
This document is the author’s final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. Some differences between this and the publisher’s version remain. You are advised to consult the publisher’s version if you wish to cite from this article.

The definitive version is available at http://onlinelibrary.wiley.com
The nature of the CO₂ concentrating mechanisms in a marine diatom, *Thalassiosira pseudonana*.

Romain Clementa, Laura Dimneta, Stephen C. Maberlyb & Brigitte Gonteroa

aAix-Marseille Université CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France

bCentre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP UK

Corresponding author: Dr B. Gontero

CNRS-BIP, 31 Chemin Joseph Aiguier, 13 402 Marseille Cedex 20 France

Email: bmeunier@imm.cnrs.fr

Phone : 33 4 91 16 45 49

Fax : 33 4 91 16 46 89

Total word count: (< 6500 words)

Introduction (913), Materials and methods (1468), Results (1643), Discussion (1572 words), Acknowledgements (52). SUM = 5648

7 Figures, 2 tables
Summary (194 words)

- Diatoms are widespread in aquatic ecosystems where they may be limited by the supply of inorganic carbon. Their carbon dioxide concentrating mechanisms (CCM) involving transporters and carbonic anhydrases (CAs) are well known, but the contribution of a biochemical CCM involving C4 metabolism is contentious.

- The CCM(s) present in the marine centric diatom, *Thalassiosira pseudonana*, was studied in cells exposed to high or low concentrations of CO2, using a range of approaches.

- At low CO2, cells possessed a CCM based on active uptake of CO2 (70% contribution) and bicarbonate, while at high CO2, cells were restricted to CO2. CA was highly and rapidly activated on transfer to low CO2 and played a key role because inhibition of external CA produced uptake kinetics similar to cells grown at high CO2. The activities of PEP carboxylase (PEPCase) and the PEP regenerating enzyme, pyruvate phosphate dikinase (PPDK), were lower in cells grown at low than at high CO2. The ratios of PEPCase and PPDK to ribulose bisphosphate carboxylase were substantially lower than one even at low CO2.

- Our data suggest that the kinetic properties of this species results from a biophysical CCM and not from C4 type metabolism.

Keywords: Bicarbonate-use, CCM, CO2, diatom, photosynthesis, *Thalassiosira pseudonana*.
Introduction

Diatoms are unicellular microalgae that appeared around 120 to 250 million years ago (Sims et al., 2006; Sorhannus, 2007) and have since evolved to form a group of 30,000 to 100,000 species (Mann & Vanormelingen, 2013) that are ubiquitous in aquatic and moist habitats. Like other Chromista, diatoms are thought to be derived from endosymbioses between a heterotrophic cell, a red alga, and possibly a genetic contribution from a green alga (Armbrust, 2009; Moustafa et al., 2009; Deschamps & Moreira, 2012). Because of their complex evolutionary history, the diatom genome comprises genes from algae, plus animals and bacteria which confers diatoms with features, such as the presence of the urea cycle, which differentiates them from other photoautotrophs (Allen et al., 2011). This biochemical diversity could be linked to their ecological success since the dominant oceanic phytoplankton switched from cyanobacteria and green algae to Chromista, such as diatoms and haptophytes, (Falkowski et al., 2004) at a time when atmospheric CO2 concentration declined and O2 concentration increased (Katz et al., 2005; Armbrust, 2009; Raven et al., 2012). Today, diatoms are responsible for up to 40 % of primary production in the Earth’s largest ecosystem, the ocean (Roberts et al., 2007a) and a large proportion of the export of organic carbon to the ocean floor (Sarthou et al., 2005).

Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) is universally present in photosynthetic organisms and catalyses two reactions, a carboxylation of ribulose-1,5-bisphosphate (RuBP) with CO2, and an oxygenation of RuBP with O2 (Bowes et al., 1971; Gontero & Salvucci, 2014). These two reactions compete and thus the oxygenase reaction is favoured at low CO2 concentrations, reducing photosynthesis (Badger et al., 1998). The Michaelis-Menten constant (Km) for CO2 of the form 1D Rubisco of diatoms varies from 20 to 60 µM which is higher than the CO2 concentration in marine ecosystems at equilibrium with the current atmosphere of 400 ppm (~16 µM depending on temperature; (Badger et al., 1998; Whitney et al., 2011)). To circumvent or reduce carbon limitation of photosynthesis, some aquatic photosynthetic organisms, including diatoms, possess Carbon dioxide Concentrating Mechanisms (CCMs) that elevate the CO2 concentration around Rubisco, thus decreasing the oxygenase reaction and thereby increasing the rate of photosynthesis (Roberts et al., 2007a).

Several types of CCM are known, based on biophysical or biochemical processes. Biophysical CCMs involve active transport of CO2 or bicarbonate (HCO3−), and are present in many diatoms (Matsuda et al., 2011). For instance, in marine diatoms, the SLC4 HCO3−
transporter is present in *Phaeodactylum tricornutum* (Nakajima *et al.*, 2013), and homologous encoding genes are also found in *Thalassiosira pseudonana* (Armbrust *et al.*, 2004). Carbonic anhydrase (CA) maintains equilibrium between CO2 and HCO3− by catalysing the reversible interconversion of CO2 and water into HCO3− and protons. It plays a role in diatom CCMs (Hopkinson *et al.*, 2011; Matsuda *et al.*, 2011) and its expression is increased under a low CO2 concentration in *P. tricornutum* and *T. pseudonana* (Harada *et al.*, 2005; Crawfurd *et al.*, 2011; Hopkinson *et al.*, 2013). In *P. tricornutum*, some CAs are redox-regulated and activated by reduced thioredoxins, suggesting that they are active during the day and inactive at night which is consistent with their participation in a CCM (Kikutani *et al.*, 2012).

