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Abstract Air pollution is one of the most serious environ-
mental problems in China due to its rapid economic develop-
ment alongside a very large consumption of fossil fuel, partic-
ularly in the North China Plain (NCP). During the period
2011–2014, we integrated active and passive sampling
methods to perform continuous measurements of NH3,
HNO3, NO2, and PM2.5 at two urban, one suburban, and
two rural sites in the NCP. The annual average concentrations
of NH3, NO2, and HNO3 across the five sites were in the
ranges 8.5–23.0, 22.2–50.5, and 5.5–9.7 μg m−3, respectively,
showing no significant spatial differences for NH3 and HNO3

but significantly higher NO2 concentration at the urban sites.
At each site, annual average concentrations of NH3 and NO2

showed increasing and decreasing trends, respectively, while
there was no obvious trend in annual HNO3 concentrations.
Daily PM2.5 concentrations ranged from 11.8 to 621.0 μg m−3

at the urban site, from 19.8 to 692.9 μg m−3 at the suburban
site, and from 23.9 to 754.5 μg m−3 at the two rural sites, with
more than 70 % of sampling days exceeding 75 μg m−3.
Concentrations of water-soluble ions in PM2.5 ranked

differently between the non-rural and rural sites. The three
dominant ions were NH4

+, NO3
−, and SO4

2− and mainly
existed as (NH4)2SO4, NH4HSO4, and NH4NO3, and their
concentrations averaged 48.6±44.9, 41.2±40.8, and 49.6±
35.9 μg m−3 at the urban, suburban, and rural sites, respec-
tively. Ion balance calculations indicated that PM2.5 was neu-
tral at the non-rural sites but acidic at the rural sites. Seasonal
variations of the gases and aerosols exhibited different pat-
terns, depending on source emission strength and meteorolog-
ical conditions. Our results suggest that a feasible pathway to
control PM2.5 pollution in the NCP should target ammonia
and acid gases together.
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Introduction

In China, the atmospheric environment has been greatly
affected over recent decades by various anthropogenic factors,
such as a dramatic economic rise, rapid industrial develop-
ment, population growth, and construction and demolition
projects. The increase of traffic flow is also of central impor-
tance. As a consequence, complex air pollution events char-
acterized by regional photochemical smog and haze occur
frequently in many regions of China (Wang et al. 2014a),
arousing increasing attention from the private citizen as well
as environmental scientists and policy makers. The smog and
haze largely result from high levels of particulate matter (PM),
especially PM2.5 (particular matter less than 2.5 μm), which
limits atmospheric visibility by light extinction (absorption
and scattering) (Sun et al. 2006; Wang et al. 2012a). Several
studies focusing on health effects have revealed associations
between PM pollution and morbidity and mortality, including
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in the USA (Doninici et al. 2014) and China (Guo et al. 2009;
Wu et al. 2010). It has been estimated that 350,000–400,000
premature deaths can be ascribed to ambient air pollution in
China, and the economic burden of premature mortality and
morbidity was conservatively estimated at approximately 157
billion RMB (1.16 % of the GDP) in 2003 (Zhang and Smith
2007; WB 2007).

Airborne PM2.5 can be directly emitted by anthropogenic
sources or generated by gas-to-particle conversion (secondary
PM) (Watson 2002). The primary precursors for formation of
ammonium sulfate (or bisulfate) and ammonium nitrate are
NH3, SO2, and NOx (NO+NO2). Atmospheric NH3 is emitted
primarily from livestock wastes and volatilization of N fertil-
izers. Other sources include biomass burning, excreta of hu-
man and pets, and wastewater (Clarisse et al. 2009). NOx and
SO2 are mainly derived from combustion processes and are
subsequently oxidized to HNO3 and H2SO4 in the atmosphere
(Sharma et al. 2007).

In order to prevent further deterioration of air quality, China
has made tremendous efforts since 2005. For example, the
11th Five-Year Plan (FYP) (2006–2010) for national environ-
mental protection required the reduction of annual SO2 emis-
sions in 2010 by 10 % from its 2005 level, which required
installation of flue-gas desulfurization systems to coal-fired
power plants as a primary control measure and a stronger
vehicle emissions standard. As a consequence, national SO2

emissions decreased by 14.3 % from 2005 to 2010 (MEPC
2011). In the 12th FYP (2011–2015), China is mainly focused
on the reduction of national NOx emissions by 10 % in 2015
from the 2010 level, as well as controls on SO2 and primary
particle emissions. To achieve this binding target, China’s
Ministry of Environmental Protection (MEP) released a new
Bemission standard of air pollutants for thermal power plants^
(GB 13223-2011) in 2011 to further strengthen the NOx con-
trols. Furthermore, a stricter vehicle emissions standard
(equivalent to the European Union’s Euro IV standard) was
also released in late 2012. Unfortunately, legislation to simul-
taneously reduce NH3 emissions has not been implemented in
China. Such legislation is urgently needed given that the esti-
mated health costs associated with NH3 emissions were great-
er than those associated with NOx emissions in more than
77 % of provinces in China, particularly in the North China
Plain (NCP) (Gu et al. 2014).

The NCP is an intensively managed agricultural and eco-
nomically developed region, which comprises only 8 % of the
total area of China but contributes 40 % of the total national
GDP (CSY 2014). The consumption of N fertilizer and energy
in the NCP accounted for 35 and 34 % of their respective total
national consumption (CSY 2014). This makes the NCP one
of the greatest emitters of air pollutants (e.g., NH3, NOx, and
SO2) nationally and globally (Clarisse et al. 2009; Zhang et al.
2009; Gu et al. 2012; Huang et al. 2012) and a serious PM2.5

pollution region in China (Wang et al. 2014b). Some studies

have focused on the measurements of atmospheric NO2 and
NH3 at various sites in the NCP (Shen et al. 2009, 2011; Meng
et al. 2011; Pan et al. 2012; Luo et al. 2013) and on estimating
of emissions of NO2 and NH3 from anthropogenic sources
(Zhang et al. 2010, 2011b). Very few studies in the NCP have
considered ambient HNO3 measurements (Shen et al. 2009;
Luo et al. 2013). PM2.5 has been systematically analyzed in
many studies in the NCP. Most of the studies have provided
the general characteristics of the chemical compositions of
PM2.5 and discussed its seasonal variations, correlations, or
sources (Sun et al. 2004; Song et al. 2006). Additionally, the
concentration, correlations, sources, or formation of some spe-
cific species (e.g., inorganic ions, carbonaceous components,
or organic matter) and their spatial variations have been inves-
tigated in the NCP (Ianniello et al. 2011; Zhao et al. 2013; Hu
et al. 2014). However, few studies have measured NOx, NH3,
HNO3, and PM2.5 simultaneously. In addition, previous work
has mainly included short-term studies before the year 2010
and has been limited to single land-use types (e.g., urban
areas). In the absence of long-term and simultaneous observa-
tions, the characteristics of these air pollutants and their im-
plications cannot be determined accurately.

