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Abstract: Autonomous Underwater Vehicles (AUVs) are effective platforms for science research and 9 

monitoring, and for military and commercial data-gathering purposes. However, there is an inevitable risk of 10 

loss during any mission. Quantifying the risk of loss is complex, due to the combination of vehicle reliability 11 

and environmental factors, and cannot be determined through analytical means alone. An alternative 12 

approach – formal expert judgment – is a time-consuming process; consequently a method is needed to 13 

broaden the applicability of judgments beyond the narrow confines of an elicitation for a defined 14 

environment. We propose and explore a solution founded on a Bayesian Belief Network (BBN), where the 15 

results of the expert judgment elicitation are taken as the initial prior probability of loss due to failure. The 16 

network topology captures the causal effects of the environment separately on the vehicle and on the 17 

support platform, and combines these to produce an updated probability of loss due to failure. An extended 18 

version of the Kaplan Meier estimator is then used to update the mission risk profile with travelled distance. 19 

Sensitivity analysis of the BBN is presented and a case study of Autosub3 AUV deployment in the Amundsen 20 

Sea is discussed in detail. 21 

 22 
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1. Introduction  1 

Autonomous Underwater Vehicles (AUVs) have a future as effective platforms for science research and 2 

monitoring, and for military and commercial data-gathering purposes. Increasingly they are being used in 3 

environments that are not benign[1, 2]. Environments such as under sea ice [3], under shelf ice [4], or along 4 

rocky coasts [5] intuitively give rise to a higher risk of loss should the vehicle malfunction. The risk of loss is 5 

real; for example, Australian and British AUVs have been lost under ice sheets [6] and one team maintained a 6 

lightweight tether to an AUV when operating under sea ice. The problem of predicting risk of loss is not only 7 

one of predicting the reliability of the vehicle as a whole, its sub-systems and its components, but also of how 8 

the operating environment, together with reliability, sets the probability of losing the vehicle. It is not obvious 9 

that an approach based on separate statistical analyses of vehicle reliability and the affects of the 10 

environment on probability of loss is either feasible or meaningful. Such an approach, when reduced to 11 

summary statistics such as mean time to failure, would ignore the interaction between individual faults or 12 

incidents and the environment, which we postulate to be at the centre of this problem.  13 

One alternative would be to assess the probability of loss in various environments directly, by counting the 14 

frequency of occurrence. This frequentist approach is certainly appropriate for assessing the reliability of 15 

identical engineered systems, where probability of failure is derived from a long-run frequency of occurrence, 16 

usually from the study of many items in use. Such an approach is the foundation for general reliability 17 

handbooks [7]. This is also the approach taken for obtaining reliability statistics in the offshore industry, for 18 

example the OREDA database [8], first published in 1984 [9]. However, this methodology “does not give the 19 

designer or manufacturer any insight into, or control over, the actual causes of failure since the cause-and-20 

effect relationships impacting reliability are not captured” [10]. It is precisely that cause-and-effect between 21 

vehicle fault or incident and the environment that we seek to establish.  22 

In [11], the authors present a risk management process tailored to AUV deployment in extreme 23 

environments. The method was used to support the decision to deploy the Autosub 3 AUV underneath an ice 24 

shelf, the Pine Island Glacier, Amundsen Sea, Antarctica in 2009 and later in 2013 [12]. Expert judgment was 25 

sought to quantify the likelihood of loss given a fault, and the experts' supporting text provided insights into 26 

possible causes and effects. The expert judgments were aggregated using mathematical analytical methods 27 

In contrast to the simple, yet high risk, case of AUV operation under an ice shelf, operations in other 28 

environments pose more complex risk scenarios, examples include under sea ice and coastal operations. 29 

Furthermore, the risk is often modified by the characteristics of the support platform. There is a set of AUV 30 

mission circumstances, therefore, where the range of factors is sufficiently large that it would be 31 

impracticable to ask an expert panel to review and assess every possibility. A method is needed to estimate 32 

risk under different conditions that minimizes the call on external experts, yet is well founded on their 33 

judgments.  34 
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We propose a three-stage approach to predicting risk of loss of an AUV during a mission in an environment 1 

that is different from that agreed as the nominal conditions. The first stage uses the formal process of eliciting 2 

expert judgment to quantify the likelihood of each failure leading to loss under a set of nominal conditions 3 

[13-15].  4 

The second stage generalizes the experts’ judgments to a new operating environment. For this stage a 5 

solution founded on a Bayesian Belief Network (BBN) approach [16] is proposed as it is an accepted method 6 

for modelling complex probability problems where it is possible to establish a causal relationship between 7 

domain variables [17, 18]. The design of the network topology captures the causal effects of the environment 8 

separately on the vehicle and on the support platform (e.g. a ship), and combines these to produce the 9 

output. For our example environment of under sea ice, we use the ASPeCt sea ice characterization protocol 10 

[19] and probability distributions of ice thickness and concentration within a rigorous process to quantify risk 11 

given a range of sea ice conditions and with ships of differing ice capabilities. Complementary expert 12 

knowledge is included within the conditional probability tables of the BBN. In [20] we showed how a BBN 13 

model can be combined with Monte-Carlo simulation to generate risk ‘envelopes’ for the AUV operation. The 14 

role of the BBN here was to update cumulative risk distributions for a given operational environment. This 15 

cumulative distribution would then be integrated in a Monte-Carlo framework to randomly generate Kaplan 16 

Meier survival plots of the AUV survivability with distance. This approach ignored the criticality of specific 17 

faults. A fault that was once considered of high criticality could later be deemed of low criticality and vice-18 

versa. The approach presented in this paper is a significant improvement on previous work because instead of 19 

using the BBN for updating the cumulative risk profile for a given environment and operational constraints we 20 

show how the BBN can be used for updating the likelihood of loss for a failure for a given environment and 21 

operational conditions. This required fine-tuning of the conditional probability tables.  22 

In the third stage, the extended Kaplan Meier estimator is used for updating the risk profile in light of the 23 

revised probability of loss given failure.  24 

25 
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2. Autonomous Underwater Vehicle Risk Modelling and Analysis for Extreme Environment Missions 1 

Our Autonomous Underwater Vehicle risk model is based on the vehicle’s intrinsic failure history and expert 2 

judgments on the impacts of failure in the target operating environment. As subjective probability is a belief 3 

assessment on the likelihood of a hypothesis being true, this will differ between individuals when the 4 

uncertainty is epistemic, that is, due to imperfect knowledge. There remains controversy among statisticians 5 

over the validity of subjective probability, between the frequentists and the adherents of Bayes’ theorem 6 

[13]. However, O’Hagan and colleagues argue that “this controversy does not arise” for the practical 7 

elicitation of subjective probability [13]. Hence, in this work a formal process of eliciting expert judgment was 8 

followed [21].  9 

2.1 Nominal Risk Models for Open Waters, Coastal Waters, Sea ice and Ice shelf 10 

Several formal expert judgment elicitation methods have been developed over the years [14]. For this work, 11 

we draw upon the formal expert judgment elicitation that was conducted in order to build the risk model for 12 

Autosub 3 deployment underneath the Pine Island Glacier. The static risk model was based on expert 13 

judgment on the criticality of each failure in the failure history [21, 22]. The subsequent analysis sought to 14 

identify biases arising from various causes [21, 23]. When making probability assessments, people tend to 15 

follow a number of mental shortcuts, denoted as heuristics, these may be based on how quickly the 16 

occurrence of an identical event comes to mind, or the impact of the event or how one anchors his or her 17 

assessment to a known event. Representativeness, availability and anchoring are the most common type of 18 

heuristics. Research has shown that people can introduce biases when following heuristics [23, 24].  19 

Reference cases for risk of loss in different environments were obtained from an earlier study in which ten 20 

independent experts were asked to consider the simple question, “What is the probability of loss of the 21 

Autosub3 AUV in the given environment X given the fault/incident Y?” [14]. X comprised four example 22 

environments: open water, coastal, under sea ice, under ice shelf and Y comprised the set of 63 23 

faults/incidents recorded on 29 missions to April 2007; 10 missions had no faults or incidents. The experts, 24 

from the USA, Canada and Australia, had a wide range of backgrounds, encompassing academic research (two 25 

graduate students and two full professors, both with polar experience, working on AUVs), research 26 

laboratories (three experts, two with polar experience), military research and development (two experts), and 27 

industry (one expert, with polar experience). 28 

The full results are contained in a detailed 198-page report, available online [15], which contains nearly 2000 29 

individual judgments, together with the expert's own assessment of their confidence in making each 30 

judgement. The authors augment the experts' reasons for their judgments with a commentary on points of 31 

agreement and disagreement, and conclude that where there were bimodal distributions, the experts seem 32 

to have fallen into two camps - optimists and pessimists. While noting these differences of opinion, the 33 

overall aggregated outcome was formed using a linear opinion pool for each fault or incident[21]. The final 34 
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results were visualized as relative frequency distributions for the assigned probabilities for each environment, 1 

