twice, and resuspended in artificial sea water containing 10 mM HEPES 155 

at either pH 7 or pH 8. A suspension (1 mL) containing ± 20 million cells was added to the 156 

oxygen electrode chamber. Respiration was measured after 10 min in the dark to allow 157 

steady-state rates to be produced. The cells were then illuminated and when net oxygen 158 

evolution had ceased, small volumes of stock (1, 10 and 100 mM) NaHCO3 were added to 159 

produce a range of concentrations of dissolved inorganic carbon (DIC, 10, 20, 50, 100, 150, 160 

200, 500, 1000 and 2000 μM) and the rate of change of oxygen concentration was recorded. 161 

To study the effect of CA on the rate of photosynthesis, 0.4 mM (final concentration) of 162 

acetazolamide (AZA; Sigma-Aldrich, St Louis, USA) an inhibitor of external CA, was added 163 

directly to the oxygen electrode in the light once oxygen evolution had ceased and 164 

immediately before the first addition of DIC. Biological duplicates and experimental 165 

triplicates were analysed, giving six replicates in total. The response of rate of net 166 

photosynthesis to the concentration of DIC was fitted to a slightly modified Michaelis-Menten 167 

equation that took into account the compensation point for DIC. 168 

At pH 7, CO2 represents 8 % of DIC while at pH 8 it only represents 0.8 %. This 169 

difference was used to discriminate between the effects of CO2 and HCO3
- on net oxygen 170 

evolution using a model that assumes separate uptake of these two forms of inorganic carbon 171 

with different K½ and compensation concentrations but a common total maximum uptake rate:  172 
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ݏ݅ݏ݄݁ݐ݊ݕݏݐ݄	݂	݁ݐܽݎ	ݐ݁ܰ ൌ ൬
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ೌೣ∗൫ைమି൯

½
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൰  ൬	
ሺଵିఈሻ∗

ೌೣ∗൫ுைయ
ష—ಳ൯

½
ಳ	ା൫ுைయ

షିಳ൯
	൰173 

 (Eqn 2) 174 

 175 

Where (rate as µmol O2 mg-1 Chla h-1 and concentration as µmol L-1): 176 

ܸ௧
௫ = the maximum rate of net photosynthesis 177 

α = the proportion of ܸ௧
௫resulting from CO2 uptake 178 

CO2 = the concentration of CO2 179 

  = the CO2 compensation concentration 180ܲܥ

½ܭ
 = the concentration of CO2 yielding half-maximal rates of net photosynthesis 181 

ଷܱܥܪ
ି =the concentration of ܱܥܪଷ

ି 182 

ଷܱܥܪ = the	ܲܥ
ି compensation concentration 183 

½ܭ
 = the concentration of ܱܥܪଷ

ି yielding half-maximal rates of net photosynthesis 184 

 185 

The best fit of the model parameters to the data was obtained by minimising the 186 

residual sum of squares of the difference between the measured and modelled rate of net 187 

photosynthesis. 188 

Chlorophyll extraction and measurement 189 

The culture was centrifuged at 3720 g, for 10 min at 4°C. The pellet was rinsed in distilled 190 

water, re-centrifuged and 2 mL of 96% ethanol was added. After incubation for 15 min at 4°C 191 

in the dark, the supernatant was removed and a second extraction was performed. The optical 192 

density of the bulked supernatant was measured with the spectrophotometer at 629 and 665 193 

nm. Optical density at 750 nm was negligible and so uncorrected values were used to 194 

calculate concentrations of Chlorophyll a using the equation in (Ritchie, 2006): 195 

Chl a (μg mL-1) = -1.4014 x A629 + 12.1551 x A665 (Eqn 3) 196 

Protein extraction and content 197 

The soluble protein extracts were prepared following (Erales et al., 2008; Mekhalfi et al., 198 

2014) in a buffer containing 1 mM NAD. The soluble protein concentration of crude extracts 199 