In the present study, ambient NOx, NH3, and HNO3 were
continuously monitored at five typical sites (two urban, one
suburban, and two rural) in the NCP during the period 2011–
2014, and PM2.5 was sampled at four of the five sites. The
objectives of this study were (1) to characterize spatial, sea-
sonal, and annual variations of concentrations for the mea-
sured gases and evaluate their pollution status during the pe-
riod from 2011 to 2014 and (2) to analyze the concentrations
and seasonal variations of PM2.5 and its secondary inorganic
components over different land-use types. The intention of the
study was to provide accurate and current insight into the
characteristics of air pollutants and to support interpretation
of the effectiveness of major national control policies imple-
mented recently in the NCP.

Materials and methods

Sampling sites

Sampling was conducted between January 2011 and Decem-
ber 2014 at five sites in Beijing and in Henan, Shandong, and
Hebei provinces (Fig. 1), which are located in the North China
Plain. The area has a typical temperate and monsoonal climate
with dry winters and wet summers. The prevailing wind di-
rection is from the southeast in the summer and northwest in
the winter.

Two urban sites were at the China Agricultural University
(CAU) and Zhengzhou (ZZ), a suburban site was at
Shangzhuang (SZ), and two rural sites were at Quzhou (QZ)
and Yucheng (YC). The CAU site is located at the west
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campus of the China Agricultural University (40.02° N,
116.28° E, 55 m above sea level (m.a.s.l.)) which is situated
in the northwestern urban area of Beijing. The ZZ site is lo-
cated at Henan Academy of Agricultural Sciences (34.75 °N,
113.63 °E, 91 m.a.s.l.), which is in the center of Zhengzhou,
the capital of Henan province. The SZ site is located at
Shuangzhuang Agricultural Experimental Station (40.11° N,
116.20° E, 47 m.a.s.l.) in Shuangzhuang town, which is situ-
ated to the northwest of Beijing, about 33 km from the city
center. Quzhou (QZ) is a typical rural agriculture dominated
site with a recently constructed industrial district, about 60 km
northeast of Handan city, Hebei province. The sampling site
was located at Quzhou Agricultural Experimental Station
(36.78° N, 114.94° E, 37 m.a.s.l.). The YC site is located at
Yucheng Experimental Station (36.94° N, 116.63° E,
24 m.a.s.l.), Chinese Academy of Sciences, about 60 km
southeast of Dezhou city, Shandong province. The measure-
ment height and period, and other information on sampling
sites such as measured species, possible emissions and density
of population, are given in Table 1.

Sampling methods and chemical analysis

NH3 and HNO3 samples were collected using the DELTA
(DEnuder for Long-Term Atmospheric sampling) system de-
signed by the Centre for Ecology and Hydrology Edinburgh,
UK. The DELTA system has been used widely in Europe and
described in detail in many previous studies (e.g., Flechard
et al. 2011; Luo et al. 2013; Shen et al. 2013). Briefly, the
DELTA sampling Btrain^ consists of two potassium carbonate
plus glycerol (1 % (m/v) K2CO3+1 % (m/v) glycerol in meth-
anol)-coated denuders in series for the simultaneous collection

of HNO3, followed by two citric acid (5 % (m/v) citric acid in
methanol)-coated denuders for NH3. A low-volume pump
(D210, TCS Micropumps Ltd., UK) in the DELTA system
was used to sample ambient air at a rate of 0.2–0.4 L min−1.
When the air passes through a denuder filter train, HNO3 and
NH3 in the air are absorbed by the coated chemical solutions
in sequence. With a monthly sampling period, the detection
limit of the DELTA system for gaseous HNO3 and NH3 was
determined as 0.03 μg HNO3m

−3 and 0.01 μg NH3m
−3. Two

denuders in series are used for every sample to check capture
efficiency for HNO3 and NH3. When the value is less than
75 %, an imperfectly coated film or some other sampling
problems can be assumed to have occurred in the DELTA
system (Tang et al. 2009). Across the five sites, collection
efficiencies in the first of the two denuders for HNO3 and
NH3 averaged 83.2 % (95 % confidence interval 81.5–
84.9 %) and 82.7 % (81.3–84.1 %), respectively, during the
entire period. Thus, we can be assured that both of measured
gases were effectively captured in both denuders. It should be
noted that nitrous acid (HONO) could cause a positive bias in
the long-term measurement of HNO3 using the DELTA sys-
tem (Tang et al. 2009). This is of importance in urban areas
whereas HONO interference (as well as possible NO2 and
PAN interference) should be negligible in rural areas. In this
study, glycerol was added to the coating of the denuder for
HNO3 sampling in order to increase adhesion and reduce vol-
atilization of the carbonate coating and also to minimize oxi-
dation of nitrite to nitrate which can occur when ozone is
present (Allegrini et al. 1987; Perrino et al. 1990; Tang et al.
2009). In addition, the average denuder capture efficiency for
HNO3 was 83.2 % in the first denuder as noted earlier, indi-
cating little evidence of significant NO2 or PAN capture (Tang

Fig. 1 Geographical distribution of the five sampling sites in the North China Plain: urban sites (CAU, ZZ), suburban site (SZ), and rural sites (QZ, YC)
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et al. 2009). Nevertheless, measured HNO3 concentrations
may be overestimated to some extent at the urban CAU site
but could reflect actual levels at suburban and rural sites. In
future work, HNO3 should be selectively removed from the
sampling air by first using a sodium fluoride or sodium
fluoride-coated denuder as widely used in previous studies
(Allegrini et al. 1987; Spataro et al. 2013). For NH3 sampling,
Perrino and Gherardi (1999) have highlighted that in the case
of citric acid, about 8 % of the collected ammonia was re-
leased after 2 h and more than 40 % after 12 h. In contrast,
phosphorous acid is a suitable coating layer for a denuder line
intended to determine gaseous ammonia in the atmosphere
(Perrino and Gherardi 1999). However, an intercomparison
study conducted by Tang et al. (2009) showed that the 14-
day mean NH3 concentration from citric acid-coated denuders
of a DELTA system was about 9 % lower than that from
H3PO3-coated denuders of an Annular Denuder System.
Given this, together with an overall 82.7 % NH3 capture effi-
ciency as noted earlier, NH3 concentrations sampled at the five
sites should be reasonable and acceptable, albeit with some
degree of underestimation.