Figure 1.  2 

 3 

<Figure 1 goes here> 4 

 5 

In reaching their judgments on the risk when operating in these four environments the experts were provided 6 

with brief descriptions of the characteristics of each environment that affect risk of loss. However, each 7 

expert also drew on their own knowledge of the operating environments, and in the supporting comments to 8 

their judgements gave reasons for reaching their probability of loss estimate for each fault. Rather than 9 

mathematically aggregating these judgements into a single probability of loss in each environment, which 10 

would over-simplify the assessment, and give a false sense of confidence, Figure 1 shows the probability 11 

frequency distribution for each environment from the judgements of the experts.  12 

For sea ice, the experts were asked to keep in mind an area of first year ice (0.3–2.0m thick), 50% ice 13 

concentration, with ice keels to 15m, sporadic icebergs and a ship capable of breaking 2m ice at 2kt. These 14 

parameters form the particular reference case – the prior information for the Bayesian approach – for the 15 

motivating example in this study. To help extend the risk modelling to other ice conditions, the experts’ 16 

judgments on risk in open water and under ice shelf are important. In the Bayesian sense they provide new 17 

information as they bound the risks under the two extremes of sea ice conditions. Where there is a high 18 

fraction of open water between the sea ice, the risk should tend to that of open water. That will also be the 19 

case with thin films of ice, including frazil, shuga and grease ice [19]. The risk here is virtually independent of 20 

ship ice-breaking capability, these forms of ice posing no difficulty to even a low-capability vessel. In contrast, 21 

where multi-year ice is present, and the open water fraction is small, the risk will tend towards that of 22 

operating under an ice shelf, with the risk markedly dependent on the ice breaking capability of the support 23 

ship. These effects are captured in the Bayesian Belief Network topology proposed in section 3. 24 

 25 

2.2 Survival Modelling and analysis 26 

The expert judgment on the criticality of failures in specific environments enables the identification of critical 27 

design and operational failures. This model alone does not allow the quantification of the probability of 28 

survival with travelled distance. Statistical survival modelling is a well known approach for representing 29 

systems' survival with operating time or distance. This method is based on the assumption that survival data 30 

can be classed as censored, that is, the system survived at least a known time or distance, or not censored, 31 

this is, the system is known to have failed at a given time or distance. This binary approach to modelling 32 

survival data does not suit the use of expert subjective judgment. In [11] an extended Kaplan Meier statistical 33 

survival estimator survival was proposed that combined the expert judgment on the likelihood of failure 34 
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leading to loss and the distance at which the failure has emerged to build a survival profile for vehicle loss in a 1 

given environment. This extended Kaplan-Meier estimator is: 2 
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                  (1) 3 

Where 
in  is the number of events at risk at range 

ir  , and )( ieP  the probability of fault leading to loss. Thus 4 

if )( ieP  is zero we have a censored case; that is, no loss is observed during the interval of interest. If )( ieP  5 

equals one, loss is observed during the interval of interest. For these extremes, the approach reduces to the 6 

original version of the Kaplan-Meier method [25]. 7 

8 
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3.  The Bayesian Belief Network topology 1 

A Bayesian Belief Network is a graphical representation of a set of random variables (the nodes) together with 2 

directed interconnecting links (arcs). The arrow forming an arc sets the direction of a causal relationship 3 

between parent and child [26].  4 

For the BBN discussed here, each node has a set of discrete states, either numeric or as ordered descriptions. 5 

At each node, a conditional probability table (CPT) captures the relationships between the states of the 6 

parent nodes and those of each child node. These conditional probabilities are assigned by an expert or a 7 

panel of experts, based on their knowledge of the interactions between the factors described by the parent 8 

nodes and how they affect the child nodes. 9 

A BBN model is typically composed of target, intermediate and observable nodes. Target nodes are nodes 10 

that represent variables for which we will compute a probability distribution. Observable nodes represent 11 

variables that are measurable or directly observable; for example, ice thickness, ice concentration and vessel 12 

characteristics. Intermediate nodes are mainly defined to help manage the size of the conditional probability 13 

tables, adding transparency by representing hidden variables or highlighting hidden interactions between 14 

variables. The following sections show how causal relations between observable, intermediate and target 15 

nodes representing variables for this problem domain were established for a probabilistic model to be 16 

defined and used to predict AUV risk of loss under sea ice. 17 

3.1 Network Design 18 

In designing a BBN the essential causal influences need to be included. However, there are advantages to 19 

achieving a compact network, which results in tractable CPTs. Before detailing a network design for the 20 

motivating example of under sea ice AUV operations, the generality of this approach is demonstrated by two 21 

examples from other scenarios, Figure 2. 22 

<Figure 2 goes here > 23 

The first example, Figure 2a, is from a scenario where the AUV is tasked with long-range unattended 24 

exploration of a mid-ocean ridge using sonar and sampling systems [27]. The revised probability of loss is 25 

affected by two factors: recovery effectiveness and AUV Susceptibility, represented as intermediate nodes. 26 

Recovery effectiveness acknowledges that the distance between the AUV and the base may be some 27 

hundreds of kilometres and that the availability of a suitable ship for an unscheduled recovery may be 28 

uncertain. The observable nodes being an index of ship availability, which may be an ordered set, and a 29 

numeric AUV-Base separation distance. The AUV Susceptibility when on the surface and in mid-water would 30 

be captured in an appropriate risk reference case, which would also capture the risk for a defined reference 31 

seabed morphology. In the BBN, the risk due to the reference seabed morphology would be modified by the 32 

expected seabed roughness and slope probability density functions at the particular exploration site. It may 33 

well be the case that there would be insufficient information to generate the slope and roughness within the 34 
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working area, especially at a sufficiently high resolution appropriate to assessing risk to the AUV. In such a 1 

case, the uncertainty would be expressed through a wider slope-roughness probability distribution. 2 

The second example, Figure 2b, captures key risk elements when working in coastal waters.  Recovery 3 

effectiveness is affected by the capability of the ship or craft and the metocean conditions, which would 4 

include the currents, wind, visibility and waves at the time of recovery. The AUV Susceptibility from an 5 

appropriate reference case is modified by the particular operating environment, here characterized by the 6 

prevailing metocean conditions, the seabed slopes and roughness, an index of underwater obstacles or 7 

hazards such as kelp and an index of surface traffic. In both these examples, the risk reference case as 8 

determined by the expert judgment process needs to be sufficiently close to the scenario of interest to be 9 

meaningful. That is, an open water risk reference case would be inappropriate. 10 

A prototype network that captures the essence of AUV operation in sea ice is shown in Figure 3, and is used 11 

here as the basis for a detailed worked example. The observable nodes are: Vessel Characteristics, Ice 12 

Concentration, Ice Thickness and Risk Reference Case. Other observable nodes could be added in the future 13 

such as Floe Size or Separation of Vessel and AUV. The chosen topology, with each child node having only two 14 

parents, results in CPTs of the lowest possible dimension. 15 

 16 

<Figure 3 goes here > 17 

 18 

Ice Concentration and Ice Thickness are combined twice, into two separate intermediate nodes, one 19 

describing the Vessel Environment Constraints, the other AUV Environment Constraints. Both CPTs at these 20 

nodes output a set of five ordered states: Very low, Low, Moderate, High and Very high. These are combined 21 

with the Vessel Characteristics and Risk Reference Case observable nodes to evaluate Vessel Effectiveness 22 

and AUV Susceptibility. The Vessel Effectiveness CPT outputs an ordered set with five states: 0 nautical miles 23 

per hour (kts), 1.5kts, 3kts, 5kts, 10kts. The AUV Susceptibility node outputs sixteen probability class states, 24 

which are combined with the five Vessel Effectiveness states in the final P(loss) CPT to give sixteen probability 25 

class states as the output. The number of states chosen for each node provides an adequate representation 26 

of the data.  27 

3.2 Observable Node Data 28 

3.2.1 Vessel Characteristics 29 

There are many individual parameters that are available to describe the characteristics of ships operating in 30 

Polar Regions, including among others tonnage, propulsion power, and the presence or absence of induced 31 

roll tanks. It would be possible to use such multiple characteristics as the input to the Vessel Effectiveness 32 

node, but the dimensions of the CPT would be large. Instead, to simplify the problem, the vessel 33 

characteristics are summarized within a simple ordered set. Unfortunately, there is no universal standard set 34 
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of descriptions, associated classes and class designators for ice capable ships, hence there is no mandated 1 

single set of ordered descriptions. For its simplicity and accessibility, the system chosen for this study is the 2 

Russian Maritime Register of Shipping Rules (2003) for independent navigation in arctic seas [28]. The 3 

ordered set of descriptions for ice classes LU4 (least capable) to LU9 (most capable) forms the state set for 4 

this node. Accepting that equivalents may not be exact between these rules and those of the American 5 