8 
 

was assayed using the Bio-Rad (Hercules, CA, USA) reagent using bovine serum albumin as 200 

a standard (Bradford, 1976). 201 

Enzyme activity measurement 202 

All enzyme activities were measured on cells from the exponential phase of growth. Carbonic 203 

anhydrase (CA) activity was measured spectrophotometrically using bromothymol blue as a 204 

pH indicator. Crude extracts of cells were incubated in 1.6 mL of buffer (25 mM Tris, 6.4 μM 205 

bromothymol blue at pH 9.1) in a cuvette at 3°C. The reaction was started by adding 0.4 mL 206 

of CO2 saturated milliQ water that had been kept on ice. Blanks were performed for each 207 

assay by omitting the sample. CA activity was estimated from the time required for the 208 

disappearance of the bromothymol blue absorbance at 620 nm which corresponds to a pH 209 

decrease from 9.1 to 6.2. Enzyme activity was calculated as Wilbur-Anderson Units (WAU) 210 

using the equation (Wilbur & Anderson, 1948): 211 

WAU = T0/T1-1 (Eqn 4) 212 

where T0 and T1 correspond to the acidification time without (blank) and with the 213 

sample in the reaction mixture, respectively. External CA (eCA) was determined on intact 214 

cells; total CA was determined on cells that had been broken by sonicating (Erales et al., 215 

2008); internal CA (iCA) was calculated from the difference between total CA and eCA. 216 

Other enzyme activities were measured from the rate of appearance or disappearance 217 

of NADH or NADPH at 340 nm at room temperature (20 to 25ºC). All biochemicals were 218 

obtained from Sigma Inc (Saint Louis, MO, USA). PEPC, NAD-dependent malic enzyme 219 

(NAD-ME) and Pyruvate phosphate dikinase (PPDK) activities were measured as described 220 

previously (Zhang et al., 2014). The activity of fully CO2-activated and non-activated Rubisco 221 

was measured. To activate Rubisco, the extract was pre-incubated in 50 mM Tris, 0.1 mM 222 

EDTA, 15 mM MgCl2, 40 mM bicarbonate and 5 mM dithiothreitol pH 8.0 for 10 min prior 223 

to assay in a 1 mL cuvette. To measure activity, 5 units of phosphoglycerate kinase and 224 

glyceraldehyde-3-phosphate dehydrogenase, 1 mM ATP and 0.2 mM NADH were added and 225 

the reaction was started by adding 1 mM ribulose 1,5-bisphosphate. The activity of non-226 

activated Rubisco was measured as above, but the reagents were all added at the same time 227 

without pre-incubation. The activation procedure is equivalent to that used to carbamylate 228 

Rubisco in higher plants, cyanobacteria and a range of algae but whether or not this is the 229 

mechanism involved in activation has not, to our knowledge, been studied in diatoms. 230 
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Rubisco, PEPC and CA activities were measured as a function of time after the switch 231 

to low CO2, and the curves were fitted with Sigma Plot software to experimental data using 232 

equation 5 for the carboxylases, and their activity ratio and equation 6 for CA: 233 

ܣ ൌ ܣ  ሺ1ሻ ∗ 	 ሺ݁ିሺଶሻ∗௧ሻ.        (Eqn 5) 234 

and  235 

ܣ ൌ ܣ  ሺ1ሻ ∗ 	 ሺ1 െ ݁ିሺଶሻ∗௧ሻ       (Eqn 6) 236 

where A is the rate of reaction per mg of Chla, A0, the activity at the beginning of the 237 

experiment before the switch to low CO2, p(1), the amplitude and p(2), the time constant.  238 

Statistical analysis 239 

Results were analysed using SigmaPlot (v 11.0, Systat Software GmbH, Erkrath, Germany). 240 

 241 

Results 242 

Effect of CO2 on growth rate 243 

The growth rate of T. pseudonana, was determined at three concentrations of CO2. In the 244 

absence of algae, pH at equilibrium with 50, 400 and 20 000 ppm CO2 was 8.8, 7.9 and 6.7. 245 

The corresponding calculated CO2 concentrations were 1, 19 and 320 µM for 50, 400 and 20 246 

000 ppm respectively, which were similar to the theoretical concentrations apart from at the 247 

highest CO2 concentration. In the cultures with algae at 20 000 ppm, the pH dropped quickly 248 

to 6.9 and then remained constant for several days (Fig. 1b). During exponential growth, the 249 

geometric mean pH was 6.95, equivalent to a CO2 concentration of about 180 µM. At 400 250 

ppm, pH increased progressively during the exponential phase and reached up to pH 9 to 9.2 251 

at the beginning of the stationary phase. The geometric average pH during the exponential 252 

phase was 8.55 which is equivalent to a CO2 concentration of about 3 µM. Similarly, when 253 

the cells were shifted from 20 000 to 50 ppm, the pH also increased and reached over 9.5 254 

corresponding to less than 0.1 µM CO2 (Fig. 1b). These elevated pH values were caused by 255 

the rate of CO2 consumption at high cell density exceeding the rate of CO2 supply. The 256 

maximum specific growth rate (0.70±0.01 d-1) at 20 000 ppm CO2 was about 1.3-fold higher 257 

than at 400 ppm CO2 (0.54±0.02 d-1, Fig. 1a). A similar ratio of growth rate at high and air 258 