NO2 samples were collected by Gradko diffusion tubes
(Gradko International Limited, UK). Each sampler consists
of a 71.0-mm long×11.0-mm internal diameter acrylic tube
with colored and white thermoplastic rubber caps. Three NO2

samplers at each site were exposed under a PVC shelter which
protected the samplers from precipitation and direct sunshine.
The NO2 was absorbed into a 20 % triethanolamine/deionized
water solution coated onto two stainless steel wire meshes
within the colored cap. As indicated by the manufacturer
(Gradko International Ltd, UK), the uptake rate of the tube
is 68.8×10−6 m−3 h−1, the desorption efficiency is 0.98, the
limit of detection is 1.6 μg NO2m

−3 over a 2-week exposure
period, and the analytical expanded measurement uncertainty
is ±10 %. Over the entire period, the standard deviations of
each sampling across all sites ranged from 0.01 to 2.9 μg NO2

m−3 and averaged 0.8 μg NO2m
−3 (95 % confidence interval

0.7–0.9).
All the samplers were exposed for 1 month at each site and

returned to the laboratory for analysis. In the laboratory, all the
exposed samples were stored at 4 °C and analyzed at 1-month
intervals. The HNO3 denuders were extracted with 10 mL
0.05%H2O2 solution. The NH3 denuders were extracted with
10 mL high-purity water. Ammonium and nitrate in the ex-
tracted solutions were measured with an AA3 continuous-
flow analyzer (Bran+Luebbe GmbH, Norderstedt, Germany).
The detection limits were determined as 0.01 mg N L−1 for
NH4

+ and NO3
−. The meshes from the NO2 diffusion tubes

were extracted with a solution containing sulfanilamide,
H3PO4, and N-1-naphthylethylene-diamine, and the NO2 con-
tent in the extract determined using a colorimetric method by
absorption at a wavelength of 542 nm. The detection limit for
NO2 was 0.01 mg N L−1. The laboratory and field blankT
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samples were extracted and analyzed using the same methods
as the exposed samples. After correcting for the corresponding
blanks, the results were used for the calculation of
concentrations for all measured gases.

Samples of PM2.5 were collected by medium-volume
samplers (TH-150CIII, 100 L min−1, Tianhong Co., Wuhan,
China) onto 90-mm quartz fiber filters (Whatman QM/A,
Maidstone, UK) at all sites except ZZ because only four par-
ticle samplers were available. The quartz fiber filters were
baked at 500 °C for 4 h prior to sampling to remove contam-
inants. The PM2.5 samples were collected on a 24 hourly basis
from 08:00 hours to 08:00 hours the next day. More than 25
valid samples were obtained for most seasons during the sam-
pling period at each site. Owing to precipitation or occasional
sampler failure, a number of seasons have less than 20
samples.

Before and after sampling, the filters were equilibrated for
24 h in a desiccator at 25 °C and 40±5 % relative humidity
and then weighed with a microbalance (Sartorius, precision
10 μg). The PM2.5 concentrations were calculated by weight
differences divided by sampling air flows. A quarter of each
filter was put into a 50-mL beaker with 10 mL of high-purity
water (18.2 MΩ resistivity). After a 30-min ultrasonic extrac-
tion, the extracts were filtered using 0.22-μm syringe filters,
and the filtrates were stored in clean tubes at 4 °C until ana-
lyzed within 1 month of extraction. The cations (NH4

+, Na+,
Ca2+, K+, Mg2+) and anions (NO3

−, SO4
2−, F−, Cl−) in the

filtrates were determined by Dionex-600 and Dionex-2100
Ion Chromatograph (Dionex Inc., Sunnyvale, CA, USA), re-
spectively. Details of the instruments and detection limits have
been provided elsewhere (Zhang et al. 2011a; Tao et al. 2014).
Field blank measurements were made each month or each
season at all sites.

Meteorological data

Hourly wind speed (WS), temperature (T), relative humidity
(RH), and daily precipitation for each site for 2011–2014 were
taken from Weather Underground (http://www.underground.
com/). The monthly and annual WS, T, RH and precipitation
are respectively displayed in Fig. S1 and Table S1 in the
Supplementary Information (SI). Year-to-year variations in
all meteorological parameters were not significant at each site
(all p>0.05) except RH for CAU, SZ, and QZ.

Statistical analyses

One-way analysis of variance (ANOVA) and paired-sample t
tests were used to decide the significance of the differences in
annual average gas (i.e., NH3, NO2, and HNO3) concentra-
tions and annual average meteorological data among sites or
years, as well as daily average PM2.5 concentrations among
seasons at each site. Pearson correlation and linear regression

analyses were conducted for the water-soluble inorganic ions
in PM2.5. All statistical analyses were performed using SPSS
11.5 (SPSS Inc., Chicago, IL, USA), and significance was
defined as p<0.05.

Results and discussion

Spatial and annual variations of NH3, NO2, and HNO3

Monthly mean concentrations of NH3, NO2, and HNO3 at the
five sites are shown in Fig. 2. The concentrations of NH3,
NO2, and HNO3 across all sites were in the ranges of 1.2–
42.3, 10.6–81.3, and 0.3–22.1 μg m−3, respectively. Their
concentrations varied greatly across sites for all measured gas-
es. The annual mean concentrations of NH3, NO2, and HNO3

at the five sites for the years between 2011 and 2014 are also
presented in Fig. 2. The annual NH3 concentrations varied
from 8.5±3.7 μg m−3 at ZZ in 2011 to 23.7±7.2 μg m−3 at
QZ in 2014 (Fig. 2a). The year-to-year variations in annual
concentrations of NH3 were sometimes significant at all sites
except CAU and YC (details are given in Table S2). However,
it is important to note that annual NH3 levels show a slight
increasing trend at the five sites. This finding is consistent
with the increasing trend of NH3 emissions during recent
years in the NCP due to intensified agricultural activities
(Zhang et al. 2010, 2011b). The largest annual mean NH3

concentration was observed at QZ (16.9±5.9 μg m−3), follow-
ed by YC (13.8±1.5 μg m−3), CAU (13.1±1.0 μg m−3), ZZ
(11.1±2.0 μg m−3), and SZ (10.5±1.1 μg m−3) (Fig. S2). This
is likely due to the fact that QZ is a typical agricultural rural
site with excessive N fertilizer input (about 500–
600 kg N ha−1 year−1) over a large amount of agricultural land
(75 % of the total land), which is the main source of NH3