Biochemical CCMs involving C4-type photosynthesis have been suggested to be involved in CO2 assimilation in some diatoms (Reinfelder *et al.*, 2000). A functional C4 CCM requires an additional carboxylation enzyme, typically phosphoenolpyruvate carboxylase (PEPC), that catalyses the carboxylation of phosphoenolpyruvate (PEP) with HCO3−, forming a C4 carbon compound. This compound is then cleaved by one of three decarboxylating enzymes to produce CO2 in the vicinity of Rubisco (Sage, 2004). Although C4 metabolism in terrestrial plants is usually associated with Kranz type anatomy (Sage, 2004), some terrestrial plants, such as *Borszczowia aralocaspica*, perform C4 type photosynthesis within one cell (Voznesenskaya *et al.*, 2001). Similarly, in aquatic environments, *Hydrilla verticillata*, *Ottelia alismoides*, *Egeria densa*, *Udotea flabellum* and *Ulva lynza* are believed to perform this type of photosynthesis without Kranz anatomy (Reiskind & Bowes, 1991; Magnin *et al.*, 1997; Lara *et al.*, 2002; Xu *et al.*, 2013; Zhang *et al.*, 2014) and so it is feasible that this pathway may be present in diatoms (Kroth, 2015).

In two diatoms whose genomes are fully sequenced and annotated, *T. pseudonana* (Armbrust *et al.*, 2004) and *P. tricornutum* (Bowler *et al.*, 2008), all the genes required for C4 type photosynthesis are present. Thus, diatoms have the genetic potential to operate a C4 pathway. However this possibility remains controversial (Raven, 2010) as there are a range of contradictory results for the possession of C4 metabolism in diatoms based on different approaches such as 14C labelling, use of specific C4 enzyme inhibitors (Reinfelder *et al.*, 2004), proteomic analysis, transcriptomic analysis, enzyme localisation and RNA silencing (McGinn & Morel, 2008; Kustka *et al.*, 2014; Tanaka *et al.*, 2014). A recent study (Kustka *et al.*, 2014), however, reaffirmed the operation of C4 photosynthesis in *T. pseudonana* grown at low CO2 and (Samukawa *et al.*, 2014) concluded that the nature of the CO2 delivery system to the chloroplast needs to be investigated further (Samukawa *et al.*, 2014).
The aim of this study was therefore to decipher the roles of biophysical and biochemical CCMs in a model diatom, *T. pseudonana*, using a range of techniques. We studied the effect of growth in air (400 ppm CO₂) and extremely high, 20 000 ppm, and low, 50 ppm CO₂, on growth rate, photosynthetic kinetics, the activity of CA and the enzymes involved in C4-type metabolism.

Materials and methods

Strain, media and culture condition

Thalassiosira pseudonana Hasle & Heim., strain CCAP 1085/12 (equivalent to CCMP1335, the strain whose genome has been sequenced), was grown in F/2+Si medium, pH 8, in artificial sea water (mM: 380 NaCl, 3 KCl, 4.39 CaCl₂, 1.71 NaHCO₃, 20.8 MgSO₄, 0.88 NaNO₃, 0.036 NaH₂PO₄, 0.11 Na₂SiO₃), trace elements (µM: 12.3 Na₂EDTA, 11.7 FeCl₃, 40.1 CuSO₄, 0.077 ZnSO₄, 0.042 CoCl₂, 0.91 MnCl₂, 0.013 Na₂Mo₄) and vitamins (nM: 0.37 B12 (cyanocobalamin), 300 B1 (thiamine-HCl) and 2.05 B8 (biotin)). Cultures were maintained in a growth cabinet (Innova 4230, New Brunswick Scientific) at 16°C with continuous illumination at 50 µmol photon m⁻² s⁻¹ photosynthetically active radiation (PAR, spectral band 400 to 700 nm) measured with a 2π sensor (Q201, Macam Photometric, Livingstone, UK) and were constantly shaken at 90 rpm. The cultures were aerated with one of three gas mixtures (50, 400 or 20 000 ppm) at a gas flow rate of 130 mL min⁻¹ using mass-flow regulators (El-Flow, Bronkhorst High-Tech B.T, Nijverheidsstraat, Netherlands) that mixed air, 2% CO₂ in air, and air that had been passed through soda lime, to remove CO₂ (Intersurgical, Wokingham, UK). Dissolved CO₂ concentrations calculated using equations in (Weiss, 1974) were 2, 16 and 800 µM. Concentrations of CO₂ and other components of the carbonate system were calculated from pH, alkalinity, temperature and salinity using the dissociation constants in Goyet & Poisson (Goyet & Poisson, 1989). During growth experiments, pH was checked daily using a combination pH electrode and meter (Eutech pH 2700, Eutech Instruments, Landsmeer, Netherlands), optical density (OD) was measured at 600 nm using a Perkin Elmer Lambda 25 UV/VIS spectrophotometer (Waltham, MA, USA) and number of cells was counted by microscopy using a Neubauer chamber. Growth rates were calculated as:

\[
\text{Growth rate} = \left(\frac{\ln(y_B) - \ln(y_A)}{x_B - x_A} \right)
\]
(Eqn 1)
Where:

\[\ln(y_B) \text{ and } \ln(y_A) \text{ correspond to the natural logarithm of OD at 600 nm or cell density (cell mL}^{-1}) \text{ measured at the start and end of the exponential phase and } x_B \text{ and } x_A \text{ correspond to the time (day) of these two points.} \]