CO2 was found, based on cell counts (data not shown). T. pseudonana was unable to grow 259 

when transferred from 20 000 to 50 ppm (Fig. 1a). Since the pH in the 50 ppm treatment was 260 
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stable for several days, it indicates that the treatment was not so severe as to cause cell death 261 

and this is consistent with the optical density data (Fig. 1a).  262 

Photosynthetic activity  263 

The maximal rate of net photosynthesis ( ܸ௧
௫) of T. pseudonana grown under 400 ppm CO2 264 

and measured at pH 7 (ca 110 µmol O2 h-1 mg-1 Chla) was similar to that measured at pH 8 265 

(Fig. 2a, Table 1). In contrast, the half-saturation concentration for DIC at pH 7 was about 3-266 

fold lower than that at pH 8 (Table 1). The DIC compensation point was also 3-fold lower at 267 

pH 7 than at pH 8. For cells grown at 20 000 ppm CO2, the maximal photosynthetic activity 268 

( ܸ௧
௫) measured at pH 7 was ca 205 µmol O2 h-1 mg-1 Chla which was twice that measured at 269 

pH 8 (Fig. 2d, Table 1). The half-saturation concentrations for DIC at pH 7 and pH 8, in 270 

contrast, were rather similar and around 50 µM. The DIC compensation points were 3 and 5 271 

µM at the two pH values. When T. pseudonana was grown at 20 000 ppm CO2, the slope of 272 

rate of photosynthesis against DIC was between 3.5 and 6.5-fold lower than that found when 273 

T. pseudonana was grown at 400 ppm CO2 (Table 1). 274 

The different kinetic parameters at pH 7 and 8 are consistent with different proportions 275 

of CO2 and HCO3
- being present at these two pH values and we used this to develop a model 276 

that distinguished between CO2 and HCO3
- uptake (Eqn 2). For cells grown at 400 ppm, this 277 

model gave a good fit to the data (R2 of 0.92; Table 2) and a ܸ௧
௫ of 112 µmol O2 h-1 mg-1 278 

Chla, corresponding to the sum of CO2- and HCO3
--dependent uptake, that was similar to that 279 

found when modelling kinetics against DIC. The model predicted that at saturation, CO2 280 

contributed 70% and HCO3
- contributed 30% to the maximal rate (Fig. 2b, c). The half-281 

saturation concentration for CO2 was 0.4 µM which was 7.5-fold lower than that for HCO3
- at 282 

3 µM. The compensation points were close to 0 for CO2 and 7 µM for HCO3
-. The slope of 283 

uptake was 7-times higher for CO2 than for HCO3
-. 284 

For cells grown at 20 000 ppm, the model gave a less good fit to the data than at 400 285 

ppm (R2 of 0.60; Table 2). The ܸ௧
௫ for CO2 was nearly identical to that of DIC and the 286 

contribution of HCO3
- was zero (Fig. 2e, f, Table 2). The half-saturation concentration for 287 

CO2 was 3.8 µM. and the compensation point was again close to 0 for CO2. In comparison to 288 

the cells grown at 400 ppm, cells at 20 000 ppm had a 1.8-fold greater ܸ௧
௫, a nearly 10-fold 289 

higher half-saturation constant for CO2, and thereby a 5.5-fold lower slope against CO2 and 290 

lacked the ability to use HCO3
-. At ambient conditions, presumed to be 16 µM CO2 and 2000 291 

µM HCO3
-, the rate of net photosynthesis was 98% saturated for cells grown at 400 ppm but 292 
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only 80% saturated for cells grown at 20 000 ppm (Table 2). For a 10-times lower CO2 293 

concentration of 1.6 µM, the rate of net photosynthesis was 81% and 30% saturated for cells 294 

grown at 400 and 20 000 ppm, respectively. Ambient concentrations of 2000 µM HCO3
- were 295 

saturating for cells grown at 400 ppm but HCO3
- use was absent in cells grown at 20 000 ppm. 296 