Bureau of Shipping or Lloyds Register among others, examples of polar vessels and classes from which it is 6 

conceivable to deploy an AUV are: 7 

LU4 – RV L. M. Gould (USA) 8 

LU5 – RRS James Clark Ross (UK) 9 

LU7 – RV Nathaniel B. Palmer (USA) 10 

LU8 – RV Polarstern (Germany) 11 

LU9 – NS Yamal (Russian Federation) 12 

When using the BBN, and the vessel is known, the vessel class may be instantiated, that is, the class 13 

probability is set to 100%. If there were uncertainty over which class of vessel may be used two or more 14 

vessel classes may be included to capture the increased range of risk that this would imply. 15 

3.2.2  Ice Concentration and Ice Thickness 16 

The ordered set for ice concentration covers 0% to 100%, representing, to the nearest 10%, the fraction of 17 

the ocean surface covered by ice of any type. Spot observations using the ASPeCt code [19] would give a 18 

single ice concentration value, which would be instantiated. However, when it is required to estimate risk 19 

over a mission, or over a period of time, where several ice environments would be traversed by the AUV, a 20 

representative ice concentration frequency distribution would be derived over a set of observations of 21 

primary and subsidiary ice types. 22 

Ice thickness is an ordered set that has values of 0, 0.1, 0.5, 1, 2 and 5 m in the prototype. This captures a 23 

subset of the ice classes from the ASPeCt code covering early development, first– and multi–year ice. 24 

Thickness values can be instantiated, or a frequency distribution used. 25 

3.2.3  Risk Reference Case 26 

The risk reference case for a nominal probability of loss, P(loss) is that determined by the group of experts 27 

though eliciting their judgments [14] represented as a relative frequency distribution. To keep the CPTs 28 

tractable, the risk reference case distribution is grouped into sixteen classes, where f=P(loss|failure): 29 

0 < f < 0.0001  0.0001 ≤ f < 0.0003 0.0003 ≤ f < 0.001 0.001 ≤ f < 0.003  30 

0.003 ≤ f < 0.01  0.01 ≤ f < 0.03  0.03 ≤ f < 0.1  0.1 ≤ f < 0.2 31 

0.2 ≤ f < 0.3    0.3 ≤ f < 0.4      0.4 ≤ f < 0.5      0.5 ≤ f < 0.6 32 

0.6 ≤ f < 0.7   0.7 ≤ f < 0.8   0.8 ≤ f < 0.9    f ≥0.9 33 
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This set of values provides sufficient range and resolution to capture risk of loss in all of the environments 1 

from open water to ice shelf. 2 

3.3 Populating the Conditional Probability Tables 3 

Given the high-dimensional conditional distribution required to populate some CPTs, we followed the 4 

common practice of making strong assumptions about the form of the conditional probability distribution 5 

[28]. The key assumptions made to design the CPTs were as follows; all of the CPTs are provided as tables in 6 

the Supplementary Material. 7 

3.3.1  Environment constraints on the AUV 8 

The CPT for this intermediate node was based on the sensitivity analysis of the BBN model output. The CPT 9 

had to comply with two conditions to ensure plausibility of the results. The aim here was to ensure that the 10 

two scenarios of singularity, the most benign operating scenario, open water and the most critical scenario, 11 

ice shelf, were points of singularity in the BBN model. These conditions are presented below. 12 

Let   be the random variable that represents the environment constraints on the AUV, the following 13 

assumptions were implemented in the CPT:  14 

1),|(1),|(  IIOO highveryPlowveryP   (2) 15 

where the suffix ‘O’ stands for open water environment and ‘I’ for ice shelf environment.  represents the 16 

ice thickness set and   the ice concentration set. 17 

The reference case corresponds to a first-year sea ice scenario (0.3–2.0m thick), with ice keels to 15m, and 18 

sporadic icebergs, at a concentration of 50% [14, 15]. To capture the reference case, the following condition 19 

was set on this node. 20 

5.0%)50,m2|eratemod(P5.0%)50,m2|low(P    (3) 21 

3.3.2 Environment constraints on the Vessel 22 

The reference support vessel was deemed able to break ice up to 2m thick. Let   be the random variable that 23 

represents the environment constraints on the vessel, the following assumptions were implemented in the 24 

CPT:  25 

1),|highvery(P

1),|lowvery(P1),|eratemod(P

II

OOrr








       (4) 26 

where the suffix ‘r’ stands for reference case, ‘O’ stands for open water environment and suffix ‘I’ for ice shelf 27 

environment.   represents the ice thickness set and   the ice concentration set.  28 

3.3.3  AUV Susceptibility 29 

This CPT captures the effect of different environment conditions on the reference AUV probability of loss 30 

distribution. If conditions considered in the reference case are observed the AUV Susceptibility distribution 31 

should be identical to the probability of loss distribution elicited for the reference sea ice case. This is: 32 
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1),mod|(  rangerefrrange PPeratePP   (5) 1 

Where   stands for AUV Susceptibility, 
rangeP  is the probability range and 

refP  is the reference probability of 2 

loss. 3 

Ice concentration and ice thickness are the two factors considered. The CPT captures scenarios such as (a) 4 

damage to navigation and relocation appendages such as GPS antennas and acoustic beacon transducers that 5 

can occur with modest ice thickness, and whose frequency of occurrence increases with ice concentration, (b) 6 

damage to the AUV hull affecting its buoyancy or water-tight integrity, which will be minimal at ice 7 

thicknesses of 0.1m and less, but becomes substantial at 0.5m and above, with ice concentration again 8 

affecting the probability of occurrence, (c) if the AUV surfaces under ice, its ability to receive a navigation fix 9 

would be compromised, and the acoustic propagation conditions could be poor, leading to difficulties in 10 

locating the vehicle, affected by both thickness and concentration. 11 

Other key assumptions were:  12 

1) As the environmental conditions approach those of an ice shelf the AUV Susceptibility distribution 13 

should be become identical to the P(loss) distribution elicited for ice shelf conditions [15], where the 14 

judgments elicited for ice shelf are known. 15 

2) Similarly, if open water conditions were observed the AUV Susceptibility should approach a 16 

P(loss|failure) distribution as elicited for open water [15]. 17 

3.3.4  Vessel Effectiveness 18 

Vessel class LU7 most closely resembles the type of vessel set out in the reference case. Environment 19 

constraints have a negative effect on vessel effectiveness, whilst there is a positive association between 20 

vessel class and vessel effectiveness. This node quantifies the progress that the ship can make under given 21 

environment conditions. This is measured in terms of speed. The node has five states: 0 kts, 0.5 kts, 3 kts, 5 22 

kts and 10kts. Where kts stands for nautical mile per hour. The underlying assumption was that if the 23 

environment constraint was deemed moderate the updated risk estimates reflected the reference case. 24 

Vessel effectiveness was reduced sharply as the ice thickness became comparable with the standard for each 25 

class, weighted by the sea ice concentration. Table entries ensured that at low ice concentrations 26 

effectiveness was high, and less susceptible to either ice thickness (as the vessel would be able to find open 27 

water easily) or vessel class (as icebreaking capability would not be called upon). 28 

3.3.5 Revised Probability of Loss 29 

To define the CPT for this node, the main question addressed was: What is the effect of the vessel 30 

effectiveness on the AUV Susceptibility? Given the probability judgments on AUV Susceptibility are in a 31 

particular range; will the vessel effectiveness move the probability judgments lower or higher? An important 32 

assumption was that, if the vessel effectiveness was deemed as 3 kts the output P(loss) distribution should be 33 

identical to the reference case. Additionally, if the vessel effectiveness was deemed lower than 3 kts, a 34 
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fraction of the probability judgments were moved to a range of greater risk. Conversely, when vessel 1 

effectiveness was deemed higher than 3 kts a fraction of the probability judgments moved towards a range of 2 

lower risk. 3 

4 
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4. Updating Mission Survival Estimates  1 

The new methodology proposed in this paper uses the BBN model to update a single judgment, for the 2 

probability of loss given fault. In order to update a single judgment the BBN must read each judgment as a 3 

frequency distribution, over the sixteen classes defined earlier. This, therefore, becomes a discretization 4 

problem.  5 

The result of the elicitation exercise [15] shows that the expert judgments can be as small as 0.0001 or as high 6 

and precise as 0.98. This wide range of judgments does not accommodate the easy use of Fuzzy set theory. A 7 

more suitable solution would be to use a continuous variable to model individual expert judgment. In addition 8 

to the actual probability judgment, the user must also specify a variance. Most BBN tools allow the user to 9 

specify continuous variables in the form of a Gaussian distribution [29].  10 

The Beta distribution offers an alternative and more suitable approach for modeling expert judgments [13].  11 

The mean (
j ) and variance ( 2

j ) for the Beta distribution can be obtained using the formulation presented in 12 