Kinetics of O\(_2\) evolution

Rates of net photosynthesis were measured as oxygen evolution in an electrode chamber thermostatted at 16°C (Oxygraph, Hansatech Instruments, Norfolk, UK) using O2 View software. The chamber was illuminated with a tungsten lamp with a hot-mirror cut-off filter at 750-1100 nm (HMC-1033, UQG Cambridge, UK) to minimise heat input to the chamber. The cells received 200 µmol m\(^{-2}\) s\(^{-1}\) PAR which preliminary experiments had shown to be saturating but not photo-inhibiting. Cultures from the exponential phase were centrifuged at 3720 g for 10 min at 16°C (Beckman Coulter Allegra® X-15R Centrifuge; rotor: 4750A) and the pellet was rinsed twice, and resuspended in artificial sea water containing 10 mM HEPES at either pH 7 or pH 8. A suspension (1 mL) containing ± 20 million cells was added to the oxygen electrode chamber. Respiration was measured after 10 min in the dark to allow steady-state rates to be produced. The cells were then illuminated and when net oxygen evolution had ceased, small volumes of stock (1, 10 and 100 mM) NaHCO\(_3\) were added to produce a range of concentrations of dissolved inorganic carbon (DIC, 10, 20, 50, 100, 150, 200, 500, 1000 and 2000 \(\mu\)M) and the rate of change of oxygen concentration was recorded. To study the effect of CA on the rate of photosynthesis, 0.4 mM (final concentration) of acetazolamide (AZA; Sigma-Aldrich, St Louis, USA) an inhibitor of external CA, was added directly to the oxygen electrode in the light once oxygen evolution had ceased and immediately before the first addition of DIC. Biological duplicates and experimental triplicates were analysed, giving six replicates in total. The response of rate of net photosynthesis to the concentration of DIC was fitted to a slightly modified Michaelis-Menten equation that took into account the compensation point for DIC.

At pH 7, CO\(_2\) represents 8% of DIC while at pH 8 it only represents 0.8%. This difference was used to discriminate between the effects of CO\(_2\) and HCO\(_3^-\) on net oxygen evolution using a model that assumes separate uptake of these two forms of inorganic carbon with different K\(_{1/2}\) and compensation concentrations but a common total maximum uptake rate:
Net rate of photosynthesis = \left(\frac{\alpha V_{\text{net}}^\text{max}}{K_{\alpha}^C + (CO_2 - CP^C)} \right) + \left(\frac{(1-\alpha)V_{\text{net}}^\text{max}(HCO_3^- - CP^B)}{K_{\alpha}^B + (HCO_3^- - CP^B)} \right)

(Eqn 2)

Where (rate as \mu\text{mol O}_2 \text{ mg}^{-1} \text{ Chl} a \text{ h}^{-1} \text{ and concentration as } \mu\text{mol L}^{-1}): V_{\text{net}}^\text{max} = \text{the maximum rate of net photosynthesis}
\alpha = \text{the proportion of } V_{\text{net}}^\text{max} \text{ resulting from CO}_2 \text{ uptake}
\text{CO}_2 = \text{the concentration of CO}_2
CP^C = \text{the CO}_2 \text{ compensation concentration}
K_{\alpha}^C = \text{the concentration of CO}_2 \text{ yielding half-maximal rates of net photosynthesis}
HCO_3^- = \text{the concentration of } HCO_3^-
CP^B = \text{the } HCO_3^- \text{ compensation concentration}
K_{\alpha}^B = \text{the concentration of } HCO_3^- \text{ yielding half-maximal rates of net photosynthesis}

The best fit of the model parameters to the data was obtained by minimising the residual sum of squares of the difference between the measured and modelled rate of net photosynthesis.

Chlorophyll extraction and measurement

The culture was centrifuged at 3720 g, for 10 min at 4°C. The pellet was rinsed in distilled water, re-centrifuged and 2 mL of 96% ethanol was added. After incubation for 15 min at 4°C in the dark, the supernatant was removed and a second extraction was performed. The optical density of the bulked supernatant was measured with the spectrophotometer at 629 and 665 nm. Optical density at 750 nm was negligible and so uncorrected values were used to calculate concentrations of Chlorophyll \(a \) using the equation in (Ritchie, 2006):

\[\text{Chl } a \ (\mu\text{g mL}^{-1}) = -1.4014 \times A_{629} + 12.1551 \times A_{665} \]

(Eqn 3)

Protein extraction and content

The soluble protein extracts were prepared following (Erales et al., 2008; Mekhalfi et al., 2014) in a buffer containing 1 mM NAD. The soluble protein concentration of crude extracts
was assayed using the Bio-Rad (Hercules, CA, USA) reagent using bovine serum albumin as
a standard (Bradford, 1976).

Enzyme activity measurement

All enzyme activities were measured on cells from the exponential phase of growth. Carbonic
anhydrase (CA) activity was measured spectrophotometrically using bromothymol blue as a
pH indicator. Crude extracts of cells were incubated in 1.6 mL of buffer (25 mM Tris, 6.4 μM
bromothymol blue at pH 9.1) in a cuvette at 3°C. The reaction was started by adding 0.4 mL
of CO₂ saturated milliQ water that had been kept on ice. Blanks were performed for each
assay by omitting the sample. CA activity was estimated from the time required for the
disappearance of the bromothymol blue absorbance at 620 nm which corresponds to a pH
decrease from 9.1 to 6.2. Enzyme activity was calculated as Wilbur-Anderson Units (WAU)
using the equation (Wilbur & Anderson, 1948):

\[
WAU = \frac{T_0}{T_1 - 1}
\]

where \(T_0 \) and \(T_1 \) correspond to the acidification time without (blank) and with the
sample in the reaction mixture, respectively. External CA (eCA) was determined on intact
cells; total CA was determined on cells that had been broken by sonicating (Erales et al.,
2008); internal CA (iCA) was calculated from the difference between total CA and eCA.