(Clarisse et al. 2009). However, the difference in the annual
NH3 concentrations during 2011–2014 across the five sites
was not significant. High NH3 concentration in urban areas
is associated with NH3 emissions from biological sources,
such as humans, sewage systems, and garbage containers
(Reche et al. 2002). NH3 is a secondary pollutant in gasoline
vehicle emissions that results from the reaction which occurs
in the catalytic converter between NO and H (Moeckli et al.
1996). Between 2006 and 2013, the number of civil vehicles
increased from 2.39 to 5.17 million in Beijing and from 0.46
to 1.72 million in Zhengzhou (CSY 2007–2014), which could
result in elevated NH3 emissions. In addition, large cities in
China (e.g., Beijing and Zhengzhou) can receive large amount
of agricultural NH3 from the suburban areas (Gu et al. 2014;
Xu et al. 2014). In the present study, annual NH3 concentra-
tions at the five sites were 4~11 times higher than the annual
background atmospheric NH3 in North China (ca. 2.1 μg m

−3)
reported by Meng et al. (2010). NH3 levels at different urban,
suburban, and rural sites in the world are listed in Table S3.
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The average concentrations of NH3 measured at the rural and
urban sites in this study were far higher than those reported in
southern China (e.g., Yang et al. 2010; Shen et al. 2013) and in
other countries (e.g., Walker et al. 2004; Trebs et al. 2006;
Endo et al. 2011) but were comparable to previous measure-
ments in the NCP (e.g., Meng et al. 2011; Luo et al. 2013).
NH3 concentrations at the suburban site (SZ) were close to
those observed at suburban sites with serious NH3 pollution
worldwide (Singh et al. 2001; Alebic-Juretic 2008; Cao et al.
2009). Our findings suggest that the NCP is still experiencing
serious NH3 pollution in present-day China, which is closely
related to the high NH3 emissions from N fertilizer applica-
tion, intensive livestock production facilities, and high popu-
lation density. For example, typical application rates of N
fertilizer are 500–600 kg N ha−1 year−1 for high yields of
maize and wheat in rural and suburb areas. However, less than
30 % of the N fertilizer applied is taken up by the crops and
more than 20 % (ca. 100 kg N ha−1 year−1) is lost by NH3

emissions (Pan et al. 2012). This makes a significant contri-
bution to high NH3 concentrations in the whole region. More-
over, North China is witnessing a rapid increase in livestock
production facilities in suburban areas. Populations of the
main livestock (pig and cattle) have increased at an annual
rate of 2 % from 1996 to 2013 in North China (CSY 1997–
2014). This will also result in large emissions of NH3.

The annual average NO2 concentrations ranged from 22.2
±6.2 μg m−3 at SZ in the suburb of Beijing in 2014 to 50.5±
8.3 μg m−3 at CAU in the city area in 2011 (Fig. 2b). The
annual concentrations at each site varied to a different extent
among the years and overall exhibited a decreasing trend dur-
ing the period 2011–2014 (Fig. 2b and Table S2). This finding
is in accordance with the modeling results of Wang et al.
(2014b) who calculated that ambient NO2 concentration will
decrease by 8 % during the 12th Five-Year Plan period (2011–
2015) as a consequence of national NOx control policies (e.g.,
new emission standards for power plants and vehicles). It is
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interesting to observe that the year-to-year variation exhibited
the same characteristic at CAU and SZ, i.e., monthly mean
values were significantly lower (p<0.05) in 2014 than in 2011
but were not significantly different (p>0.05) between other
years (Table S2). This result suggests that NO2 produced in
the area of the urban site can greatly affect NO2 concentration
at the suburban site. As for inter-site comparisons, annual NO2

concentrations at the urban sites (CAU and ZZ, average 43.9±
1.0 μg m−3) were significantly higher (p<0.05) than those at
the rural and suburban sites (QZ, YC, and SZ, average 27.5±
3.2μgm−3). Differences in annual average values between the
suburban and rural sites were not significant (p>0.05)
(Fig. S2). It is commonly accepted that NO2 is a ubiquitous
air pollutant in urban regions derived mainly from fossil fuel
combustion processes including power plants, transportation,
and industry (Streets et al. 2003). The background concentra-
tion of atmospheric NO2 was only about 3.7 μg m

−3 in North
China (Meng et al. 2010). In the present study, annual NO2

concentrations at the rural sites (23.2–31.4 μg m−3) were low-
er than those obtained in a rural area with serious NO2 pollu-
tion in eastern China (average 42 μg m−3) (Yang et al. 2010)
but were much greater than those obtained in the studies of
Aas et al. (2007) and Shen et al. (2013) at several rural sites in
south China (Table S3), and exceed (or are close to) the annual
mean NO2 guideline value of 30 μg m−3 set by the World
Health Organization (WHO 2000). Annual NO2 concentra-
tions at the urban sites (38.3–50.5 μg m−3) exceeded the
WHO guideline and mostly exceeded the Chinese annual ex-
posure limit for humans of 40 μg m−3 for NO2 (MEPC 2012).
Compared to urban sites in other studies (Table S3), the urban
NO2 concentrations in this study were similar to those obtain-
ed at most capital cities reported byWang et al. (2014b) for the
period of 2013–2014 in China and were higher than values
reported for Thessaloniki, Greece (Anatolaki and Tsitouridou
2007). Combining these findings, we conclude that many
large cities in China, and rural and suburban regions in the
NCP, are suffering from serous NO2 pollution, which mainly
results from high NOx emission from the construction of new
power plants and the rapid increase of vehicle numbers. Ac-
cording to Wang and Hao (2012), China increased its thermal
power generation by 195 % and vehicle production by 300 %
during 2000–2010 and NOx emissions from power plants and
transport increased by over 100 and 200 %, respectively, over
the same period. The increased NO2 emissions from newly
built large power plants in North China can even be observed
by satellite (Wang et al. 2012b).

NH3 and NO2 are two primary reactive N species in air
which mainly come from human activity. The monthly mean
molar ratio of NH3 to NO2 were in the ranges of 0.11–1.92 at
the urban sites (CAU and ZZ), 0.15–2.55 at the suburban site,
and 0.11–7.38 at the rural sites (QZ and YC), with overall
annual values of 0.81, 1.19, and 1.74, respectively (Fig. S3).
These results indicate that the concentrations of gaseous N

compounds in the air are predominantly influenced by fossil
fuel combustion in urban areas and by agricultural activity in
non-urban areas.