(6) and (7). 13 

              






j

                                 (6) 14 

            
   1

2

2

j






                           (7) 15 

 16 

Equations (6) and (7) are central to the risk updating method proposed in this paper. Given that the risk 17 

judgment for a particular failure is known, the hyper-parameters of the Beta distribution (α and β) can be 18 

estimated using (6) and (7). The expressions for obtaining alpha and beta parameters are presented in (8) and 19 

(9). 20 

j2

j

3

j

2

j

2

j









 

(8) 21 





 

j

(9) 22 

A discrete distribution over the sixteen probability judgment classes can then be created using the Beta 23 

distribution. These are steps 1 and 2 of the risk updating process; automatically executed using Matlab. Then, 24 

a series of sequential steps must be performed in order to complete the risk updating process. In brief: 25 

1. Encode probability judgment in a Beta distribution. For each fault, a pooled expert probability 26 

judgment and its variance are used to calculate the hyper-parameters of the Beta distribution, using (8) and 27 

(9). 28 

2. Discretization of the Beta distribution. A discretization algorithm is used to create a probability 29 

distribution over all sixteen classes of the ‘Nominal PLoss’ Node. 30 

3. Bayesian inference for updating P(loss). The discretized probability distribution is used to instantiate 31 

the ‘Nominal PLoss’ node. The ‘Revised P(loss)’ outputs the updated PLoss judgment.  32 
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4. Fit a Beta distribution to the ‘Revised P(loss)’. The maximum likelihood algorithm is used to fit a Beta 1 

probability function to the ‘Revised P(loss)’ distribution.  2 

5. Mean and variances for the ‘Revised P(loss)’ are calculated using equations (1) and (2).  3 

6. Once steps 1 to 5 have been carried out for all failures. The probability of survival with distance is 4 

calculated using the extended Kaplan Meier method.   5 

5. Using the network to reason with risk  6 

The inference algorithms embedded within most commercially available BBN tools can support four types of 7 

reasoning: predictions, diagnostics, combined and intercausal [16]. Here, we are interested in using the BBN 8 

for computing predictions as to how factors described in the previous section influence and revise the 9 

probability of loss given a fault. The software tool’s inference algorithm propagates the observable evidence 10 

through the network updating the belief in the states of its child nodes; a relative frequency distribution is 11 

calculated for each of the latter nodes, conditioned on all of the hard and soft evidence.  12 

This section provides two examples that demonstrate the use of the BBN model topology presented in Figure 13 

3 to estimate risks in under sea ice AUV missions. The model was implemented in Hugin 6.5 [29, 31](there is 14 

no connection with the Hugin AUV). 15 

5.1  Historic: Greenland – Autosub2 on the James Clark Ross 16 

This example is taken from an Autosub2 cruise to North East Greenland in 2004 [32]. The vessel capability 17 

state is instantiated to LU5, representing the capability of the James Clark Ross. We choose, as an example, 18 

23–24 August 2004 when the 12-hour, 80km distance run Autosub2 mission 366 took place in the vicinity of 19 

80˚ 3’N 14˚ 23’ W.  20 

Hourly ice observations were made by members of the science party trained in using the ASPeCt code.  21 

Overall ice concentration varied from 0–60%. At the start of the vehicle’s mission the primary ice type was 22 

fast ice 1.5m thick, with the secondary type being first-year ice floes also 1.5m thick at the edge of the fast ice 23 

field. The vehicle then traversed beneath a region of scattered multi-year floes, 2m thick, then beneath a 24 

region of higher-concentration of first year floes before reaching open water for its recovery. This information 25 

is captured in the node probability tables of the observable nodes Ice Concentration and Ice Thickness. 26 

Figure 4 shows the BBN topology with node state tables corresponding to a set of states after the reasoning 27 

embedded within the CPTs. In this example, the output probability distribution is skewed towards lower 28 

probability of loss compared with the reference case. While the vessel is of lower capability (LU5) than the 29 

reference (LU7), and 60% of the ice present was 1m or greater in thickness, at the upper end or exceeding the 30 

vessel’s breaking ability, for the mission as a whole, ice concentration was low with 87% at a concentration of 31 

30% or below.  32 

The probability of loss given fault is considered to be that assessed for failure 387_1 of Autosub2. In this 33 

failure, Autosub2 failed to home in to the acoustic command sent by the ship, the vehicle headed off in an 34 
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uncontrolled direction. This fault was caused by combination of uncalibrated receiver array and a network 1 

failure. The probability of loss given this fault, for the optimistic group is 0.0189 [15].  2 

The CPT assessed the Vessel Effectiveness as predominantly able to progress at 10 kts. The high open water 3 

fraction reduced the direct risk to the AUV over the reference case, with the median risk class reducing by 4 

one class from 0.03–0.1 to 0.01 to 0.03. When combined with Vessel Effectiveness, this reduced risk was 5 

carried through to the output probability distribution. 6 

 7 

  8 
<Figure 4 goes here > 9 

 10 

5.2 Predictive: Amundsen Sea – Autosub3 on the Nathaniel B. Palmer 11 

This example draws upon historic sea ice thickness and concentration measurements from Autosub2 in the 12 

Amundsen Sea, Antarctica [33] during its mission 323 to predict the risk for the vehicle’s successor – 13 

Autosub3 – on missions in 2009 in the same general area, but operating from the RV Nathaniel B. Palmer. 14 

Figure 5 shows the BBN topology with node state tables corresponding to a set of states given in each 15 

observable node after the reasoning embedded within the CPTs. 16 

The support vessel is more capable in this second example (LU7 rather than LU5) and equal to the reference 17 

case. However, the ice concentration is higher at 100%. The ice thickness distribution had a strong peak at 2m 18 

with a small contribution from multiyear ice over 2m thick. In combination, the Ice Concentration and the Ice 19 

Thickness lead to more severe Environmental Constraints on the AUV compared with the Greenland case, 20 

with 68% rated ‘high’ compared with 0%. Vessel effectiveness was predominantly below 0.5kts in these 21 

conditions. In the resulting revised assessment of P(loss) the mode, at ~34%, was in the risk class of ]0.01, 22 

0.03] compared with the mode at ~ 38% for the same class  in the reference case. The 95% quantile has 23 

jumped two risk classes, increasing from ]0.03, 0.1] to ]0.2, 0.3]. As a risk profile, under these conditions the 24 

BBN outcome is more akin to that of the experts’ judgment for operations under an ice shelf, Figure 1. 25 

 26 

<Figure 5 goes here > 27 

28 
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6. Sensitivity analysis 1 

There are many approaches available for modelling uncertainty. But no method can claim to be 100% 2 

infallible. Each method needs to be tailored to a specific problem. Nevertheless, when developing knowledge-3 

based systems, it is imperative to ensure that the model is complete and coherent. Validation takes a 4 

different form from what is typically considered for deterministic systems. Knowledge-based systems encode 5 

expert knowledge, thus validation implies assessing whether the model outputs are consistent with the 6 

expert judgements. Here the sensitivity analysis consisted of running several simulations to check whether 7 

model predictions comply with a set of axioms that formalise the expected plausibility.  8 

This section presents a summary of the sensitivity analysis conducted for the model presented in section 3. 9 

We use three axioms to guide the sensitivity analysis. These axioms capture rules that the BBN model must 10 

meet and were defined to demonstrate the validity of the conditional probability tables of the intermediate 11 

nodes.  12 

 13 

a. Axiom 1. An icebreaker can break ice up to its maximum specification at a speed of 3kts. If the ice thickness, 14 

is greater than the vessel’s specified ice thickness then the vessel can navigate only by ramming the ice, during 15 

which the vessel speed is 0.5kts. In mathematical notation: T(xi) > T(xv) => V(xi) = 0.5kts.   16 

This axiom can be verified by setting the ice concentration to 10/10 and varying the ice thickness from 0m to 17 

5m.  18 

Figure 6 shows the results of the sensitivity studies conducted on the node vessel effectiveness. We 19 

considered two vessel classes: LU7 and LU9, results for which are presented on the left and right plots 20 

respectively. 21 

<Figure 6 goes here> 22 

 23 

For open water conditions, results show that both vessels can travel at full speed of 10kts. For an ice thickness 24 

of 0.1m both vessels can make similar progress, the same for 0.5m ice thickness. 25 

A vessel travels at a speed of 3kts when it is breaking ice thickness that meets its capability. Results show that 26 

while for the LU7 vessel the mode of the distribution is at ice thickness of 1m for the LU9 type vessel the 27 

mode of the distribution is at 2m. The ramming speed is different for both vessels. The output shows that an 28 

LU7 vessel starts ramming ice at an ice thickness of 2m while an LU9 vessel is likely to start ramming at an ice 29 

thickness of 5m. An LU7 class vessel runs to a stop when the ice thickness reaches 5m.  30 

 31 

b. Axiom 2. The AUV Susceptibility is a monotonically increasing function with ice thickness. If ice 32 

concentration I(xi) > I(xj) and T(xi) = T(xj), then P(xi) > P(xj). 33 

 34 
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The AUV Susceptibility variable captures the influence of the environment on the AUV probability of loss 1 

given fault estimate. To verify this axiom, the nominal probability of loss was instantiated with state ] 0.03, 2 