Other enzyme activities were measured from the rate of appearance or disappearance
of NADH or NADPH at 340 nm at room temperature (20 to 25°C). All biochemicals were
obtained from Sigma Inc (Saint Louis, MO, USA). PEPC, NAD-dependent malic enzyme
(NAD-ME) and Pyruvate phosphate dikinase (PPDK) activities were measured as described
previously (Zhang et al., 2014). The activity of fully CO₂-activated and non-activated Rubisco
was measured. To activate Rubisco, the extract was pre-incubated in 50 mM Tris, 0.1 mM
EDTA, 15 mM MgCl₂, 40 mM bicarbonate and 5 mM dithiothreitol pH 8.0 for 10 min prior
to assay in a 1 mL cuvette. To measure activity, 5 units of phosphoglycerate kinase and
glyceraldehyde-3-phosphate dehydrogenase, 1 mM ATP and 0.2 mM NADH were added and
the reaction was started by adding 1 mM ribulose 1,5-bisphosphate. The activity of non-
activated Rubisco was measured as above, but the reagents were all added at the same time
without pre-incubation. The activation procedure is equivalent to that used to carbamylate
Rubisco in higher plants, cyanobacteria and a range of algae but whether or not this is the
mechanism involved in activation has not, to our knowledge, been studied in diatoms.
Rubisco, PEPC and CA activities were measured as a function of time after the switch to low CO₂, and the curves were fitted with Sigma Plot software to experimental data using equation 5 for the carboxylases, and their activity ratio and equation 6 for CA:

\[A = A_0 + p(1) \times e^{-p(2) \times t}. \]

(Eqn 5)

and

\[A = A_0 + p(1) \times (1 - e^{-p(2) \times t}). \]

(Eqn 6)

where \(A \) is the rate of reaction per mg of Chl \(_a\), \(A_0 \), the activity at the beginning of the experiment before the switch to low CO₂, \(p(1) \), the amplitude and \(p(2) \), the time constant.

Statistical analysis

Results were analysed using SigmaPlot (v 11.0, Systat Software GmbH, Erkrath, Germany).

Results

Effect of CO₂ on growth rate

The growth rate of \(T. pseudonana \), was determined at three concentrations of CO₂. In the absence of algae, pH at equilibrium with 50, 400 and 20 000 ppm CO₂ was 8.8, 7.9 and 6.7. The corresponding calculated CO₂ concentrations were 1, 19 and 320 µM for 50, 400 and 20 000 ppm respectively, which were similar to the theoretical concentrations apart from at the highest CO₂ concentration. In the cultures with algae at 20 000 ppm, the pH dropped quickly to 6.9 and then remained constant for several days (Fig. 1b). During exponential growth, the geometric mean pH was 6.95, equivalent to a CO₂ concentration of about 180 µM. At 400 ppm, pH increased progressively during the exponential phase and reached up to pH 9 to 9.2 at the beginning of the stationary phase. The geometric average pH during the exponential phase was 8.55 which is equivalent to a CO₂ concentration of about 3 µM. Similarly, when the cells were shifted from 20 000 to 50 ppm, the pH also increased and reached over 9.5 corresponding to less than 0.1 µM CO₂ (Fig. 1b). These elevated pH values were caused by the rate of CO₂ consumption at high cell density exceeding the rate of CO₂ supply. The maximum specific growth rate (0.70±0.01 d\(^{-1}\)) at 20 000 ppm CO₂ was about 1.3-fold higher than at 400 ppm CO₂ (0.54±0.02 d\(^{-1}\), Fig. 1a). A similar ratio of growth rate at high and air CO₂ was found, based on cell counts (data not shown). \(T. pseudonana \) was unable to grow when transferred from 20 000 to 50 ppm (Fig. 1a). Since the pH in the 50 ppm treatment was
stable for several days, it indicates that the treatment was not so severe as to cause cell death
and this is consistent with the optical density data (Fig. 1a).

Photosynthetic activity

The maximal rate of net photosynthesis (V_{net}^{max}) of *T. pseudonana* grown under 400 ppm CO2
and measured at pH 7 (ca 110 µmol O$_2$ h$^{-1}$ mg$^{-1}$ Chl a) was similar to that measured at pH 8
(Fig. 2a, Table 1). In contrast, the half-saturation concentration for DIC at pH 7 was about 3-
fold lower than that at pH 8 (Table 1). The DIC compensation point was also 3-fold lower at
pH 7 than at pH 8. For cells grown at 20 000 ppm CO$_2$, the maximal photosynthetic activity
(V_{net}^{max}) measured at pH 7 was ca 205 µmol O$_2$ h$^{-1}$ mg$^{-1}$ Chl a which was twice that measured at
pH 8 (Fig. 2d, Table 1). The half-saturation concentrations for DIC at pH 7 and pH 8, in
contrast, were rather similar and around 50 µM. The DIC compensation points were 3 and 5
µM at the two pH values. When *T. pseudonana* was grown at 20 000 ppm CO$_2$, the slope of
rate of photosynthesis against DIC was between 3.5 and 6.5-fold lower than that found when
T. pseudonana was grown at 400 ppm CO$_2$ (Table 1).

The different kinetic parameters at pH 7 and 8 are consistent with different proportions
of CO$_2$ and HCO$_3^-$ being present at these two pH values and we used this to develop a model
that distinguished between CO$_2$ and HCO$_3^-$ uptake (Eqn 2). For cells grown at 400 ppm, this
model gave a good fit to the data (R^2 of 0.92; Table 2) and a V_{net}^{max} of 112 µmol O$_2$ h$^{-1}$ mg$^{-1}$
Chl a, corresponding to the sum of CO$_2$- and HCO$_3^-$-dependent uptake, that was similar to that
found when modelling kinetics against DIC. The model predicted that at saturation, CO$_2$
contributed 70% and HCO$_3^-$ contributed 30% to the maximal rate (Fig. 2b, c). The half-
saturation concentration for CO$_2$ was 0.4 µM which was 7.5-fold lower than that for HCO$_3^-$ at
3 µM. The compensation points were close to 0 for CO$_2$ and 7 µM for HCO$_3^-$. The slope of
uptake was 7-times higher for CO$_2$ than for HCO$_3^-$.