Net photosynthetic rate was also measured at pH 7 for cells switched from 20 000 ppm 297 

CO2 to low CO2 (50 ppm) for 6 h or 12 h (Fig. 3). After 6 h or 12 h at a low CO2 298 

concentration, the slopes were lower than that of cells grown at 400 ppm CO2 concentration. 299 

However at pH 7, ܸ௧
௫ values were intermediate to those found at 400 and 20 000 ppm, with 300 

a tendency to decrease as a function of time (Table 1). The half-saturation constant values 301 

also decreased as a function of time (Table 1). However, even after twelve hours at 50 ppm, 302 

the slope of photosynthesis rate to concentration of DIC was lower than for cells grown for 303 

several days at 400 ppm. 304 

Enzyme activities  305 

Enzymes that could be involved in biochemical or biophysical CCMs in T. pseudonana were 306 

studied. The activity of Rubisco was lower in cells grown at 400 ppm, compared to 20 000 307 

ppm (1.59-fold, Student t-test p< 0.001; Fig. 4). The rates of Rubisco activity (as carbon) 308 

cannot account for the oxygen-based rates of photosynthesis (6 vs 100 µmol.h-1.mg-1 Chla at 309 

400 ppm and 20 vs 205 µmol.h-1.mg-1 Chla at 20 000 ppm). The activity of fully CO2-310 

activated Rubisco was however about 3-fold higher than that of non-activated enzyme both at 311 

400 (18 µmol.h-1.mg-1 Chla ) and 20 000 ppm CO2 (60 µmol.h-1.mg-1 Chla) but again this was 312 

lower than the oxygen-based rates of photosynthesis even after assuming a photosynthetic 313 

quotient of 1.26 (Spilling et al., 2015). However, other mechanisms such as activation by 314 

protein-protein interaction with for instance, CbbX may also be involved (Mueller-Cajar et 315 

al., 2011). Surprisingly activities of the C4 enzymes, PEPC and PPDK were also lower (5.3-316 

fold, Student t-test p< 0.001; 4.6-fold, Student t-test p< 0.001 for PEPC and PPDK 317 

respectively) in cells from 400 ppm than those from 20 000 ppm CO2. In contrast, in cells 318 

grown at 400 ppm, NAD-ME and CA activities were higher (4.3-fold, Student t-test p< 0.001 319 

and 3.75-fold, Student t-test p< 0.001, respectively) than in cells grown at 20 000 ppm CO2. 320 

T. pseudonana cells acclimated to 20 000 ppm CO2 were shifted to 50 ppm CO2 to 321 

determine the rate of acclimation and to characterize the CCM under more carbon limiting 322 

conditions. Rubisco and PEPC activities both decreased exponentially with a time constant of 323 

0.086 (0.044) and 0.064 (0.035) h-1, respectively (Fig. 5a). Consequently, the PEPC:Rubisco 324 
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ratio, which began at about 0.27, also decreased exponentially to reach about 0.07, 48 h after 325 

the switch to low CO2 (Fig. 5b). Therefore the PEPC: Rubisco ratios are always much lower 326 

than 1. Twelve hours after the switch to 50 ppm CO2, the activity of NAD-ME increased 5.6 327 

(1.2)-fold while that of PPDK decreased 2.4 (0.2)-fold. These data therefore do not support a 328 

role for C4 type photosynthesis in the carbon assimilation of T. pseudonana. 329 

In contrast, upon the switch to low CO2 concentration, CA activity was induced 330 

rapidly. The CA activity that was less than 300 WAU increased exponentially to reach a 331 

modelled value of 4890 (700) WAU (16-fold increase) with a time constant of 0.13 (0.0587) 332 

h-1 (Fig. 5c). A ratio between internal CA (iCA) and external CA (eCA) of approximately 1 333 

was obtained for cells grown at all three CO2 concentrations. The effect of inhibiting eCA on 334 

the net photosynthetic rate of the cells grown at 400 ppm CO2 was tested at pH 7 using a 335 

specific inhibitor of eCA, AZA. The addition of AZA increased the half-saturation constant 336 

for DIC 5-fold, increased the compensation point about 3-fold and decreased the slope of 337 

response to DIC 4-fold but did not affect the maximum rate of net photosynthesis (Fig. 6, 338 