0.1] and in a second simulation with state ]0.1, 0.2]. Two sets of simulations were conducted. One simulation 3 

was conducted with ice concentration set to 50% and one simulation was conducted with ice concentration 4 

set to 100%  5 

Figure 7 shows the results of running the BBN model for all combinations of ice thickness. The contour plots 6 

were generated using the contour function of Matlab R2011b. Figure 7a shows the distribution of the AUV 7 

Susceptibility node when the nominal Probability of loss is instantiated to ] 0.03, 0.1] and ice concentration is 8 

50%. Figure 7b shows the distribution of the AUV Susceptibility node when the nominal Probability of loss is 9 

instantiated to ]0.03, 0.1] and ice concentration is 100%. Figure 7c shows the AUV Susceptibility distribution 10 

when the nominal Probability of loss is instantiated to ]0.1, 0.2] and ice concentration is instantiated to 50%. 11 

Figure 7d presents the distribution of AUV Susceptibility for the same nominal Probability of loss but ice 12 

concentration of 100%.   13 

The results show that for ice concentration of 50%, for ice thickness between 0.5m-2m, nominal sea ice 14 

environment, the AUV Susceptibility stays in the same range as nominal P(loss). Results here show that axiom 15 

2, AUV Susceptibility is monotonically increasing with the ice concentration.  16 

<Figure 7 goes here> 17 

 18 

c. Axiom 3. The AUV Susceptibility is a monotonically increasing function with ice concentration. If ice 19 

concentration I(xi) > I(xj) and thickness T(xi) = T(xj), then P(xi) > P(xj).  20 

 21 

To verify this axiom, the BBN model was instantiated with a range for the nominal probability of loss and an 22 

ice thickness value. The ice concentration was then increased from 0% to 100%. We present the result of 23 

running these simulations for nominal probability of loss ranged between ]0.03, 0.1] and ]0.1, 0.2]. Figure 8 24 

shows the contour graphs of the BBN output for the AUV Susceptibility for four ice thickness conditions: 0.5m 25 

(8a and 8b), 1m (8c and 8d), 2m (8e and 8f) and 5 m (8g and 8h). The contour graphs show that the AUV 26 

Susceptibility remains constant only when nominal sea ice conditions are met. For all other instance the AUV 27 

Susceptibility is monotonically increasing with ice concentration.  28 

  29 

<Figure 8 goes here> 30 

The BBN output for AUV Susceptibility for nominal Probability of loss in the range of ]0.1, 0.2], ice 31 

concentration of 100%, ice thickness of 5m, gives 37% confidence that the AUV Susceptibility is in the range 32 

of ]0.3, 0.4], 20% confidence that the AUV Susceptibility is in the range of ]0.4, 0.5] and 4% confidence that 33 
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the AUV Susceptibility is in ]0.6, 0.7]. Ice shelf has an ice thickness greater than 5m. The simulation results 1 

show that the BBN model captures the effect of extreme operation conditions.    2 

 3 

7. Updating Survival Estimates - Amundsen Sea – Autosub3 on the Nathaniel B. Palmer 4 

To show the application of the method proposed in this paper we consider the judgments obtained for the 5 

optimistic group of the judgments provided for sea ice [11]. The observable nodes ‘Vessel’, ‘Ice concentration’ 6 

and ‘Ice thickness’ were set with the states depicted in Figure 5. 7 

Table I, in the Appendix, shows the results of the updated risk judgments for each of the 63 failures used to 8 

create the Autosub3 risk model [11]. A variance must be specified for all failures. For judgments where the 9 

variance was 0 (where experts all agreed on a single value), we decided to assign a variance of 10-7; this 10 

occurred for 10 out of 63 failures. 11 

The updated risk model allows us to quantify the criticality of each fault when the AUV is deployed in a new 12 

operating environment. This information is important since it allows decision makers to address the question 13 

of whether or not it is cost effective to completely remove a fault.  14 

Quantitatively, from Figure 9, the probability of survival drops quickly in the first 32km. This suggests a 15 

mitigation strategy, however, a full discussion of mitigation measures are beyond the scope of this paper; 16 

examples have been discussed elsewhere [15, 34], including ensuring a period of monitoring the AUV for a set 17 

distance in waters where recovery can be effected should there be a problem at the start of a mission. Such a 18 

strategy proved effective during the Autosub3 campaign under Pine Island Glacier, Antarctica in 2009. 19 

20 
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8. Conclusion 1 

The importance of this work is that it provides a structured approach to AUV risk management in hazardous 2 

environments or where loss could lead to damage to, or contamination of, the environment. Such an 3 

approach will be essential for the use of expensive or high profile AUVs for science in the Polar Regions, and is 4 

likely to prove necessary for AUVs that may be used by the offshore industry in the Arctic. The process draws 5 

upon an extensive and time-consuming exercise in eliciting expert judgment and has sought to maximize use 6 

of the pooled opinions by applying Bayesian reasoning to extend the applicability of the judgments beyond 7 

the original settings. Its use for AUV missions under sea ice is particularly appropriate; in that the BBN copes 8 

with the indeterminate or probabilistic elements and with uncertainty – for example, at the mission planning 9 

stage we may, or we may not, know what vessel will provide support.   10 

A more detailed analysis would involve assessing each failure separately and quantifying the effect of the 11 

vessel effectiveness, ice concentration and ice thickness on each particular failure. Such a study would help us 12 

to build a more precise probability distribution. However, for the purpose of this paper, the aim is to expose 13 

BBNs as a means to capture arguments of this nature as well other arguments relevant to the AUV risk 14 

prediction in Polar missions. 15 

The approach can be extended to other factors affecting AUVs under sea ice by adding to the observable 16 

nodes, for example, including observations on ice keels and icebergs, seabed topography including ice and 17 

strudel scour if operating in shallow water, distance from support vessel and availability of rescue or support 18 

tools such as an ROV, helicopter or acoustic navigation. Other AUV operating environments with complexity 19 

and uncertainty posing risk can be similarly modeled.  20 

It is possible, that for some operating areas there is a combination of variation of two or more environments, 21 

for example, a combination of coastal, Pc, and sea ice environments, Pi. In this case the combined probability 22 

of loss can be calculated using the following expression: Pt = 1 – (1-Pc)*(1-Pi).   23 

Fundamental to this work is the source data on reliability and faults and incidents with the vehicle. Accurate 24 

and complete recording of this information is essential to assess and control risk on AUV missions. 25 

 26 
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FIGURES 1 

 2 

Figure  1. Frequency distribution of linear opinion pooled probabilities assigned by the experts for the set of 63 faults or 3 
incidents in each of the four example environments. The data have been grouped into the probability classes used in the 4 
BBN as described in section 3. 5 
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 28 
Figure  2. Topology for simple Bayesian Belief Networks that enable reasoning over the risk to an AUV. A) Scenario where 29 
the AUV is used for long-range unattended exploration of mid-ocean ridges, B) for operations in coastal waters. 30 
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 1 

Figure  3. Topology for a simple Bayesian Belief Network that enables reasoning over the risk to an AUV in sea ice 2 
environments when operating from a support vessel. 3 
 4 

 5 
Figure  4.  Bayesian Belief Network for evaluating risk to an AUV in sea ice environments showing the input states to the 6 
four root nodes for Autosub2 operation from the RRS James Clark Ross off NE Greenland on 23–24 August 2004. The 7 
states of the child nodes are shown. Fault 387_1. 8 
 9 

10 
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Figure 6.  Variation of vessel speed with ice thickness for ice concentration of ten tenths. On the left is the distribution 15 

for vessel class LU7, on the right is the distribution for vessel class LU9.  16 
 17 
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 46 
Figure 7.  Variation of AUV Susceptibility with ice thickness. a) Nominal P(loss) instantiated at ]0.03, 0.1], ice 47 
concentration set to 50%. b) Nominal P(loss) instantiated at ]0.03, 0.1], ice concentration instantiated to 100%. c) 48 
Nominal P(loss) instantiated at ]0.1, 0.2], ice concentration set to 50%. d) Nominal P(loss) instantiated at ]0.1, 0.2], ice 49 
concentration set to 100%. 50 
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 42 
Figure 8.  Variation of AUV Susceptibility with ice concentration. a) Ice thickness of 0.1m, P(loss) instantiated at 43 
]0.03,0.1]; b) Ice thickness of 0.5m, P(loss) instantiated at ]0.1,0.2]; c) Ice thickness of 0.5m, P(loss) instantiated at 44 
]0.03,0.1]; d) Ice thickness of 0.5m, P(loss) instantiated at ]0.1, 0.2]; e) Ice thickness of 1m, P(loss) instantiated at 45 
]0.03,0.1]; f) Ice thickness of 1m, P(loss) instantiated at ]0.1,0.2]; g) Ice thickness of 2m, P(loss) instantiated at ]0.03,0.1]; 46 
a) Ice thickness of 2m, P(loss) instantiated at ]0.1, 0.2].  47 
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Supplementary Material 1 