For cells grown at 20 000 ppm, the model gave a less good fit to the data than at 400
ppm (R^2 of 0.60; Table 2). The V_{net}^{max} for CO$_2$ was nearly identical to that of DIC and the
contribution of HCO$_3^-$ was zero (Fig. 2e, f, Table 2). The half-saturation concentration for
CO$_2$ was 3.8 µM. and the compensation point was again close to 0 for CO$_2$. In comparison to
the cells grown at 400 ppm, cells at 20 000 ppm had a 1.8-fold greater V_{net}^{max}, a nearly 10-fold
higher half-saturation constant for CO$_2$, and thereby a 5.5-fold lower slope against CO$_2$ and
lacked the ability to use HCO$_3^-$. At ambient conditions, presumed to be 16 µM CO$_2$ and 2000
µM HCO$_3^-$, the rate of net photosynthesis was 98% saturated for cells grown at 400 ppm but
only 80% saturated for cells grown at 20 000 ppm (Table 2). For a 10-times lower CO₂ concentration of 1.6 µM, the rate of net photosynthesis was 81% and 30% saturated for cells grown at 400 and 20 000 ppm, respectively. Ambient concentrations of 2000 µM HCO₃⁻ were saturating for cells grown at 400 ppm but HCO₃⁻ use was absent in cells grown at 20 000 ppm.

Net photosynthetic rate was also measured at pH 7 for cells switched from 20 000 ppm CO₂ to low CO₂ (50 ppm) for 6 h or 12 h (Fig. 3). After 6 h or 12 h at a low CO₂ concentration, the slopes were lower than that of cells grown at 400 ppm CO₂ concentration. However at pH 7, V_{net}^{max} values were intermediate to those found at 400 and 20 000 ppm, with a tendency to decrease as a function of time (Table 1). The half-saturation constant values also decreased as a function of time (Table 1). However, even after twelve hours at 50 ppm, the slope of photosynthesis rate to concentration of DIC was lower than for cells grown for several days at 400 ppm.

Enzyme activities

Enzymes that could be involved in biochemical or biophysical CCMs in *T. pseudonana* were studied. The activity of Rubisco was lower in cells grown at 400 ppm, compared to 20 000 ppm (1.59-fold, Student t-test p< 0.001; Fig. 4). The rates of Rubisco activity (as carbon) cannot account for the oxygen-based rates of photosynthesis (6 vs 100 µmol.h⁻¹.mg⁻¹ Chl a at 400 ppm and 20 vs 205 µmol.h⁻¹.mg⁻¹ Chl a at 20 000 ppm). The activity of fully CO₂-activated Rubisco was however about 3-fold higher than that of non-activated enzyme both at 400 (18 µmol.h⁻¹.mg⁻¹ Chl a) and 20 000 ppm CO₂ (60 µmol.h⁻¹.mg⁻¹ Chl a) but again this was lower than the oxygen-based rates of photosynthesis even after assuming a photosynthetic quotient of 1.26 (Spilling *et al.*, 2015). However, other mechanisms such as activation by protein-protein interaction with for instance, CbbX may also be involved (Mueller-Cajar *et al.*, 2011). Surprisingly activities of the C4 enzymes, PEPC and PPDK were also lower (5.3-fold, Student t-test p< 0.001; 4.6-fold, Student t-test p< 0.001 for PEPC and PPDK respectively) in cells from 400 ppm than those from 20 000 ppm CO₂. In contrast, in cells grown at 400 ppm, NAD-ME and CA activities were higher (4.3-fold, Student t-test p< 0.001 and 3.75-fold, Student t-test p< 0.001, respectively) than in cells grown at 20 000 ppm CO₂.

T. pseudonana cells acclimated to 20 000 ppm CO₂ were shifted to 50 ppm CO₂ to determine the rate of acclimation and to characterize the CCM under more carbon limiting conditions. Rubisco and PEPC activities both decreased exponentially with a time constant of 0.086 (0.044) and 0.064 (0.035) h⁻¹, respectively (Fig. 5a). Consequently, the PEPC:Rubisco
ratio, which began at about 0.27, also decreased exponentially to reach about 0.07, 48 h after the switch to low CO₂ (Fig. 5b). Therefore the PEPC: Rubisco ratios are always much lower than 1. Twelve hours after the switch to 50 ppm CO₂, the activity of NAD-ME increased 5.6 (1.2)-fold while that of PPDK decreased 2.4 (0.2)-fold. These data therefore do not support a role for C4 type photosynthesis in the carbon assimilation of *T. pseudonana.*

In contrast, upon the switch to low CO₂ concentration, CA activity was induced rapidly. The CA activity that was less than 300 WAU increased exponentially to reach a modelled value of 4890 (700) WAU (16-fold increase) with a time constant of 0.13 (0.0587) h⁻¹ (Fig. 5c). A ratio between internal CA (iCA) and external CA (eCA) of approximately 1 was obtained for cells grown at all three CO₂ concentrations. The effect of inhibiting eCA on the net photosynthetic rate of the cells grown at 400 ppm CO₂ was tested at pH 7 using a specific inhibitor of eCA, AZA. The addition of AZA increased the half-saturation constant for DIC 5-fold, increased the compensation point about 3-fold and decreased the slope of response to DIC 4-fold but did not affect the maximum rate of net photosynthesis (Fig. 6, Table 1). The kinetic response of cells grown at 400 ppm CO₂ but treated with AZA resembled those grown at 20 000 ppm CO₂ (Table 1) suggesting that eCA has a key role in the carbon uptake properties in *T. pseudonana.*

In order to check if the response to low CO₂ was reversed on return to high CO₂, cultures grown at 20 000 ppm, switched to 50 ppm for 24 h were then switched back to 2000 ppm for 12 h. While PEPC and PPDK activity increased (by 4.5-fold, Student t-test p<0.001 and 5.3-fold, Student t-test p<0.001, respectively), Rubisco activity did not change. NAD-ME and CA activity decreased (1.4-fold, Student t-test p<0.05 and 3.3-fold Student t-test p<0.001, respectively) (Fig. 7).