In contrast to NH3 and NO2, the annual mean concentra-
tions of HNO3 at the five sites were lower and less variable,
ranging from 5.5±4.1 μg m−3 (at ZZ in 2011) to 9.7±
4.5 μg m−3 (at CAU in 2014) (Fig. 2c). The year-to-year
variation in annual averages was comparatively small at each
site except that ZZ and SZ showed a significant difference
(p<0.05) in monthly mean values between 2014 and 2011
and 2012, respectively (Table S2). Annual HNO3 concentra-
tions were not significantly different (p>0.05) among the five
sites, with mean values of 8.9, 8.3, 7.1, 7.6, and 7.3 μg m−3 at
CAU, ZZ, SZ, QZ, and YC, respectively (Fig. S2). This find-
ing is not surprising because HNO3 is produced through many
pathways in the atmosphere, including photooxidation of NO2

with OH, reaction of NO3 with VOC, hydrolysis of N2O5, and
dissociation of NH4NO3 aerosol (Khoder 2002). The fate of
HNO3 is controlled by the reaction with NH3, which is influ-
enced by ambient temperature, relatively humidity, and NH3

concentrations (Sharma et al. 2007). Therefore, the absence of
significant spatial difference of HNO3 in this study is likely
linked to the differences among sites in the extent of oxidation
of NO2, the contribution from other sources, and the ratio of
HNO3 and NH3. For example, the correlations between
monthly mean concentrations of NO2 and HNO3 were not
significant at each site except for a significantly negative cor-
relation for ZZ (Fig. S4). Moreover, NH3 and HNO3 were
found to be highly positively corrected at ZZ, QZ, and YC
(Fig. S5), suggesting that dissociation of NH4NO3 is the im-
portant contributor for the ambient HNO3. Average HNO3

concentrations in this study were comparable to those mea-
sured at two sites in the NCP reported by Luo et al. (2013) but
much higher than those observed at three sites in south China
(Shen et al. 2013) and at many sites worldwide (e.g., Endo
et al. 2011; Trebs et al. 2006) (Table S3). The NCP has some
of the highest air pollution in China due to the large amounts
of coal combustion for industry and power plants and residen-
tial heating leading to high HNO3 concentrations from oxida-
tion of NO2.

Seasonal variation of gaseous NH3, NO2, and HNO3

The seasonal concentrations of NH3, NO2, and HNO3 are
dependent on their source strength and meteorological condi-
tions. Figure 3 shows the monthly statistics of NH3, NO2, and
HNO3 concentrations, averaged over the 4-year period, mea-
sured at the five sites (2-year observation at YC). NH3 con-
centrations across all sites were higher in March or April,
especially at the rural sites (Fig. 3(a)). This can be partly ex-
plained by the enhanced NH3 emission from natural and ag-
ricultural sources and city garbage, caused by the abrupt tem-
perature increase after winter (Fig. S1a); every 5 °C
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temperature increase nearly doubles the volatilization poten-
tial of ammonia (Sutton et al. 2013). The highest concentra-
tions of NH3 at all sites were in summer (June–August), which
is due to the fact that high temperatures together with
ammonium-N fertilizer use induce high NH3 emissions from
fertilizers. As shown in Fig. 4, NH3 concentrations increased
exponentially with the increase in air temperature at the sam-
pling sites. The lowest concentrations of NH3 in winter can be
ascribed to the reduced NH3 volatilization at low air temper-
ature, high snow coverage, and infrequency of agricultural
activities in winter (Cao et al. 2009). The highest NO2 con-
centrations at all sites were observed in autumn (September–
November) or winter (December–February) with the

exception of SZ, which showed comparable values between
spring and winter (Fig. 3(b)). Increased NO2 emissions from
the greater coal combustion for domestic heating (frommiddle
November to middle March) in Northern China is the main
reason for high NO2 concentrations in autumn/winter. More-
over, agricultural crop residues in North China are not only
burned as domestic fuel but are also burned directly in the
field during harvest seasons (e.g., autumn), which can also
cause serious local and regional NO2 pollution (Duan et al.
2004). In addition, stable atmospheres and low temperatures
appearedmore frequently during autumn and winter (Fig. S1a,
b), which are unfavorable meteorological conditions for air
pollution dilution and dispersion (Chai et al. 2014). The low-
est NO2 concentrations were observed in summer at ZZ, SZ,
and YC; in spring at QZ; and were comparable between spring
and summer at CAU. In summer, stronger atmospheric mixing
leads to a deeper boundary layer and a dilution of pollutants
emitted from the surface, and the increased photochemistry
increases the oxidation of NO2 and its conversion rate to ni-
trate by reaction with OH (Yang et al. 2010). Consequently,
NO2 concentrations were lowest in summer at most sites. In
contrast, the relatively high NO2 concentration in summer at
QZ and CAU is probably due to high NO2 emissions from
road traffic. The seasonal pattern of HNO3 changes somewhat
across the five sites, with the highest HNO3 concentrations
observed in winter at CAU and SZ, in summer at QZ and
ZZ, and in autumn at YC (Fig. 3(c)). Different seasonal
patterns of atmospheric HNO3 in China were also reported
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in previous studies (Li et al. 2013; Luo et al. 2013; Shen et al.
2013).

Mass concentrations of PM2.5 and water-soluble ions

Table 2 presents the summary statistics for daily average
PM2.5 concentrations during the sampling periods at the four
sites. The concentrations of PM2.5 were in the range 11.8–
621.0, 19.8–692.9, 23.9–754.5, and 27.9–455.0 μg m−3 at
CAU, SZ, QZ, and YC, respectively (data for each season
per site during the sampling period are provided in
Table S4). Daily average PM2.5 concentrations were not sig-
nificantly different between the sites with the exception of
significantly higher PM2.5 concentrations at CAU than at
SZ. The average PM2.5 concentration at the urban site
(CAU, 159.4 μg m−3) was comparable to the annual mean
value of 123.5 μg m−3 in 2009/2010 in the urban area of
Beijing (Zhao et al. 2013). Also, the average daily PM2.5 con-
centration at the suburban (SZ, 141.5 μg m−3) and rural
(153.9 μg m−3 at QZ and 141.8 μg m−3 at YC) sites was
similar to those obtained at sites with corresponding land-
use types in the NCP (Shen et al. 2011). The daily average
PM2.5 concentration was a factor of 2.1 (95 % confidence
interval 1.99–2.25), 1.9 (1.72–2.04), 2.1 (1.89–2.21), and
1.9 (1.75–2.03) greater than the Chinese Grade II standard
for daily PM2.5 concentration (75 μg m−3, MEPC 2012) at
CAU, SZ, QZ, and YC, respectively. When compared to the
WHO guideline for daily PM2.5 concentration (25 μg m−3,
WHO 2005), the ratios were even higher, being 6.4 (5.99–
6.76) at CAU, 5.7 (5.18–6.14) at SZ, 6.2 (5.67–6.64) at QZ,
and 5.7 (5.24–6.11) at YC. More than 70 % of the sampling
days had daily average PM2.5 concentration above the Chinese
Grade II standard at the four sites, especially at YC (94 %).
Compared with the WHO standard for daily average PM2.5,

almost all (>98 %) of the daily PM2.5 concentration exceeded
the standard. Obviously, severe PM2.5 pollution not only
existed in the urban area but also in suburban and rural areas
in the NCP.