Table 1 Environment constraints on AUV CPT.  2 
Ice thickness 0 m 

Ice concentration 0 10 20 30 40 50 60 70 80 90 100 

Very low 1 1 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 

Low 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

Medium 0 0 0 0 0 0 0 0 0 0 0 

High 0 0 0 0 0 0 0 0 0 0 0 

Very High 0 0 0 0 0 0 0 0 0 0 0 

Table 1 Environment constraints on AUV CPT. Cont.  3 
Ice thickness  0.1 m 

Ice concentration 0   10 20 30 40 50 60 70 80 90 100 

Very low 1 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 

Low 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 

Medium 0 0 0 0 0 0 0 0 0 0 0 

High 0 0 0 0 0 0 0 0 0 0 0 

Very High 0 0 0 0 0 0 0 0 0 0 0 

Table 1 Environment constraints on AUV CPT. Cont.  4 
Ice thickness 0.5 m 

Ice concentration 0 10 20 30 40 50 60 70 80 90 100 

Very low 1 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 

Low 0 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 

Medium 0 0 0 0 0 0 0 0 0 0 0 

High 0 0 0 0 0 0 0 0 0 0 0 

Very High 0 0 0 0 0 0 0 0 0 0 0 

 5 

Table 1 Environment constraints on AUV CPT. Cont.  6 
Ice thickness 1 m 

Ice concentration 0 10 20 30 40 50 60 70 80 90 100 

Very low 1 0.7 0.65 0.6 0 0 0 0 0 0 0 

Low 0 0.3 0.35 0.4 0.7 0.65 0.6 0.55 0.5 0.1 0 

Medium 0 0 0 0 0.3 0.35 0.4 0.45 0.5 0.9 1 

High 0 0 0 0 0 0 0 0 0 0 0 

Very High 0 0 0 0 0 0 0 0 0 0 0 

Table 1 Environment constraints on AUV CPT. Cont.  7 
Ice thickness 2m 

Ice concentration 0 10 20 30 40 50 60 70 80 90 100 

Very low 1 0.6 0.55 0.5 0 0 0 0 0 0 0 

Low 0 0.4 0.45 0.5 0.6 0.5 0.3 0.2 0 0 0 

Medium 0 0 0 0 0.4 0.5 0.5 0.45 0 0 0 

High 0 0 0 0 0 0 0.2 0.35 0.75 0.65 0.55 

Very High 0 0 0 0 0 0 0 0 0.25 0.35 0.45 

Table 1 Environment constraints on AUV CPT. Cont.  8 
Ice thickness 5m 

Ice concentration 0 10 20 30 40 50 60 70 80 90 100 

Very low 1 0.5 0.45 0.4 0 0 0 0 0 0 0 

Low 0 0.5 0.55 0.6 0 0 0 0 0 0 0 

Medium 0 0 0 0 0 0 0 0 0 0 0 

High 0 0 0 0 0.6 0.5 0.35 0.2 0.05 0.05 0 

Very High 0 0 0 0 0.4 0.5 0.65 0.8 0.95 0.95 1 

 9 
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Table 2.  Environment Constrains on the vessel CPT. 1 
Ice thickness 0m 

Ice concentration 0 10 20 30 40 50 60 70 80 90 100 

Very low 1 1 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 

Low 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

Medium 0 0 0 0 0 0 0 0 0 0 0 

High 0 0 0 0 0 0 0 0 0 0 0 

Very high 0 0 0 0 0 0 0 0 0 0 0 

Table 2.  Environment Constrains on the vessel CPT. Cont. 2 
Ice thickness 0.1m 

Ice concentration 0 10 20 30 40 50 60 70 80 90 100 

Very low 1 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 

Low 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 

Medium 0 0 0 0 0 0 0 0 0 0 0 

High 0 0 0 0 0 0 0 0 0 0 0 

Very high 0 0 0 0 0 0 0 0 0 0 0 

Table 2.  Environment Constrains on the vessel CPT. Cont. 3 
Ice thickness 0.5m 

Ice concentration 0 10 20 30 40 50 60 70 80 90 100 

Very low 1 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 

Low 0 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 

Medium 0 0 0 0 0 0 0 0 0 0 0 

High 0 0 0 0 0 0 0 0 0 0 0 

Very high 0 0 0 0 0 0 0 0 0 0 0 

Table 2.  Environment Constrains on the vessel CPT. Cont. 4 
Ice thickness 1m 

Ice concentration 0 10 20 30 40 50 60 70 80 90 100 

Very low 1 0.7 0.65 0.6 0 0 0 0 0 0 0 

Low 0 0.3 0.35 0.4 0.7 0.65 0.6 0.55 0.5 0.1 0 

Medium 0 0 0 0 0.3 0.35 0.4 0.45 0.5 0.9 1 

High 0 0 0 0 0 0 0 0 0 0 0 

Very high 0 0 0 0 0 0 0 0 0 0 0 

Table 2.  Environment Constrains on the vessel CPT. Cont. 5 
Ice thickness 2m 

Ice concentration 0 10 20 30 40 50 60 70 80 90 100 

Very low 1 0.6 0.55 0.5 0 0 0 0 0 0 0 

Low 0 0.4 0.45 0.5 0.6 0.5 0.3 0.2 0 0 0 

Medium 0 0 0 0 0.4 0.5 0.5 0.45 0 0 0 

High 0 0 0 0 0 0 0.2 0.35 0.75 0.65 0.55 

Very high 0 0 0 0 0 0 0 0 0.25 0.35 0.45 

Table 2.  Environment Constrains on the vessel CPT. Cont. 6 
Ice thickness 5m 

Ice concentration 0 10 20 30 40 50 60 70 80 90 100 

Very low 1 0.5 0.45 0.4 0 0 0 0 0 0 0 

Low 0 0.5 0.55 0.6 0 0 0 0 0 0 0 

Medium 0 0 0 0 0 0 0 0 0 0 0 

High 0 0 0 0 0.6 0.5 0.35 0.2 0.05 0.05 0 

Very high 0 0 0 0 0.4 0.5 0.65 0.8 0.95 0.95 1 
7 
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Table 3. Vessel Effectiveness CPT. 1 

Ice breaker class C4=LU4 

Environment constraints C3=very low C3=low C3=moderate C3=high C3=very high 

0 kts 0 0 0 0.8 1 

0.5 kts 0 0.143577 0.4 0.2 0 

3 kts 0 0.251889 0.6 0 0 

5 kts 0 0.604534 0 0 0 

10 kts 1 0 0 0 0 

Table 3. Vessel Effectiveness CPT. Cont. 2 
Ice breaker class C4=LU5 

Environment constraints C3=very low  C3=low C3=moderate C3=high C3=very high 

0 kts 0 0 0 0.3 1 

0.5 kts 0 0 0 0.6 0 

3 kts 0 0.3 0.7 0.1 0 

5 kts 0 0.7 0.3 0 0 

10 kts 1 0 0 0 0 

Table 3. Vessel Effectiveness CPT. Cont. 3 
Ice breaker class C4=LU6 

Environment constraints C3=very low C3=low C3=moderate C3=high C3=very high 

0 kts 0 0 0 0.3 0.95 

0.5 kts 0 0 0 0.7 0.05 

3 kts 0 0.7 0.8 0 0 

5 kts 0 0.3 0.2 0 0 

10 kts 1 0 0 0 0 

Table 3. Vessel Effectiveness CPT. Cont. 4 
Ice breaker class C4=LU7 

Environment constraints C3=very low C3=low C3=moderate C3=high C3=very high 

0 kts 0 0 0 0.25 0.9 

0.5 kts 0 0 0 0.55 0.1 

3 kts 0 0.2 0.6 0.2 0 

5 kts 0 0.8 0.4 0 0 

10 kts 1 0 0 0 0 

Table 3. Vessel Effectiveness CPT. Cont. 5 
Ice breaker class C4=LU8 

Environment constraints C3=very low C3=low C3=moderate C3=high C3=very high 

0 kts 0 0 0 0 0.8 

0.5 kts 0 0 0 0 0.15 

3 kts 0 0 0 0.8 0.05 

5 kts 0 0.97 0.99 0.2 0 

10 kts 1 0.03 0.01 0 0 

Table 3. Vessel Effectiveness CPT. Cont. 6 
Ice breaker class C4=LU9 

Environment constraints C3=very low C3=low C3=moderate C3=high C3=very high 

0 kts 0 0 0 0 0.8 

0.5 kts 0 0 0 0 0.2 

3 kts 0 0 0 0.75 0 

5 kts 0 0.8 0.85 0.25 0 

10 kts 1 0.8 0.7 0 0 

7 
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Table 4. AUV Susceptibility 1 
NPLoss "<=0.0001" 
EnvCA Very low Low Moderate High Very High 
"<=0.0001" 1 0.9 0.8 0.4 0.3 
0.0001- 0.0003 0 0.1 0.2 0.6 0.7 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 2 