These results show that the responses of *T. pseudonana* to CO₂ are rapid and reversible. The kinetic properties of carbon uptake are strongly linked to the activity of CA, and the enzyme activity profiles suggest that carbon fixation involves C3 rather than C4 metabolism.
Discussion

Biophysical CCM in *T. pseudonana*

Cells grown at 400 ppm CO₂ have a K₁/₂ for CO₂ of only 0.4 µM, which is in good agreement with the growth K₁/₂ estimated for *T. pseudonana* (Clark & Flynn, 2000) at 273 µM DIC, equivalent to about 1.4 µM CO₂ under their experimental conditions. Both estimates are substantially lower than the K₁/₂ for diatom 1D Rubisco (20 to 60 µM) (Whitney *et al.*, 2011) which clearly indicates that some form of CCM is operating. *T. pseudonana* grown at 400 ppm CO₂ preferentially used CO₂ (70 %) rather than HCO₃⁻ (30 %) at ambient and saturating conditions despite the approximately 120-fold higher concentration of HCO₃⁻. This is similar to *P. tricornutum* (Burkhardt *et al.*, 2001) but different from *T. weissflogii* which took up CO₂ and HCO₃⁻ at a similar rate (Burkhardt *et al.*, 2001). For cells grown at 400 ppm, our reported K₁/₂ for DIC at pH 8 and 16°C, is very similar to that obtained for the same species at pH 8.2 and 20°C (Nakajima *et al.*, 2013) and to that reported for low CO₂-grown *Chlamydomonas reinhardtii* cells (Sültemeyer *et al.*, 1988).

Cells of *T. pseudonana* grown at a 20,000 ppm CO₂ were only able to use CO₂ and the affinity (K₁/₂) for DIC was over 5-fold lower than for cells grown at 400 ppm CO₂, a down-regulation that has been reported in this and other marine diatoms e.g. (Burkhardt *et al.*, 2001; Trimborn *et al.*, 2009; Nakajima *et al.*, 2013) and *C. reinhardtii* (Sültemeyer *et al.*, 1988). In *T. pseudonana*, the K₁/₂ for CO₂ was still about 4 µM and so substantially lower than the K₁/₂ value for Rubisco: some down-regulated form of CCM therefore, still seems to be operating in *T. pseudonana* grown at 20 000 ppm. External and internal CA activity was also still present in these cells which might be adequate to promote CO₂ uptake which is consistent with the finding that some forms of CA are constitutive in this species (Samukawa *et al.*, 2014).

CA appears to be crucial in this CCM and that of other marine diatoms (Hopkinson *et al.*, 2011). Our enzymatic activity data showing a rapid 4-fold up-regulation at 400 compared to 20,000 ppm are similar to previous reports (Hopkinson *et al.*, 2013) and also in agreement with data obtained at the transcriptional level (McGinn & Morel, 2008; Kustka *et al.*, 2014; Samukawa *et al.*, 2014). All these reports indicate an increase in CA under low CO₂. In *T. pseudonana*, CA is present in the periplasmic space, cytosol, mitochondria, periplastidial compartment and stroma (Tanaka *et al.*, 2005; Samukawa *et al.*, 2014). Using AZA we observed a decreased affinity for DIC, with kinetics very similar to those of cells growing at 20 000 ppm, underlining the important role that extracellular CA plays in this CCM. So far as
we are aware, there is no literature for aquatic (or terrestrial) photoautotrophs with C4 metabolism relying on eCA. On the contrary, work by Reiskind, Seamon & Bowes (Reiskind et al., 1988) on the CCM in the marine green macroalgae *Udotea flabellum*, which has a C4 fixation pathway based on phosphoenolpyruvate carboxykinase, showed that CA was not involved since the CCM was active in the presence of a CA inhibitor. Furthermore, although the model of Kustka et al. (2014) reported upregulation of a number of carbonic anhydrases, including CA-6 that could be located at the cell surface, in their model (Fig. 6) they located it in the chloroplast endoplasmic reticulum. However, although there is no experimental evidence for eCA being involved in C4 metabolism, and most interpretations of CA increases are linked to the operation of a biophysical CCM, it is theoretically possible that an eCA could facilitate the rate of inward-diffusion of either CO₂ or HCO₃⁻ or both.

As has been found for higher plant Rubisco (Lorimer et al., 1976), we observed an increase of Rubisco activity upon CO₂-activation, presumably linked to a change in Rubisco carbamylation state, which was 3-fold for cells grown at 400 and 20 000 ppm CO₂. Rubisco activity, whether the enzyme was activated or not, was always higher at high vs low CO₂, on a Chla basis. It is possible that the greater Rubisco activity at high CO₂ increased the capacity to fix CO₂, since there appears to be little excess carboxylation capacity in diatoms (Glover & Morris, 1979).

Evidence for and against C4 metabolism in T. pseudonana

Whether or not C4 photosynthesis is involved in any of the kinetic characteristics that have been observed in *T. pseudonana* has been a matter of debate. Kustka et al. (Kustka et al., 2014) produced a model of C4 metabolism for *T. pseudonana* in which PEPC, in the chloroplastic endoplasmic reticulum or the periplastidic space, fixes HCO₃⁻ to produce oxaloacetic acid that is transported to the chloroplast where it is decarboxylated by pyruvate carboxylase to produce CO₂ in the vicinity of Rubisco.