Table 1). The kinetic response of cells grown at 400 ppm CO2 but treated with AZA 339 

resembled those grown at 20 000 ppm CO2 (Table 1) suggesting that eCA has a key role in 340 

the carbon uptake properties in T. pseudonana.  341 

In order to check if the response to low CO2 was reversed on return to high CO2, 342 

cultures grown at 20 000 ppm, switched to 50 ppm for 24 h were then switched back to 20 343 

000 ppm for 12 h. While PEPC and PPDK activity increased (by 4.5-fold, Student t-test 344 

p<0.001 and 5.3-fold, Student t-test p<0.001, respectively), Rubisco activity did not change. 345 

NAD-ME and CA activity decreased (1.4-fold, Student t-test p< 0.05 and 3.3-fold Student t-346 

test p<0.001, respectively) (Fig. 7). 347 

These results show that the responses of T. pseudonana to CO2 are rapid and 348 

reversible. The kinetic properties of carbon uptake are strongly linked to the activity of CA, 349 

and the enzyme activity profiles suggest that carbon fixation involves C3 rather than C4 350 

metabolism.  351 

  352 
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Discussion 353 

Biophysical CCM in T. pseudonana 354 

Cells grown at 400 ppm CO2  have a K1/2 for CO2 of only 0.4 µM, which is in good agreement 355 

with the growth K½ estimated for T. pseudonana (Clark & Flynn, 2000) at 273 µM DIC, 356 

equivalent to about 1.4 µM CO2 under their experimental conditions. Both estimates are 357 

substantially lower than the K1/2 for diatom 1D Rubisco (20 to 60 µM) (Whitney et al., 2011) 358 

which clearly indicates that some form of CCM is operating. T. pseudonana grown at 400 359 

ppm CO2 preferentially used CO2 (70 %) rather than HCO3
- (30 %) at ambient and saturating 360 

conditions despite the approximately 120-fold higher concentration of HCO3
-. This is similar 361 

to P. tricornutum (Burkhardt et al., 2001) but different from T. weissflogii which took up CO2 362 

and HCO3
- at a similar rate (Burkhardt et al., 2001). For cells grown at 400 ppm, our reported 363 

K½ for DIC at pH 8 and 16°C, is very similar to that obtained for the same species at pH 8.2 364 

and 20°C (Nakajima et al., 2013) and to that reported for low CO2-grown Chlamydomonas 365 

reinhardtii cells (Sültemeyer et al., 1988).  366 

Cells of T. pseudonana grown at a 20,000 ppm CO2 were only able to use CO2 and the 367 

affinity (K1/2) for DIC was over 5-fold lower than for cells grown at 400 ppm CO2, a down-368 

regulation that has been reported in this and other marine diatoms e.g. (Burkhardt et al., 2001; 369 

Trimborn et al., 2009; Nakajima et al., 2013)and C. reinhardtii (Sültemeyer et al., 1988). In 370 

T. pseudonana, the K1/2 for CO2 was still about 4 µM and so substantially lower than the K1/2 371 

value for Rubisco: some down-regulated form of CCM therefore, still seems to be operating 372 

in T. pseudonana grown at 20 000 ppm. External and internal CA activity was also still 373 

present in these cells which might be adequate to promote CO2 uptake which is consistent 374 

with the finding that some forms of CA are constitutive in this species (Samukawa et al., 375 

2014).  376 

CA appears to be crucial in this CCM and that of other marine diatoms (Hopkinson et 377 

al., 2011). Our enzymatic activity data showing a rapid 4-fold up-regulation at 400 compared 378 

to 20,000 ppm are similar to previous reports (Hopkinson et al., 2013) and also in agreement 379 

with data obtained at the transcriptional level (McGinn & Morel, 2008; Kustka et al., 2014; 380 

Samukawa et al., 2014). All these reports indicate an increase in CA under low CO2. In T. 381 

pseudonana, CA is present in the periplasmic space, cytosol, mitochondria, periplastidial 382 

compartment and stroma (Tanaka et al., 2005; Samukawa et al., 2014). Using AZA we 383 

observed a decreased affinity for DIC, with kinetics very similar to those of cells growing at 384 