Table 4. AUV Susceptibility. Cont. 3 
NPLoss 0.0001- 0.0003 
EnvCA Very low Low Moderate High Very High 
"<=0.0001" 0.1 0.7 0 0 0 
0.0001- 0.0003 0.9 0.3 1 0.4 0.3 
0.0003-0.001 0 0 0 0.6 0.7 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 4 

Table 4. AUV Susceptibility. Cont. 5 
NPLoss 0.0003-0.001 
EnvCA Very low Low Moder

ate 
High Very High 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0.3 0.2 0 0 0 
0.0003-0.001 0.7 0.8 1 0 0 
0.001-0.003 0 0 0 0.1 0 
0.003-0.01 0 0 0 0.9 0.95 
0.01-0.03 0 0 0 0 0.05 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 6 
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Table 4. AUV Susceptibility. Cont. 1 
NPLoss 0.001-0.003 
EnvCA Very low Low Moderate High Very High 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0.35 0.2 0 0 0 
0.001-0.003 0.65 0.8 1 0 0 
0.003-0.01 0 0 0 0.5 0.4 
0.01-0.03 0 0 0 0.5 0.6 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 2 
Table 4. AUV Susceptibility. Cont. 3 

NPLoss 0.003-0.01 

EnvCA Very low Low Moderate High Very High 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0.4 0.3 0 0 0 
0.003-0.01 0.6 0.7 1 0.99 0.98 
0.01-0.03 0 0 0 0.01 0.02 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 4 
Table 4. AUV Susceptibility. Cont. 5 

NPLoss 0.01-0.03 
EnvCA Very low Low Moderate High Very High 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0.4 0.3 0 0.055 0 
0.01-0.03 0.6 0.7 1 0.9 0.558824 
0.03-0.1 0 0 0 0.02 0.441176 
0.1-0.2 0 0 0 0.025 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 6 
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Table 4. AUV Susceptibility. Cont. 1 
NPLoss 0.03-0.1 

EnvCA Very low Low Moderate High Very High 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0.4 0.2 0 0 0 
0.03-0.1 0.6 0.8 1 0.5 0.45 
0.1-0.2 0 0 0 0.3 0.25 
0.2-0.3 0 0 0 0.1 0.2 
0.3-0.4 0 0 0 0.1 0.1 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 2 
Table 4. AUV Susceptibility. Cont. 3 

NPLoss 0.1-0.2 

EnvCA Very low Low Moderate High Very High 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0.4 0.3 0 0 0 
0.1-0.2 0.6 0.7 1 0.3 0.2 
0.2-0.3 0 0 0 0.6 0.03 
0.3-0.4 0 0 0 0.1 0.405 
0.4-0.5 0 0 0 0 0.221 
0.5-0.6 0 0 0 0 0.0365 
0.6-0.7 0 0 0 0 0.0475 
0.7-0.8 0 0 0 0 0.04 
0.8-0.9 0 0 0 0 0.02 
0.9-1.0 0 0 0 0 0 

Table 4. AUV Susceptibility. Cont. 4 
NPLoss 0.2-0.3 

EnvCA Very low Low Moderate High Very High 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0.7 0.8 0 0 0 
0.03-0.1 0.3 0.2 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 1 0.14 0.0145 
0.3-0.4 0 0 0 0.06 0 
0.4-0.5 0 0 0 0.8 0 
0.5-0.6 0 0 0 0 0.13 
0.6-0.7 0 0 0 0 0.29 
0.7-0.8 0 0 0 0 0.4655 
0.8-0.9 0 0 0 0 0.1 
0.9-1.0 0 0 0 0 0 
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Table 4. AUV Susceptibility. Cont. 1 
NPLoss 0.3-0.4 

EnvCA Very low Low Moderate High Very High 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0.2 0 0 0 
0.1-0.2 0.4 0.8 0 0 0 
0.2-0.3 0.6 0 0 0 0 
0.3-0.4 0 0 1 0 0 
0.4-0.5 0 0 0 0.222222 0.4 
0.5-0.6 0 0 0 0.611111 0.4 
0.6-0.7 0 0 0 0.166667 0.2 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 2 
Table 4. AUV Susceptibility. Cont. 3 

NPLoss 0.4-0.5 

EnvCA Very low Low Moderate High Very High 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0.4 0 0 0 0 
0.1-0.2 0.6 0.8 0 0 0 
0.2-0.3 0 0.2 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 1 0 0 
0.5-0.6 0 0 0 0.7 0.4 
0.6-0.7 0 0 0 0.3 0.6 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 4 
Table 4. AUV Susceptibility. Cont. 5 

NPLoss 0.5-0.6 

EnvCA Very low Low Moderate High Very High 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0.65 0.8 0 0 0 
0.3-0.4 0.3 0.2 0 0 0 
0.4-0.5 0.05 0 0 0 0 
0.5-0.6 0 0 1 0 0 
0.6-0.7 0 0 0 0.7 0 
0.7-0.8 0 0 0 0.3 0.8 
0.8-0.9 0 0 0 0 0.2 
0.9-1.0 0 0 0 0 0 



32 

Table 4. AUV Susceptibility. Cont. 1 
NPLoss 0.6-0.7 

EnvCA Very low Low Moderate High Very High 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0.05 0 0 0 0 
0.3-0.4 0.75 0.8 0 0 0 
0.4-0.5 0.2 0.2 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 1 0.1 0 
0.7-0.8 0 0 0 0.6 0 
0.8-0.9 0 0 0 0.3 0.8 
0.9-1.0 0 0 0 0 0.2 

 2 
Table 4. AUV Susceptibility. Cont. 3 

NPLoss 0.7-0.8 

EnvCA Very low Low Moderate High Very High 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0.75 0.8 0 0 0 
0.5-0.6 0.2 0.2 0 0 0 
0.6-0.7 0.05 0 0 0 0 
0.7-0.8 0 0 1 0.9 0 
0.8-0.9 0 0 0 0.1 0.1 
0.9-1.0 0 0 0 0 0.9 

 4 
Table 4. AUV Susceptibility. Cont. 5 

NPLoss 0.8-0.9 

EnvCA Very low Low Moderate High Very High 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0.75 0.8 0 0 0 
0.6-0.7 0.2 0.2 0 0 0 
0.7-0.8 0.05 0 0 0 0 
0.8-0.9 0 0 1 0.8 0 
0.9-1.0 0 0 0 0.2 1 
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 1 
Table 4. AUV Susceptibility. Cont. 2 

NPLoss 0.9-1.0 

EnvCA Very low Low Moderate High Very High 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0.4 0.35 0.222222 0 0 
0.9-1.0 0.6 0.65 0.777778 1 1 

 3 
4 
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Table 5. Probability of Loss CPT 1 
Asus "=< 0.0001" 

Veff 0 kts 0.5 kts 3 kts 5 kts 10 kts 

"<=0.0001" 0.2 0.3 1 1 1 
0.0001- 0.0003 0.8 0.7 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 2 
Table 5. Probability of Loss CPT. Cont. 3 

Asus 0.0001-0.0003 

Veff 0 kts 0.5 kts 3 kts 5 kts 10 kts 

"<=0.0001" 0 0 0 0.7 0.8 
0.0001- 0.0003 0.6 0.7 1 0.3 0.2 
0.0003-0.001 0.4 0.3 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 4 
Table 5. Probability of Loss CPT. Cont. 5 

Asus 0.0003-0.001 
Veff 0 kts 0.5 kts 3 kts 5 kts 10 kts 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0.7 0.8 
0.0003-0.001 0.6 0.7 1 0.3 0.2 
0.001-0.003 0.4 0.3 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 6 
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Table 5. Probability of Loss CPT. Cont. 1 
Asus 0.001 - 0.003 

Veff 0 kts 0.5 kts 3 kts 5 kts 10 kts 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0.7 0.8 
0.001-0.003 0.6 0.7 1 0.3 0.2 
0.003-0.01 0.4 0.3 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 2 
Table 5. Probability of Loss CPT. Cont. 3 

Asus 0.003 - 0.01 

Veff 0 kts 0.5 kts 3 kts 5 kts 10 kts 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0.7 0.8 
0.003-0.01 0.6 0.7 1 0.3 0.2 
0.01-0.03 0.4 0.3 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 4 
Table 5. Probability of Loss CPT. Cont. 5 
Asus 0.01 - 0.03 
Veff  0 kts 0.5 kts 3 kts 5 kts 10 kts 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0.7 0.8 
0.01-0.03 0.6 0.7 1 0.3 0.2 
0.03-0.1 0.4 0.3 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 
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Table 5. Probability of Loss CPT. Cont. 1 
Asus 0.03 - 0.1 