In our experiments, the activity of PEPC was lower in cells from low CO₂ (grown at 400 or switched to 50 ppm) compared to high CO₂ (20 000 ppm): the opposite to what is expected for C4 metabolism. The ratio of PEPC:Rubisco was also lower at 400 compared to 20 000 ppm and decreased with time when cells were switched from 20 000 to 50 ppm. Furthermore, the ratio of PEPC:Rubisco in *T. pseudonana* was always much less than one while in aquatic C4 plants this ratio is between 1.8 and 6.6 and, in terrestrial plants, it is more than five (Zhang et al., 2014). Moreover, the activity of other enzymes required for the operation of the C4 cycle, such as PPDK, was also lower at low CO₂. Although NAD-ME,
one of the three possible decarboxylating C4 enzymes, had a 4-fold higher activity at 400 ppm compared to 20,000 ppm, this enzyme also contributes to the overall regulation of malate metabolism in many organisms and thus its increase in activity is not necessarily associated with C4 metabolism. Malate is an important substrate for mitochondria, and a significant fraction of glycolytic products enters the Krebs cycle via the combined action of PEPCase, malate dehydrogenase, and malic enzyme without any link to C4 metabolism. Recently it has been shown that NAD-ME is located within the mitochondria in *P. tricornutum*, (Xue *et al.*, 2015) and within the cytosol in *T. pseudonana* (Tanaka *et al.*, 2014). This suggests that the CO₂ released from this decarboxylation would not be in the vicinity of Rubisco. Overall, these enzyme activities, and their pattern of change, are inconsistent with the operation of C4 photosynthesis in this species.

The conclusion that C4 metabolism is not an important component of the CCM in *T. pseudonana* is in agreement with recent work of (Tanaka *et al.*, 2014) who observed a greater abundance of PEPC1 and PEPC2 transcripts in high, compared to low, CO₂. Similarly, the transcripts for other enzymes potentially involved in C4 photosynthesis, PEPCK, PPDK and NAD-ME, were not higher when *T. pseudonana* was grown in low compared to high CO₂, nor were they regulated by the circadian cycle suggesting they are not involved in C4 photosynthesis. The absence of C4 metabolism was also concluded from the lack of change in PEPC:Rubisco ratio in cells of *T. pseudonana* grown at 50 or 800 ppm (Trimborn *et al.*, 2009). Finally, pulse-chase experiments showed that *T. pseudonana* did not incorporate 4-carbon molecules during photosynthesis and immunoblots showed no difference in PEPC abundance in cells grown at 380 or 100 ppm (Roberts *et al.*, 2007b). In contrast, the addition of 3,3-dichloro-2-(dihydroxyphosphinoylmethyl)-propenoate (DCDP), an inhibitor of PEPC, or 3-mercaptopticolinic acid (3-MPA) an inhibitor of PEPCK, reduced photosynthetic activity in *T. pseudonana* (McGinn & Morel, 2008). However, it has subsequently been shown that both inhibitors had no effect on the half-saturation constant but instead inhibited V_max suggesting that they had a general toxic effect on metabolism rather than a specific effect on the CCM (Tanaka *et al.*, 2005; Tanaka *et al.*, 2014). The reason for these different conclusions is currently unclear. Kustka *et al.*, (2014) reported rapid (within 30 minutes) but transient (returned close to pre-transient levels in 90 minutes) changes in two forms of PEPC transcripts on transfer from pH 7.61 to 8.48. An alternative explanation to PEPC playing a photosynthetic role is that the response is linked to internal pH homeostasis by the production of carboxylic acids. Haimovich-Dayan *et al.* (2013) concluded that *P. tricornutum* lacked C4
metabolism and proposed that any C4-like metabolism is a futile cycle to dissipate light energy rather than to fix carbon and may also play a role in internal pH homeostasis (Haimovich-Dayan et al., 2013). Although diatoms such as *T. pseudonana* have biophysical pH regulation mechanisms based on a Na⁺-energised plasmalemma (Taylor et al., 2012), a biochemical pH-stat based on PEPC as part of the glycolytic pathway may also be involved in pH regulation (Sakano, 1998). The steady-state up-regulation of PEPC reported by Kustka et al. (2014) of between 1.52- and 1.75-fold is much lower than for the different forms of CA whose protein-level up-regulation is in broad agreement with our changes in activity. Kustka et al. (2014) also reported an up-regulation of two forms of the anion channel Bestrophin (Hartzell et al., 2008) of between 3.31- and 4.24-fold which could be involved in facilitating diffusion of oxaloacetate into the chloroplast. However, Bestrophin can also act as a HCO₃⁻ channel (Qu & Hartzell, 2008) which would also be consistent with a biophysically based CCM.

Acknowledgements

RC’s studentship was supported by the Ministère de l’Education Nationale, de la Recherche et de la Technologie (MENRT). Financial support was provided by CNRS, Aix Marseille Université, the Region PACA, IBiSA and A*MIDEX project (n° ANR-11-IDEX-0001-02) (BG) and the UK Natural Environment Research Council (SCM). We thank Ahmed Zellat for technical support.

Author Contribution

RC, SM and BG planned and designed the research. RC and LD performed the experiments. RC, SM and BG analyzed the data and wrote the manuscript.

References

Figure legends

Fig. 1. Growth of *T. pseudonana* and pH of culture at 400 ppm CO$_2$ (●), 20 000 ppm CO$_2$ (○) and switched from 20 000 ppm to 50 ppm CO$_2$ after 60 hours (▼). (a) Growth followed using optical density at 600 nm. (b) culture pH.

Fig. 2. Rate of net photosynthesis of *T. pseudonana* grown at 400 ppm or 20 000 ppm CO$_2$. (a) Rate measured for 400 ppm cultures at pH 7 (●) or pH 8 (○) vs concentration of dissolved inorganic carbon. (b) Modelled rate for 400 ppm cultures for combined pH values vs concentration of CO$_2$. (c) Modelled rate for 400 ppm cultures for combined pH values vs concentration of HCO$_3^-$. (d) Rate measured for 20 000 ppm cultures at pH 7 (●) or pH 8 (○) vs concentration of dissolved inorganic carbon. (e) Modelled rate for 20 000 ppm cultures for combined pH values vs concentration of CO$_2$. (f) Modelled rate for 20 000 ppm cultures for combined pH values vs concentration of HCO$_3^-$. The kinetic parameters for the model are shown in Table 2.