20 000 ppm, underlining the important role that extracellular CA plays in this CCM. So far as 385 
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we are aware, there is no literature for aquatic (or terrestrial) photoautotrophs with C4 386 

metabolism relying on eCA. On the contrary, work by Reiskind, Seamon & Bowes (Reiskind 387 

et al., 1988) on the CCM in the marine green macroalgae Udotea flabellum, which has a C4 388 

fixation pathway based on phosphoenolpyruvate carboxykinase, showed that CA was not 389 

involved since the CCM was active in the presence of a CA inhibitor. Furthermore, although 390 

the model of Kustka et al. (2014) reported upregulation of a number of carbonic anhydrases, 391 

including CA-6 that could be located at the cell surface, in their model (Fig. 6) they located it 392 

in the chloroplast endoplasmic reticulum. However, although there is no experimental 393 

evidence for eCA being involved in C4 metabolism, and most interpretations of CA increases 394 

are linked to the operation of a biophysical CCM, it is theoretically possible that an eCA 395 

could facilitate the rate of inward-diffusion of either CO2 or HCO3
- or both. 396 

As has been found for higher plant Rubisco (Lorimer et al., 1976), we observed an 397 

increase of Rubisco activity upon CO2-activation, presumably linked to a change in Rubisco 398 

carbamylation state, which was 3-fold for cells grown at 400 and 20 000 ppm CO2. Rubisco 399 

activity, whether the enzyme was activated or not, was always higher at high vs low CO2, on a 400 

Chla basis. It is possible that the greater Rubisco activity at high CO2 increased the capacity 401 

to fix CO2, since there appears to be little excess carboxylation capacity in diatoms (Glover & 402 

Morris, 1979). 403 

Evidence for and against C4 metabolism in T. pseudonana 404 

Whether or not C4 photosynthesis is involved in any of the kinetic characteristics that have 405 

been observed in T. pseudonana has been a matter of debate. Kutska et al. (Kustka et al., 406 

2014) produced a model of C4 metabolism for T. pseudonana in which PEPC, in the 407 

chloroplastic endoplasmic reticulum or the periplastidic space, fixes HCO3
- to produce 408 

oxaloacetic acid that is transported to the chloroplast where it is decarboxylated by pyruvate 409 

carboxylase to produce CO2 in the vicinity of Rubisco.  410 

In our experiments, the activity of PEPC was lower in cells from low CO2 (grown at 411 

400 or switched to 50 ppm) compared to high CO2 (20 000 ppm): the opposite to what is 412 

expected for C4 metabolism. The ratio of PEPC:Rubisco was also lower at 400 compared to 413 

20 000 ppm and decreased with time when cells were switched from 20 000 to 50 ppm. 414 

Furthermore, the ratio of PEPC:Rubisco in T. pseudonana was always much less than one 415 

while in aquatic C4 plants this ratio is between 1.8 and 6.6 and, in terrestrial plants, it is more 416 

than five (Zhang et al., 2014). Moreover, the activity of other enzymes required for the 417 

operation of the C4 cycle, such as PPDK, was also lower at low CO2. Although NAD-ME, 418 
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one of the three possible decarboxylating C4 enzymes, had a 4-fold higher activity at 400 419 

compared to 20 000 ppm, this enzyme also contributes to the overall regulation of malate 420 

metabolism in many organisms and thus its increase in activity is not necessarily associated 421 

with C4 metabolism. Malate is an important substrate for mitochondria, and a significant 422 

fraction of glycolytic products enters the Krebs cycle via the combined action of PEPCase, 423 

malate dehydrogenase, and malic enzyme without any link to C4 metabolism. Recently it has 424 

been shown that NAD-ME is located within the mitochondria in P. tricornutum, (Xue et al., 425 

2015) and within the cytosol in T. pseudonana (Tanaka et al., 2014). This suggests that the 426 

CO2 released from this decarboxylation would not be in the vicinity of Rubisco. Overall, these 427 

enzyme activities, and their pattern of change, are inconsistent with the operation of C4 428 

photosynthesis in this species. 429 

The conclusion that C4 metabolism is not an important component of the CCM in T. 430 

pseudonana is in agreement with recent work of (Tanaka et al., 2014) who observed a greater 431 

abundance of PEPC1 and PEPC2 transcripts in high, compared to low, CO2. Similarly, the 432 

transcripts for other enzymes potentially involved in C4 photosynthesis, PEPCK, PPDK and 433 