At four sites, the daily PM2.5 concentrations during sum-
mer were lower than those in other seasons (Fig. 5). Higher
rainfall in summer at all sites (Fig. S1d) promotes the scav-
enging of particles by wet deposition. In addition, higher tem-
peratures during summer (Fig. S1a) favor the volatilization of
fine particle nitrate to NH3 and HNO3 (Seinfeld and Pandis
2006). Different seasonal characteristics for highest PM2.5

concentrations were found in the present study. At CAU, the
maximum concentrations were in spring and winter, with no
significant difference between the two seasons. This seasonal
pattern is consistent with that for the period 2005–2008 in
Beijing investigated by Yu et al. (2011) but is different from
the finding of Zhao et al. (2013) who reported similar seasonal
PM2.5 concentrations across seasons in Beijing in 2009/2010,
ascribed to the promotion of electricity and natural gas use.
So, our result may imply that combustion of fossil fuel is still
the important source of PM2.5 in Beijing, regardless of differ-
ences in meteorological conditions (e.g., wind direction, wind
speed) during experiment periods between the two studies. At
QZ and SZ, the concentrations were not significantly different
between spring, autumn, and winter. As revealed by Yu et al.
(2011), high PM2.5 concentrations in spring in Beijing were
mainly dominated by geogenic particles from the west and
northwest of China via atmospheric transport. In contrast, high
concentrations of PM2.5 in winter and autumn resulted from
the combination of coal and biomass burning for domestic
home heating and direct burning of agricultural residues in
the field (Hu et al. 2014). Moreover, stable meteorological
conditions during autumn and winter (see BSeasonal variation
of gaseous NH3, NO2, and HNO3^) also lead to the accumu-
lation of air pollutants. The PM2.5 concentrations at YC were
significantly higher only in winter as compared to the other
three seasons, among which there was no significant differ-
ence in PM2.5 concentration. Low PM2.5 concentration in
spring at YC is associated with a combination of fewer sam-
ples collected in the spring of 2013 (Table S4) and missing
days with serious particle pollution.

The average concentrations of water-soluble ionic species
during the sampling period at the four sites are presented in
Table 3. The proportion of the water-soluble ions in PM2.5 was
similar for the urban site (36 %), the suburban site (34 %), and
the rural sites (average 40 %). The concentrations of ions at
the urban and suburban sites were both in the order NH4

+>
Ca2+>K+>Na+>Mg2+ for the cations and NO3

−>SO4
2−>

Cl−>F− for the anions. At the rural sites, the concentration
order was NH4

+>K+>Ca2+>Na+>Mg2+ for the cations and
SO4

2−>NO3
−>Cl−>F− for the anions. The SO4

2−, NO3
−, and

NH4
+ are the dominant ionic species, contributing 29–39% of

the average PM2.5 mass across the four sites (Table 3). The

Table 2 Summary statistics for daily average PM2.5 concentrations
(μg m−3) during the sampling period at the four sites

CAU SZ QZ YC

Mean 159.4 141.5 153.8 141.8

Median 137.3 110.3 126.4 127.7

Min 11.8 19.8 23.9 27.9

Max 621.0 692.9 754.5 455.0

SD 95.8 105.9 101.5 68.4

N 384 299 270 155

ECGS (%)a 80.5 72.6 79.6 93.5

EWHOS (%)b 98.2 99.7 99.6 100

N number of samples
a The proportion of sampling days which had concentrations of PM2.5

exceeded the Chinese Grade II standard
b The proportion of sampling days which had concentrations of PM2.5

exceeded the WHO standard
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sampling sites in the present study were located in Beijing and
its neighboring provinces (far from the ocean), where the con-
tribution to aerosols from sea salt spray could be ignored (Yu-
an et al. 2004). The inconsistent order of Ca2+ and K+ between
non-rural and rural sites is likely due to the differences in
contributions from road and soil dust and biomass burning,
as the fine mode Ca2+ and K+ are widely regarded as indica-
tors of mineral dust and biomass burning, respectively (Zhao
et al. 2010). The average mass ratios of NO3

−/SO4
2− were

1.15±0.90, 1.10±0.82, 0.81±0.53, and 0.81±0.49 for CAU,
SZ, QZ, and YC, respectively. The higher ratios at CAU and
SZ indicate a greater fraction of particles sourced from

automobile exhaust. Lower NO3
−/SO4

2− ratio at QZ and YC
could reflect the dominant coal combustion sources for
particles.

Figure 6 illustrates the acid-base balance of the inorganic
ions in PM2.5 at the four sites. The ion balance expresses the
equivalent concentration (μeq m−3) of total inorganic anions
(sum of NO3

−, SO4
2−, Cl−, F−) to cations (sum of NH4

+, Ca2+,
K+, Na+, and Mg2+). The correlation coefficients for the anion
versus cation concentration data stratified by season all were
greater than 0.92 at all sites, suggesting a common origin of
the ions in PM2.5. The slopes (anion/cation) of the linear re-
gressions for all PM2.5 samples were equal to the theoretical
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Table 3 Average mass concentrations of PM2.5 species during the sampling period at the four sites