Fig. 3. Rate of net photosynthesis at pH 7 of *T. pseudonana* grown at 20 000 ppm CO$_2$ (●) and then switched to 50 ppm CO$_2$ for 6 hours (○) or 12 hours (▼). The experimental data were fitted to a slightly modified Michaelis-Menten equation that took into account the compensation point for DIC, parameters are given in Table 1.

Fig. 4. Activities of partially CO$_2$-activated Rubisco, C4 enzymes and carbonic anhydrase in *T. pseudonana* grown at 400 ppm CO$_2$ (black bars) and 20 000 ppm CO$_2$ (grey bars). Bars to the left-hand side of the vertical line refer to the left-hand axis and *vice versa*. Error bars represent one standard deviation. ***, P<0.001.

Fig. 5. Time course of enzyme activities after switching cultures from 20 000 ppm to 50 ppm CO$_2$. (a) Activities of partially CO$_2$-activated Rubisco (○) and PEPCase (●). (b) Ratio of PEPCase : Rubisco. (c) Activity of carbonic anhydrase. Error bars represent one standard deviation.
Fig. 6. Effect of acetazolamide (0.4 mM) on the kinetics of carbon uptake at pH 7 for *T. pseudonana* grown at 400 ppm CO$_2$. Control (●) and treated cells (○) are shown.

Fig. 7. Activities of partially CO$_2$-activated Rubisco, C4 enzymes and carbonic anhydrase in *T. pseudonana* grown at 20 000 ppm CO$_2$ and switched to 50 ppm CO$_2$ for 24 hours (black bars) and then returned to 20 000 ppm CO$_2$ for 12 hours (grey bars). Bars to the left-hand side of the vertical line refer to the left-hand axis and *vice versa*. Error bars represent one standard deviation. NS, not significant; **, P<0.01; ***, P<0.001.
Table 1. Kinetics of photosynthesis by *T. pseudonana* grown at different CO$_2$ concentrations and measured at different pH values and treated with 0.4 mM AZA. Values are the mean with standard error in parentheses.

<table>
<thead>
<tr>
<th>CO$_2$ (ppm)</th>
<th>pH</th>
<th>V_{net}^{max} (µmol O$_2$ h$^{-1}$ mg$^{-1}$ Chl a)</th>
<th>$K_{1/2}$ (µmol DIC L$^{-1}$)</th>
<th>CP (µmol DIC L$^{-1}$)</th>
<th>Slope (µmol O$_2$ h$^{-1}$ mg$^{-1}$ Chl a µmol$^{-1}$ DIC L)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>7</td>
<td>111 (3)</td>
<td>4.2 (0.9)</td>
<td>0.8 (0.2)</td>
<td>26 (6)</td>
<td>0.99</td>
</tr>
<tr>
<td>400</td>
<td>8</td>
<td>113 (3)</td>
<td>15.3 (1.6)</td>
<td>2.4 (0.4)</td>
<td>7 (1)</td>
<td>0.99</td>
</tr>
<tr>
<td>20 000</td>
<td>7</td>
<td>205 (17)</td>
<td>58.9 (22.6)</td>
<td>2.9 (5.9)</td>
<td>4 (1)</td>
<td>0.74</td>
</tr>
<tr>
<td>20 000</td>
<td>8</td>
<td>95 (8)</td>
<td>46.5 (19)</td>
<td>5.1 (4.7)</td>
<td>2 (1)</td>
<td>0.71</td>
</tr>
<tr>
<td>50 (6 h)</td>
<td>7</td>
<td>179 (5)</td>
<td>25.3 (3.6)</td>
<td>3.1(0.9)</td>
<td>7 (1)</td>
<td>0.95</td>
</tr>
<tr>
<td>50 (12 h)</td>
<td>7</td>
<td>156 (3)</td>
<td>13.3 (1.4)</td>
<td>1.8 (0.4)</td>
<td>12 (1)</td>
<td>0.97</td>
</tr>
<tr>
<td>400 + AZA</td>
<td>7</td>
<td>163 (7)</td>
<td>23.0 (4.2)</td>
<td>3.2 (0.9)</td>
<td>7 (1)</td>
<td>0.96</td>
</tr>
</tbody>
</table>
Table 2. Modelled kinetics of CO$_2$-dependent and HCO$_3^-$-dependent photosynthesis by *T. pseudonana* grown at 400 or 20 000 ppm CO$_2$. Values are the mean with standard error of the estimate in parenthesis. Estimated rates as a percent of V_{net}^{max} calculated for 16 µM CO$_2$ and 2000 µM HCO$_3^-$. The raw data are shown in Fig. 2a,d and the outcomes of the models are shown in Fig. 2b,c,e,f.

<table>
<thead>
<tr>
<th>CO$_2$ (ppm)</th>
<th>CO$_2$</th>
<th>HCO$_3^-$</th>
<th>CO$_2$</th>
<th>HCO$_3^-$</th>
<th>CO$_2$</th>
<th>HCO$_3^-$</th>
<th>CO$_2$</th>
<th>HCO$_3^-$</th>
<th>CO$_2$</th>
<th>HCO$_3^-$</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>85 (9)</td>
<td>27 (9)</td>
<td>0.4 (0.1)</td>
<td>2.7 (0.4)</td>
<td>0.0 (0.0)</td>
<td>7.5 (0.7)</td>
<td>296 (38)</td>
<td>42 (6)</td>
<td>98</td>
<td>100</td>
<td>0.92</td>
</tr>
<tr>
<td>20 000</td>
<td>202 (39)</td>
<td>0.0</td>
<td>3.8 (0.1)</td>
<td>-</td>
<td>0.0 (0.0)</td>
<td>-</td>
<td>53 (9)</td>
<td>-</td>
<td>60</td>
<td>-</td>
<td>0.60</td>
</tr>
</tbody>
</table>

- : not applicable as bicarbonate use is absent.
Fig. 2
Fig 3
Fig. 4
Fig 6
Fig. 7