NAD-ME, were not higher when T. pseudonana was grown in low compared to high CO2, nor 434 

were they regulated by the circadian cycle suggesting they are not involved in C4 435 

photosynthesis. The absence of C4 metabolism was also concluded from the lack of change in 436 

PEPC:Rubisco ratio in cells of T. pseudonana grown at 50 or 800 ppm (Trimborn et al., 437 

2009). Finally, pulse-chase experiments showed that T. pseudonana did not incorporate 4-438 

carbon molecules during photosynthesis and immunoblots showed no difference in PEPC 439 

abundance in cells grown at 380 or 100 ppm (Roberts et al., 2007b). In contrast, the addition 440 

of 3,3-dichloro-2-(dihydroxyphosphinoylmethyl)-propenoate (DCDP), an inhibitor of PEPC, 441 

or 3-mercaptopicolinic acid (3-MPA) an inhibitor of PEPCK, reduced photosynthetic activity 442 

in T. pseudonana (McGinn & Morel, 2008). However, it has subsequently been shown that 443 

both inhibitors had no effect on the half-saturation constant but instead inhibited Vmax 444 

suggesting that they had a general toxic effect on metabolism rather than a specific effect on 445 

the CCM (Tanaka et al., 2005; Tanaka et al., 2014). The reason for these different 446 

conclusions is currently unclear.  Kustka et al., (2014) reported rapid (within 30 minutes) but 447 

transient (returned close to pre-transient levels in 90 minutes) changes in two forms of PEPC 448 

transcripts on transfer from pH 7.61 to 8.48. An alternative explanation to PEPC playing a 449 

photosynthetic role is that the response is linked to internal pH homeostasis by the production 450 

of carboxylic acids. Haimovich-Dayan et al. (2013) concluded that P. tricornutum lacked C4 451 
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metabolism and proposed that any C4-like metabolism is a futile cycle to dissipate light 452 

energy rather than to fix carbon and may also play a role in internal pH homeostasis 453 

(Haimovich-Dayan et al., 2013). Although diatoms such as T. pseudonana have biophysical 454 

pH regulation mechanisms based on a Na+-energised plasmalemma (Taylor et al., 2012), a 455 

biochemical pH-stat based on PEPC as part of the glycolytic pathway may also be involved in 456 

pH regulation (Sakano, 1998). The steady-state up-regulation of PEPC reported by Kustka et 457 

al. (2014) of between 1.52- and 1.75-fold is much lower than for the different forms of CA 458 

whose protein-level up-regulation is in broad agreement with our changes in activity. Kustka 459 

et al. (2014) also reported an up-regulation of two forms of the anion channel Bestrophin 460 

(Hartzell et al., 2008) of between 3.31- and 4.24-fold which could be involved in facilitating 461 

diffusion of oxaloacetate into the chloroplast. However, Bestrophin can also act as a HCO3
- 462 

channel (Qu & Hartzell, 2008) which would also be consistent with a biophysically based 463 

CCM.  464 
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Figure legends 642 

Fig. 1. Growth of T. pseudonana and pH of culture at 400 ppm CO2 (●), 20 000 ppm CO2 (○) 643 

and switched from 20 000 ppm to 50 ppm CO2 after 60 hours (▼). (a) Growth followed using 644 

optical density at 600 nm. (b) culture pH. 645 

 646 

Fig. 2. Rate of net photosynthesis of T. pseudonana grown at 400 ppm or 20 000 ppm CO2. 647 

(a) Rate measured for 400 ppm cultures at pH 7 (●) or pH 8 (○) vs concentration of dissolved 648 

inorganic carbon. (b) Modelled rate for 400 ppm cultures for combined pH values vs 649 

concentration of CO2. (c) Modelled rate for 400 ppm cultures for combined pH values vs 650 

concentration of HCO3
-. (d) Rate measured for 20 000 ppm cultures at pH 7 (●) or pH 8 (○) vs 651 

concentration of dissolved inorganic carbon. (e) Modelled rate for 20 000 ppm cultures for 652 

combined pH values vs concentration of CO2. (f) Modelled rate for 20 000 ppm cultures for 653 

combined pH values vs concentration of HCO3
-. The kinetic parameters for the model are 654 

shown in Table 2. 655 

 656 

Fig. 3. Rate of net photosynthesis at pH 7 of T. pseudonana grown at 20 000 ppm CO2 (●) 657 

and then switched to 50 ppm CO2 for 6 hours (○) or 12 hours (▼).The experimental data 658 

were fitted to a slightly modified Michaelis-Menten equation that took into account the 659 

compensation point for DIC, parameters are given in Table 1. 660 

 661 

Fig. 4. Activities of partially CO2-activated Rubisco, C4 enzymes and carbonic anhydrase in 662 