Veff  0 kts 0.5 kts 3 kts 5 kts 10 kts 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0.7 0.8 
0.03-0.1 0.6 0.7 1 0.3 0.2 
0.1-0.2 0.4 0.3 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 2 
Table 5. Probability of Loss CPT. Cont. 3 
Asus 0.1 - 0.2 

Veff  0 kts 0.5 kts 3 kts 5 kts 10 kts 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0.55 0.6 
0.1-0.2 0.6 0.7 1 0.45 0.4 
0.2-0.3 0.4 0.3 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 4 
Table 5. Probability of Loss CPT. Cont. 5 
Asus 0.2 - 0.3 

Veff  0 
kts 

0.5 kts 3 kts 5 kts 10 kts 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0.55 0.6 
0.2-0.3 0.6 0.7 1 0.45 0.4 
0.3-0.4 0.4 0.3 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 
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Table 5. Probability of Loss CPT. Cont. 1 
Asus 0.3 - 0.4 

Veff  0 kts  0.5 kts 3 kts 5 kts 10 kts 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0.55 0.6 
0.3-0.4 0.6 0.7 1 0.45 0.4 
0.4-0.5 0.4 0.3 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 2 
Table 5. Probability of Loss CPT. Cont. 3 
Asus 0.4 - 0.5 

Veff  0 kts 0.5 kts 3 kts 5 kts 10 kts 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0.55 0.6 
0.4-0.5 0.6 0.7 1 0.45 0.4 
0.5-0.6 0.4 0.3 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 4 
Table 5. Probability of Loss CPT. Cont. 5 
Asus 0.5 - 0.6 

Veff  0 kts 0.5 kts 3 kts 5 kts 10 kts 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0.55 0.6 
0.5-0.6 0.6 0.7 1 0.45 0.4 
0.6-0.7 0.4 0.3 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 
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Table 5. Probability of Loss CPT. Cont. 1 
Asus 0.6 - 0.7 

Veff  0 kts 0.5 kts 3 kts 5 kts 10 kts 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0.55 0.6 
0.6-0.7 0.6 0.7 1 0.45 0.4 
0.7-0.8 0.4 0.3 0 0 0 
0.8-0.9 0 0 0 0 0 
0.9-1.0 0 0 0 0 0 

 2 
Table 5. Probability of Loss CPT. Cont. 3 
Asus 0.7 - 0.8 

Veff  0 kts 0.5 kts 3 
kt
s 

5 kts 10 kts 

"<=0.0001" 0 0 0 0 0 
0.0001- 
0.0003 

0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0.55 0.6 
0.7-0.8 0.6 0.7 1 0.45 0.4 
0.8-0.9 0.4 0.3 0 0 0 
0.9-1.0 0 0 0 0 0 

 4 
Table 5. Probability of Loss CPT. Cont. 5 
Asus 0.8 - 0.9 

Veff  0 kts 0.5 kts 3 kts 5 kts 10 kts 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0.7 0.8 
0.8-0.9 0.8 0.9 1 0.3 0.2 
0.9-1.0 0.2 0.1 0 0 0 
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 1 
Table 5. Probability of Loss CPT. Cont. 2 
Asus 0.9 - 1.0 

Veff  0 kts  0.5 kts 3 kts 5 kts 10 kts 

"<=0.0001" 0 0 0 0 0 
0.0001- 0.0003 0 0 0 0 0 
0.0003-0.001 0 0 0 0 0 
0.001-0.003 0 0 0 0 0 
0.003-0.01 0 0 0 0 0 
0.01-0.03 0 0 0 0 0 
0.03-0.1 0 0 0 0 0 
0.1-0.2 0 0 0 0 0 
0.2-0.3 0 0 0 0 0 
0.3-0.4 0 0 0 0 0 
0.4-0.5 0 0 0 0 0 
0.5-0.6 0 0 0 0 0 
0.6-0.7 0 0 0 0 0 
0.7-0.8 0 0 0 0 0 
0.8-0.9 0 0 0 0.3 0.5 
0.9-1.0 1 1 1 0.7 0.5 

 3 
4 
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TABLE I 1 

RESULTS OF THE RISK JUDGEMENT UPDATING PROCESS 2 

Failure Distance Reference risk 

case 

Updated Risk case Failure Distance Reference risk 

case 

Updated Risk case 

 km μr,σr μu,σu  km μr,σr μu,σu 

384_1 1.5 0.0173, 0.00039 0.0639, 0.00569 404_3 75 0.055, 0.00236 0.147, 0.0183 

384_2 1.5 0.0173, 0.00039 0.0639, 0.00569 404_4 75 0.00038, 0.0 0.00038, 0.0 

385_1_ 15.2 0.194, 0.141 0.280, 0.292 404_5 75 0.0156, 0.00035 0.059, 0.00504 

386_1 26 0.001, 0.00001 0.00163, 0.0 404_6 75 0.00069, 0.0 0.0007, 0.0 

387_1 27.2 0.0189, 0.00038 0.0693, 0.0062 404_7 75 0.00227, 
0.00002 

0.00258, 0.0001 

388_1 0.5 0.00231, 0.00002 0.00259, 0.0001 405_1 2.5 0.00064, 0.0 0.00065, 0.0 

388_2 0.5 0.00082, 0.0 0.00105, 0.0 405_2 2.5 0.00064, 0.0 0.00065, 0.0 

389_1 3 0.03, 0.00040 0.105, 0.0096 406_1 104 0.0386, 0.00175 0.112, 0.0144 

389_2 3 0.162, 0.050 0.219, 0.0562 406_2 104 0.0383, 0.00191 0.109, 0.0143 

389_3 3 0.00662, 0.00002 0.0224, 0.00043 406_3 104 0.034, 0.0022 0.0958, 0.0129 

391_1 31 0.0182, 0.00044 0.0666, 0.00617 406_4 104 0.0343, 0.00192 0.0988, 0.0130 

391_2 31 0.0037, 0.00002 0.0162, 0.00032 406_5 104 0.01, 0.00001 0.0302, 0.00063 

391_3 31 0.00033, 0.0 0.00033, 0.0 406_6 104 0.0032, 0.00002 0.0156, 0.00033 

392_1 32 0.07, 0.0124 0.129, 0.0237 406_7 104 0.026, 0.00212 0.08, 0.0107 

393_1 5 0.0119, 0.00004 0.04, 0.00156 407_1 204 0.01, 0.00001 0.0772, 0.00291 

394_1 3 0.14333, 0.0330 0.201, 0.0438 407_2 204 0.00036, 0.0 0.00036, 0.0 

395_1 8 0.41, 0.109 0.501, 0.109 408_1 302.5 0.00036, 0.0 0.00036, 0.0 

396_1 4 0.001, 0.00001 0.0139, 0.0 408_2 302.5 0.026, 0.0005 0.0907, 0.00886 

397_1 4 0.0144, 0.00049 0.0561, 0.00524 408_3 302.5 0.01, 0.00001 0.0302, 0.00063 

398_1 8 0.00064, 0.0 0.00065, 0.0 408_4 302.5 0.0157, 0.00055 0.0854, 0.0107 

401_1 7.5 0.0112, 0.00009 0.0452, 0.00253 408_5 302.5 0.00486, 
0.00303 

0.0198, 0.00048 

401_2 7.5 0.00377, 0.00002 0.0163, 0.00031 409_1 1.5 0.01, 0.00001 0.0302, 0.00063 

402_1 274 0.355, 0.162 0.469, 0.43 410_1 9 0.01, 0.00001 0.0302, 0.00063 

402_2 274 0.667, 0.239 0.717, 0.339 411_1 128 0.0037, 0.00002 0.0162, 0.00032 

402_3 274 0.04, 0.00203 0.112, 0.0148 412_1 270 0.0037, 0.00002 0.0162, 0.00032 

402_4 274 0.0424, 0.00203 0.119, 0.0155 412_2 270 0.005, 0.00002 0.0185, 0.00033 

402_5 274 0.00064, 0.0 0.00065, 0.0 415_1 6 0.182, 0.0494 0.237, 0.0571 

403_1 140 0.0144, 0.00049 0.0561, 0.00524 415_2 6 0.0307, 0.00219 0.0886, 0.0119 

403_2 140 0.005, 0.00002 0.0185, 0.00033 415_3 6 0.0143, 0.00002 0.0356, 0.00103 

403_3 140 0.04, 0.00203 0.113, 0.0148 416_1 18 0.267, 0.142 0.347, 0.308 

404_1 75 0.036, 0.00200 0.102, 0.0136 418_1 15 0.0257, 0.00029 0.0954, 0.00837 

404_2 75 0.0028, 0.00002 0.00285, 0.0001     

Result of the risk update for all 63 judgments, optimistic expert group, sea ice environment. The failure code is 3 
structured as follows: ‘mission number’_’failure number’. The mean and variance are given for the reference case and 4 
for the updated risk case. 5 
 6 

7 
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