CAU SZ QZ YC
Mean±SD Mean±SD Mean±SD Mean±SD

PM2.5 (μg m−3) 159.40±95.76 141.50±105.89 153.85±101.53 141.78±68.38

NO3
− (μg m−3) 19.23±18.98 16.26±19.28 16.01±15.95 18.09±15.13

SO4
2− (μg m−3) 18.61±17.92 15.21±14.80 20.08±16.06 24.52±14.66

NH4
+ (μg m−3) 10.78±10.26 9.67±9.54 10.49±8.31 12.25±7.02

Cl− (μg m−3) 3.74±4.82 2.28±2.70 3.52±4.36 2.42±2.81

Ca2+ (μg m−3) 2.64±1.98 1.82±1.72 1.60±1.59 1.25±1.06

Na+ (μg m−3) 0.93±0.87 0.84±0.73 0.71±0.69 0.70±0.69

K+ (μg m−3) 1.32±1.24 1.21±1.16 1.73±1.24 2.04±1.43

Mg2+ (μg m−3) 0.32±0.27 0.26±0.18 0.23±0.23 0.24±0.26

F− (μg m−3) 0.26±0.26 0.18±0.19 0.21±0.24 0.27±0.26

Sum of ionic species (μg m−3) 58.84±48.88 47.73±43.78 55.31±41.95 61.97±35.63

Secondary inorganic aerosol (μg m−3) 48.6±44.9 41.2±40.8 46.6±37.2 54.9±33.1

WSII (%)a 0.35±0.18 0.34±0.17 0.35±0.15 0.44±0.15

SIA (%)b 0.29±0.17 0.29±0.16 0.30±0.14 0.39±0.15

a Proportion of water-soluble inorganic ions in PM2.5

b Proportion of secondary inorganic ions in PM2.5
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equivalent ratio of 1 at CAU (1.06) and SZ (1.01) but were
greater than 1.1 at QZ (1.13) and YC (1.22). These results
imply that the aerosols were neutral at the urban and suburban
sites but acidic at the rural sites. The acidic PM2.5 observed at
the rural sites is most likely due to relatively low concentra-
tions of Ca2+ which play an important role in spatial distribu-
tion of PM2.5 acidity (He et al. 2012). Fully neutralized aerosol
have beenwidely observed in different areas worldwide (Shon
et al. 2012; Tao et al. 2014), but acidic aerosol has also been
reported by many previous studies (Wang et al. 2006; Zhang
et al. 2011a; He et al. 2012). The seasonal anion/cation ratios
at the four sites, i.e., the slopes of linear regressions for the
seasonally stratified data, were found to vary moderately
(Fig. 6). This characteristic is consistent with the findings of
Shon et al. (2012), who suggested that seasonal variation in
ratio of anion/cation was caused by unmeasured cations such
as ferric and non-ferric components.

Secondary inorganic aerosol

Ammonia in the atmosphere can react with H2SO4 to form
ammonium sulfate ((NH4)2SO4) and ammonium bisulfate
(NH4HSO4) and react with HNO3 and HCl to form ammoni-
um nitrate (NH4NO3) and ammonium chloride (NH4Cl)
(Ianniello et al. 2010). These compounds are referred to as
Bsecondary inorganic aerosol (SIA)^ in this paper. The
4Pearson correlation coefficients between the molar

concentrations of NO3
−, SO4

2−, and Cl− in PM2.5 are present-
ed in Table S5. At the four sites, the correlation coefficients
(CCs) between NH4

+, SO4
2−, and NO3

−were comparable, but
both of them were higher than CCs between NH4

+ and Cl−.
Moreover, the CCs between NH4

+ and the sum of NO3
− and

SO4
2− at all sites (except SZ) were higher than those between

NH4
+ and the sum of NO3

−, SO4
2−, and Cl−. These results

mean NH4
+ was probably mainly combined with NO3

− and
SO4

2−. In order to further understand the neutralization pro-
cesses between them, we calculated the molar concentrations
of positive electric charges of NH4

+ (PEC=NH4
+/18) and neg-

ative electric charges of NO3
− and SO4

2− (NEC=NO3
−/62+

2×SO4
2−/96). If all sulfate was assumed to be in the form of

HSO4
−, then NEC=(NO3

−/62+SO4
2−/96) (Louie et al. 2005;

Zhao et al. 2013). The seasonal average PEC and NEC are
shown in Fig. 7. At all sites, we found that NH4

+ was enough
to match NO3

− and SO4
2− to form NH4HSO4 in all four sea-

sons and not sufficient to meet the complete neutralization of
SO4

2− and NO3
−for formation of (NH4)2SO4 aerosol in most

seasons. This indicates acid-rich conditions at the study sites.
Interestingly, our findings at CAU differ from results for urban
sites in Beijing and its surrounding provinces during 2009–
2010 when NH4

+ concentrations were far from enough to
match NO3

− and SO4
2− throughout the year (Zhao et al.

2013). We can infer the enhanced alkalization of the atmo-
sphere in Beijing and/or its surrounding areas because the
levels of NO3

− and SO4
2− were closely comparable between
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Fig. 6 The molar inorganic ion
balance in PM2.5 at the four sites:
a CAU, b SZ, c QZ, and d YC
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the two studies. The average molar ratio of NH4
+ to SO4

2−

were 3.07±2.08 at CAU, 3.96±2.53 at SZ, 2.84±1.23 at QZ,
and 2.85±0.97 at YC, suggesting the main form of
(NH4)2SO4. According to Guo et al. (2014), reductions in
emissions of the aerosol precursor gases from transportation
and industry are essential to mediate severe haze pollution in
China. Based on our findings, we suggest that a feasible and
ideal pathway to control PM2.5 pollution in the NCP should
target ammonia and acid gases together.

The average SIA concentrations (the sum of NO3
−, SO4

2−,
and NH4

+) were 48.6±44.9, 41.2±40.8, 46.6±37.2, and 54.9
±33.1 μg m−3 at CAU, SZ, QZ, and YC, respectively
(Table 3). All averages exceeded the Chinese ambient air qual-
ity standard for annual average value of PM2.5 (grade II,
35 μg m−3) (MEPC 2012), suggesting serious SIA pollution
at all sites. The SIA concentrations in the present study were
much higher than those reported in many European countries,
the USA, and other developed countries (Shen et al. 2013), as
well as many other cities in China (Zhang et al. 2011a). SIA
concentrations at CAU were comparable to values in urban
Beijing reported by a recent study (Zhao et al. 2013) but were
obviously higher than 2001–2003 observations at five urban
sites in Beijing (average 35.9 μg m−3, Wang et al. 2005). This
reflects enhanced emissions of the gaseous precursors (i.e.,
NH3, SO2, and NOx) as a result of substantial increase in
vehicle traffic, coal consumption, etc.