T. pseudonana grown at 400 ppm CO2 (black bars) and 20 000 ppm CO2 (grey bars). Bars to 663 

the left-hand side of the vertical line refer to the left-hand axis and vice versa. Error bars 664 

represent one standard deviation. ***, P<0.001.  665 

 666 

Fig. 5. Time course of enzyme activities after switching cultures from 20 000 ppm to 50 ppm 667 

CO2. (a) Activities of partially CO2-activated Rubisco (○) and PEPCase (●). (b) Ratio of 668 

PEPCase : Rubisco. (c) Activity of carbonic anhydrase. Error bars represent one standard 669 

deviation.  670 

 671 
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Fig. 6. Effect of acetazolamide (0.4 mM) on the kinetics of carbon uptake at pH 7 for T. 672 

pseudonana grown at 400 ppm CO2. Control (●) and treated cells (○) are shown. 673 

 674 

Fig. 7. Activities of partially CO2-activated Rubisco, C4 enzymes and carbonic anhydrase in 675 

T. pseudonana grown at 20 000 ppm CO2 and switched to 50 ppm CO2 for 24 hours (black 676 

bars) and then returned to 20 000 ppm CO2 for 12 hours (grey bars). Bars to the left-hand side 677 

of the vertical line refer to the left-hand axis and vice versa. Error bars represent one standard 678 

deviation. NS, not significant ; **, P<0.01; ***, P<0.001. 679 

 680 

 681 

 682 

 683 
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 684 

Table 1. Kinetics of photosynthesis by T. pseudonana grown at different CO2 concentrations and measured at different pH values and treated 685 

with 0.4 mM AZA. Values are the mean with standard error in parentheses. 686 

CO2 

(ppm) pH 

ܸ௧
௫ 

(µmol O2 h-1 

mg-1 Chla) 

K½ 

(µmol DIC L-1) 

CP 

(µmol DIC L-1) 

Slope (µmol O2 h-1 mg-

1 Chla µmol-1 DIC L) R2 

400 7 111 (3) 4.2 (0.9) 0.8 (0.2) 26 (6) 0.99 

400 8 113 (3) 15.3 (1.6) 2.4 (0.4) 7 (1) 0.99 

20 000 7 205 (17) 58.9 (22.6) 2.9 (5.9) 4 (1) 0.74 

20 000 8 95 (8) 46.5 (19) 5.1 (4.7) 2 (1) 0.71 

50 (6 h) 7 179 (5) 25.3 (3.6) 3.1(0.9) 7 (1) 0.95 

50 (12 h) 7 156 (3) 13.3 (1.4) 1.8 (0.4) 12 (1) 0.97 

400 + AZA 7 163 (7) 23.0 (4.2) 3.2 (0.9) 7 (1) 0.96 

687 
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Table 2. Modelled kinetics of CO2-dependent and HCO3
--dependent photosynthesis by T. pseudonana grown at 400 or 20 000 ppm CO2. Values 688 

are the mean with standard error of the estimate in parenthesis. Estimated rates as a percent of ܸ௧
௫ calculated for 16 µM CO2 and 2000 µM 689 

HCO3
-. The raw data are shown in Fig. 2a,d and the outcomes of the models are shown in Fig. 2b,c,e,f.  690 

 ܸ௧
௫ (µmol mg-1 

Chla h-1) 

K½ (µmol L-1) CP (µmol L-1) Slope (µmol O2 h-1 mg-1 

Chla µmol-1 L) 

Percent of 

ܸ௧
௫under 

ambient 

 

CO2 (ppm) CO2 HCO3
- CO2 HCO3

- CO2 HCO3
- CO2 HCO3

- CO2 HCO3
- R2 

400 85 (9) 27 (9) 0.4 (0.1) 2.7 (0.4) 0.0 (0.0) 7.5 (0.7) 296 (38) 42 (6) 98 100 0.92 

20 000 202 (39) 0.0 3.8 (0.1) - 0.0 (0.0) - 53 (9) - 60 - 0.60 

- : not applicable as bicarbonate use is absent.691 
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