Seasonal concentrations of SIA at the four sites are shown
in Fig. 8. At all sites except YC, the seasonal pattern of SIA is
similar to that of PM2.5 (Fig. 5), consistent with the findings of
Yin et al. (2014). The SO4

2− concentrations at the urban and
suburban sites (CAU and SZ) exhibited a consistent seasonal
variation, with the order ranked by winter>spring>summer>
autumn (Fig. 8). It should be noted that the average SO4

2−

concentration in winter (22.7 μg m−3) at CAU was slightly
higher than the concentration (19.1 μg m−3) observed in

Beijing for winter in 2009 (Zhao et al. 2013). The similar level
of sulfate loading suggests that the effect of gas desulfuriza-
tion in power plants might be greatly offset by the increasing
coal consumption. In contrast, the seasonal SO4

2− concentra-
tions at the rural sites were ranked in different orders: spring,
autumn>winter>summer at QZ and summer, winter>au-
tumn>spring at YC. We observed relatively high SO4

2− con-
centrations in summer at each site. However, SO2 concentra-
tions were usually lowest in summer (Table S6) not only be-
cause of lower coal combustion but also owing to the in-
creased photochemical oxidation activity, which was one of
the important factors for the enhanced sulfate level in summer
(Husain and Dutkiewicz 1990). At all sites, NO3

− concentra-
tions were distinctly lower in summer than in the other three
seasons (Fig. 8). Nitrate is more sensitive to temperature, and
higher temperature in summer does not favor the formation of
nitrate. Moreover, a large portion of ammonium nitrate
(NH4NO3) could evaporate from the filters, especially in

S
p
rin

g

S
u
m

m
er

A
u
tu

m
n

W
in

ter

S
p
rin

g

S
u
m

m
er

A
u
tu

m
n

W
in

ter

S
p
rin

g

S
u
m

m
er

A
u
u
tu

m
n

W
in

ter

S
p
rin

g

S
u
m

m
er

A
u
tu

m
n

W
in

ter

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
al

o
r 

co
n

ce
n

tr
at

io
n

s 
o

f 
el

ec
tr

ic
 c

h
ar

g
es

 (
m

o
l 

m
-3

) 

 PEC (NH
4

+
)

NEC (HSO
4

-
 assumption)

NEC (SO
4

2-
 assumption)

CAU SZ QZ YC

Sampling sites
µ

Fig. 7 Molar concentrations of
positive electric charges of NH4

+

(PEC) and negative electric
charges of NO3

− and SO4
2−

(NEC)

S
p
rin

g

S
u
m

m
er

A
u
tu

m
n

W
in

ter

-- S
p
rin

g

S
u
m

m
er

A
u
tu

m
n

W
in

ter

-- S
p
rin

g

S
u
m

m
er

A
u
tu

m
n

W
in

ter

-- S
p
rin

g

S
u
m

m
er

A
u
tu

m
n

W
in

ter

0

20

40

60

80

C
o
n
ce

n
tr

at
io

n
s 

o
f 

S
IA

 (
µg

 m
-3
)

 NH
4

+
 SO

4

2-
 NO

3

-

CAU SZ QZ YC

Sampling sites

Fig. 8 Average seasonal concentrations of secondary inorganic aerosol at
the four sites

Environ Sci Pollut Res (2016) 23:1158–1172 1169



summer (Ianniello et al. 2011). In contrast, low temperature
and high emissions of NOx were favorable for formation of
NO3

− aerosol and the reaction with NH4
+ (Mariani and Mello

2007). As already discussed in BSeasonal variation of gaseous
NH3, NO2, and HNO3,^ NOx emissions increase between
mid-September and mid-March which, in combination with
winter heating under relatively low temperature during that
period (Fig. S1a), lead to high NO3

− concentrations. NH4
+

concentrations at the four sites were higher in autumn and
winter than in spring and summer. The formation of NH4

+

depends on air concentrations of acid gases, temperature, wa-
ter availability (Khoder 2002), as well as flux rates of NH3

(Nemitz et al. 2001). Compared with spring and summer, the
lower temperature and higher SO2 and NOx emissions in win-
ter and autumn, especially in winter, favor the gas-to-particle
phase conversion and result in higher NH4

+ aerosol concen-
tration. Previous studies also showed higher NH4

+ in winter
compared with higher NH3 in summer (Shen et al. 2009;
Zhang et al. 2011a; Li et al. 2012).

Summary and conclusions

This study provides insights into the characteristics of
variations in atmospheric pollutants over three typical land-
use types in the North China Plain during China’s 12th FYP
(2011–2015) period, which targeted the reduction of national
NOx emissions, as well as SO2 and primary particles. The
major results and conclusions are as follows:

1. Atmospheric NH3 concentrations showed clear spatial
variation among the five sites. However, it was found that
the difference in annual NH3 concentrations was not sig-
nificant across all sites. High NH3 concentration observed
at the urban site was probably due to high emissions from
biological sources (e.g., sewage systems and garbage con-
tainers) and vehicles in the urban area, as well as agricul-
tural activity in the suburban area. Annual average NH3

concentrations showed consistent increasing trends at the
five sites, reflecting the elevated NH3 emission intensities
from transportation, agriculture, and livestock husbandry.

2. Annual average NO2 concentrations exhibited obvious
spatial difference, showing significantly higher concentra-
tions at the urban site than at the suburban and rural sites.
An overall decreasing trend of annual NO2 concentrations
was observed at all sites, likely related to implementation
of the national controls on NOx emissions. All annual
averages, however, exceeded (or were close to) the
Chinese annual NO2 exposure limit for humans, indicat-
ing serious atmospheric NO2 pollution not only at the
urban site but also at suburban and rural sites resulting
from local emission sources and atmospheric transport.

3. Unlike for NH3 and NO2, annual average HNO3 concen-
trations were relatively low and showed small spatial and
annual variations.

4. The PM2.5 pollution was severe in the NCP, with more
than 70 % of sampling days across the sites exceeding the
Chinese Grade II standard for daily PM2.5 concentration.
Ion balance calculations indicated that PM2.5 was neutral
at the urban and suburban sites and acidic at the rural sites.

5. NO3
−, SO4

2−, and NH4
+ were the dominant ionic partic-

ulate species at the four sites and accounted for 29–39 %
of the PM2.5 mass. NH4

+ was the dominant cation at all
sites, whereas NO3

− and SO4
2− were the dominant anions

at the non-rural and rural sites, respectively. NH4
+ was

insufficient to fully neutralize SO4
2− and NO3

− at all sites,
indicating an acid-rich condition. The seasonal variation
of SIAwas similar to that of PM2.5, implying that a reduc-
tion of the concentrations of SIA is a feasible way to
control PM2.5 pollution in the NCP, by directly targeting
ammonia or/and acid gases. Compared with observations
of the three dominant ions in Beijing in previous studies,
enhanced alkalization of the atmosphere was found.

6. Similar seasonal variations were observed for concentra-
tions of NH3, NO2, and aerosols NO3

− and NH4
+ over the

three land-use types, whereas seasonal variation of PM2.5

and HNO3 concentrations showed different spatial
characteristics. All above seasonal patterns were affected
by meteorological condition and pollution sources.
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